📄 ArcballControls.js
¶
📊 Analysis Summary¶
Metric | Count |
---|---|
🔧 Functions | 71 |
🧱 Classes | 1 |
📦 Imports | 15 |
📊 Variables & Constants | 135 |
📚 Table of Contents¶
🛠️ File Location:¶
📂 examples/jsm/controls/ArcballControls.js
📦 Imports¶
Name | Source |
---|---|
Controls |
three |
GridHelper |
three |
EllipseCurve |
three |
BufferGeometry |
three |
Line |
three |
LineBasicMaterial |
three |
Raycaster |
three |
Group |
three |
Box3 |
three |
Sphere |
three |
Quaternion |
three |
Vector2 |
three |
Vector3 |
three |
Matrix4 |
three |
MathUtils |
three |
Variables & Constants¶
Name | Type | Kind | Value | Exported |
---|---|---|---|---|
STATE |
{ IDLE: symbol; ROTATE: symbol; PAN: ... |
let/var | { IDLE: Symbol(), ROTATE: Symbol(), PAN: Symbol(), SCALE: Symbol(), FOV: Symb... |
✗ |
INPUT |
{ NONE: symbol; ONE_FINGER: symbol; O... |
let/var | { NONE: Symbol(), ONE_FINGER: Symbol(), ONE_FINGER_SWITCHED: Symbol(), TWO_FI... |
✗ |
_center |
{ x: number; y: number; } |
let/var | { x: 0, y: 0 } |
✗ |
_transformation |
{ camera: any; gizmos: any; } |
let/var | { camera: new Matrix4(), gizmos: new Matrix4() } |
✗ |
_changeEvent |
any |
let/var | { type: 'change' } |
✗ |
_startEvent |
any |
let/var | { type: 'start' } |
✗ |
_endEvent |
any |
let/var | { type: 'end' } |
✗ |
_raycaster |
any |
let/var | new Raycaster() |
✗ |
_offset |
any |
let/var | new Vector3() |
✗ |
_gizmoMatrixStateTemp |
any |
let/var | new Matrix4() |
✗ |
_cameraMatrixStateTemp |
any |
let/var | new Matrix4() |
✗ |
_scalePointTemp |
any |
let/var | new Vector3() |
✗ |
_EPS |
0.000001 |
let/var | 0.000001 |
✗ |
restart |
boolean |
let/var | opState != this._state |
✗ |
amount |
number |
let/var | Math.max( distance / this._tbRadius, angle ) * this.rotateSpeed |
✗ |
screenNotches |
8 |
let/var | 8 |
✗ |
movement |
number |
let/var | this._currentCursorPosition.y - this._startCursorPosition.y |
✗ |
size |
number |
let/var | 1 |
✗ |
screenNotches |
8 |
let/var | 8 |
✗ |
movement |
number |
let/var | this._currentCursorPosition.y - this._startCursorPosition.y |
✗ |
size |
number |
let/var | 1 |
✗ |
xNew |
number |
let/var | x / size |
✗ |
y |
number |
let/var | x * Math.tan( MathUtils.DEG2RAD * this._fovState * 0.5 ) |
✗ |
newFov |
number |
let/var | MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 ) |
✗ |
newDistance |
number |
let/var | y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) ) |
✗ |
deltaTime |
number |
let/var | ( performance.now() - this._timeCurrent ) |
✗ |
self |
this |
let/var | this |
✗ |
self |
this |
let/var | this |
✗ |
rotationPoint |
any |
let/var | *not shown* |
✗ |
amount |
number |
let/var | MathUtils.DEG2RAD * ( this._startFingerRotation - this._currentFingerRotation ) |
✗ |
minDistance |
12 |
let/var | 12 |
✗ |
amount |
number |
let/var | this._currentFingerDistance / this._startFingerDistance |
✗ |
scalePoint |
any |
let/var | *not shown* |
✗ |
clientX |
number |
let/var | 0 |
✗ |
clientY |
number |
let/var | 0 |
✗ |
nFingers |
number |
let/var | this._touchCurrent.length |
✗ |
clientX |
number |
let/var | 0 |
✗ |
clientY |
number |
let/var | 0 |
✗ |
nFingers |
number |
let/var | this._touchCurrent.length |
✗ |
screenNotches |
8 |
let/var | 8 |
✗ |
movement |
number |
let/var | this._currentCursorPosition.y - this._startCursorPosition.y |
✗ |
size |
number |
let/var | 1 |
✗ |
xNew |
number |
let/var | x / size |
✗ |
y |
number |
let/var | x * Math.tan( MathUtils.DEG2RAD * this._fovState * 0.5 ) |
✗ |
newFov |
number |
let/var | MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 ) |
✗ |
newDistance |
number |
let/var | y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) ) |
✗ |
operationInput |
string[] |
let/var | [ 'PAN', 'ROTATE', 'ZOOM', 'FOV' ] |
✗ |
mouseInput |
(string \| number)[] |
let/var | [ 0, 1, 2, 'WHEEL' ] |
✗ |
keyInput |
string[] |
let/var | [ 'CTRL', 'SHIFT', null ] |
✗ |
state |
any |
let/var | *not shown* |
✗ |
action |
{ operation: "PAN" \| "ROTATE" \| "ZO... |
let/var | { operation: operation, mouse: mouse, key: key, state: state } |
✗ |
action |
any |
let/var | *not shown* |
✗ |
action |
any |
let/var | *not shown* |
✗ |
bb |
any |
let/var | new Box3() |
✗ |
sphere |
any |
let/var | new Sphere() |
✗ |
regularNearPosition |
number |
let/var | cameraDistance - this._initialNear |
✗ |
regularFarPosition |
number |
let/var | cameraDistance - this._initialFar |
✗ |
update |
boolean |
let/var | false |
✗ |
s |
number |
let/var | p1 - p0 |
✗ |
t |
number |
let/var | ( t1 - t0 ) / 1000 |
✗ |
halfFovV |
number |
let/var | MathUtils.DEG2RAD * camera.fov * 0.5 |
✗ |
color |
8947848 |
let/var | 0x888888 |
✗ |
multiplier |
3 |
let/var | 3 |
✗ |
size |
any |
let/var | *not shown* |
✗ |
divisions |
any |
let/var | *not shown* |
✗ |
maxLength |
any |
let/var | *not shown* |
✗ |
tick |
any |
let/var | *not shown* |
✗ |
width |
number |
let/var | this.object.right - this.object.left |
✗ |
height |
number |
let/var | this.object.bottom - this.object.top |
✗ |
halfFovV |
number |
let/var | MathUtils.DEG2RAD * this.object.fov * 0.5 |
✗ |
gizmoX |
any |
let/var | this._gizmos.children[ 0 ] |
✗ |
gizmoY |
any |
let/var | this._gizmos.children[ 1 ] |
✗ |
gizmoZ |
any |
let/var | this._gizmos.children[ 2 ] |
✗ |
curve |
any |
let/var | new EllipseCurve( 0, 0, this._tbRadius, this._tbRadius ) |
✗ |
curve |
any |
let/var | new EllipseCurve( 0, 0, tbRadius, tbRadius ) |
✗ |
curveMaterialX |
any |
let/var | new LineBasicMaterial( { color: 0xff8080, fog: false, transparent: true, opac... |
✗ |
curveMaterialY |
any |
let/var | new LineBasicMaterial( { color: 0x80ff80, fog: false, transparent: true, opac... |
✗ |
curveMaterialZ |
any |
let/var | new LineBasicMaterial( { color: 0x8080ff, fog: false, transparent: true, opac... |
✗ |
gizmoX |
any |
let/var | new Line( curveGeometry, curveMaterialX ) |
✗ |
gizmoY |
any |
let/var | new Line( curveGeometry, curveMaterialY ) |
✗ |
gizmoZ |
any |
let/var | new Line( curveGeometry, curveMaterialZ ) |
✗ |
rotation |
number |
let/var | Math.PI * 0.5 |
✗ |
size |
number |
let/var | 1 / this.object.zoom |
✗ |
deltaTime |
number |
let/var | time - this._timeStart |
✗ |
animTime |
number |
let/var | deltaTime / this.focusAnimationTime |
✗ |
size |
number |
let/var | ( ( 1 - amount ) + ( this.scaleFactor * amount ) ) |
✗ |
self |
this |
let/var | this |
✗ |
deltaTime |
number |
let/var | ( time - this._timeStart ) / 1000 |
✗ |
w |
number |
let/var | w0 + ( ( - this.dampingFactor ) * deltaTime ) |
✗ |
self |
this |
let/var | this |
✗ |
distanceFactor |
number |
let/var | this._v3_1.distanceTo( this._v3_2 ) / this.object.position.distanceTo( this._... |
✗ |
point |
any |
let/var | this._gizmos.position |
✗ |
state |
any |
let/var | *not shown* |
✗ |
self |
this |
let/var | this |
✗ |
sizeInverse |
number |
let/var | 1 / size |
✗ |
amount |
number |
let/var | distance - ( distance * sizeInverse ) |
✗ |
newDistance |
number |
let/var | distance - amount |
✗ |
pos |
any |
let/var | this._v3_2 |
✗ |
h |
any |
let/var | this._v3_1.z |
✗ |
m |
number |
let/var | h / l |
✗ |
q |
any |
let/var | cameraGizmoDistance |
✗ |
a |
number |
let/var | Math.pow( m, 2 ) + 1 |
✗ |
b |
number |
let/var | 2 * m * q |
✗ |
c |
number |
let/var | Math.pow( q, 2 ) - radius2 |
✗ |
delta |
number |
let/var | Math.pow( b, 2 ) - ( 4 * a * c ) |
✗ |
angle |
number |
let/var | MathUtils.RAD2DEG * this._v2_1.angle() |
✗ |
h |
any |
let/var | this._v3_1.z |
✗ |
cameraGizmoDistance |
any |
let/var | *not shown* |
✗ |
m |
number |
let/var | h / l |
✗ |
q |
any |
let/var | cameraGizmoDistance |
✗ |
x |
number |
let/var | - q / m |
✗ |
oldRadius |
number |
let/var | this._tbRadius |
✗ |
scale |
number |
let/var | ( this._gizmos.scale.x + this._gizmos.scale.y + this._gizmos.scale.z ) / 3 |
✗ |
newRadius |
number |
let/var | this._tbRadius / scale |
✗ |
curve |
any |
let/var | new EllipseCurve( 0, 0, newRadius, newRadius ) |
✗ |
scale |
number |
let/var | ( this._gizmos.scale.x + this._gizmos.scale.y + this._gizmos.scale.z ) / 3 |
✗ |
newRadius |
number |
let/var | this._tbRadius / scale |
✗ |
curve |
any |
let/var | new EllipseCurve( 0, 0, newRadius, newRadius ) |
✗ |
modifier |
any |
let/var | null |
✗ |
movement |
number |
let/var | this.calculatePointersDistance( this._touchCurrent[ 0 ], event ) * this._devP... |
✗ |
modifier |
any |
let/var | null |
✗ |
movement |
number |
let/var | this.calculatePointersDistance( this._downEvents[ this._downEvents.length - 1... |
✗ |
nTouch |
any |
let/var | this._touchCurrent.length |
✗ |
downTime |
number |
let/var | event.timeStamp - this._downEvents[ this._downEvents.length - 1 ].timeStamp |
✗ |
clickInterval |
number |
let/var | event.timeStamp - this._clickStart |
✗ |
movement |
number |
let/var | this.calculatePointersDistance( this._downEvents[ 1 ], this._downEvents[ 0 ] ... |
✗ |
modifier |
any |
let/var | null |
✗ |
notchDeltaY |
125 |
let/var | 125 |
✗ |
sgn |
number |
let/var | event.deltaY / notchDeltaY |
✗ |
size |
number |
let/var | 1 |
✗ |
scalePoint |
any |
let/var | *not shown* |
✗ |
xNew |
number |
let/var | x / size |
✗ |
y |
number |
let/var | x * Math.tan( MathUtils.DEG2RAD * this.object.fov * 0.5 ) |
✗ |
newFov |
number |
let/var | MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 ) |
✗ |
newDistance |
number |
let/var | y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) ) |
✗ |
Functions¶
ArcballControls.connect(element: any): void
¶
Parameters:
element
any
Returns: void
Calls:
super.connect
this.domElement.addEventListener
window.addEventListener
Code
connect( element ) {
super.connect( element );
this.domElement.style.touchAction = 'none';
this._devPxRatio = window.devicePixelRatio;
this.domElement.addEventListener( 'contextmenu', this._onContextMenu );
this.domElement.addEventListener( 'wheel', this._onWheel, { passive: false } );
this.domElement.addEventListener( 'pointerdown', this._onPointerDown );
this.domElement.addEventListener( 'pointercancel', this._onPointerCancel );
window.addEventListener( 'resize', this._onWindowResize );
}
ArcballControls.disconnect(): void
¶
Returns: void
Calls:
this.domElement.removeEventListener
window.removeEventListener
Code
disconnect() {
this.domElement.removeEventListener( 'pointerdown', this._onPointerDown );
this.domElement.removeEventListener( 'pointercancel', this._onPointerCancel );
this.domElement.removeEventListener( 'wheel', this._onWheel );
this.domElement.removeEventListener( 'contextmenu', this._onContextMenu );
window.removeEventListener( 'pointermove', this._onPointerMove );
window.removeEventListener( 'pointerup', this._onPointerUp );
window.removeEventListener( 'resize', this._onWindowResize );
}
ArcballControls.onSinglePanStart(event: any, operation: any): void
¶
Parameters:
event
any
operation
any
Returns: void
Calls:
this.dispatchEvent
this.setCenter
cancelAnimationFrame
this.activateGizmos
this.updateTbState
this._startCursorPosition.copy
this.unprojectOnTbPlane
this.drawGrid
this.unprojectOnTbSurface
performance.now
this._cursorPosPrev.copy
this._cursorPosCurr.copy
this._startCursorPosition.setY
this.getCursorNDC
this._currentCursorPosition.copy
Code
onSinglePanStart( event, operation ) {
if ( this.enabled ) {
this.dispatchEvent( _startEvent );
this.setCenter( event.clientX, event.clientY );
switch ( operation ) {
case 'PAN':
if ( ! this.enablePan ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.PAN, true );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ) );
if ( this.enableGrid ) {
this.drawGrid();
this.dispatchEvent( _changeEvent );
}
break;
case 'ROTATE':
if ( ! this.enableRotate ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
}
this.updateTbState( STATE.ROTATE, true );
this._startCursorPosition.copy( this.unprojectOnTbSurface( this.object, _center.x, _center.y, this.domElement, this._tbRadius ) );
this.activateGizmos( true );
if ( this.enableAnimations ) {
this._timePrev = this._timeCurrent = performance.now();
this._angleCurrent = this._anglePrev = 0;
this._cursorPosPrev.copy( this._startCursorPosition );
this._cursorPosCurr.copy( this._cursorPosPrev );
this._wCurr = 0;
this._wPrev = this._wCurr;
}
this.dispatchEvent( _changeEvent );
break;
case 'FOV':
if ( ! this.object.isPerspectiveCamera || ! this.enableZoom ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.FOV, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
break;
case 'ZOOM':
if ( ! this.enableZoom ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.SCALE, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
break;
}
}
}
ArcballControls.onSinglePanMove(event: any, opState: any): void
¶
Parameters:
event
any
opState
any
Returns: void
Calls:
this.setCenter
this.dispatchEvent
this.updateTbState
this._startCursorPosition.copy
this.unprojectOnTbPlane
this.drawGrid
this.activateGizmos
this._currentCursorPosition.copy
this.applyTransformMatrix
this.pan
this.unprojectOnTbSurface
this.disposeGrid
this._startCursorPosition.distanceTo
this._startCursorPosition.angleTo
Math.max
this.rotate
this.calculateRotationAxis
performance.now
this._cursorPosPrev.copy
this._cursorPosCurr.copy
this.calculateAngularSpeed
this._startCursorPosition.setY
this.getCursorNDC
this._currentCursorPosition.setY
Math.pow
this._v3_1.setFromMatrixPosition
this.scale
this._v3_1.distanceTo
MathUtils.clamp
Math.tan
Math.atan
this._v3_2.setFromMatrixPosition
this.setFov
_offset.copy( this._gizmos.position ).sub( this.object.position ).normalize().multiplyScalar
this._m4_1.makeTranslation
Internal Comments:
//switch to pan operation (x4)
//continue with pan operation (x5)
//switch to rotate operation (x4)
//continue with rotate operation (x5)
//switch to zoom operation (x4)
//continue with zoom operation (x2)
//switch to fov operation (x4)
//continue with fov operation (x2)
//check min and max distance (x3)
//calculate new fov (x2)
//check min and max fov (x3)
//adjusting distance (x10)
Code
onSinglePanMove( event, opState ) {
if ( this.enabled ) {
const restart = opState != this._state;
this.setCenter( event.clientX, event.clientY );
switch ( opState ) {
case STATE.PAN:
if ( this.enablePan ) {
if ( restart ) {
//switch to pan operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ) );
if ( this.enableGrid ) {
this.drawGrid();
}
this.activateGizmos( false );
} else {
//continue with pan operation
this._currentCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ) );
this.applyTransformMatrix( this.pan( this._startCursorPosition, this._currentCursorPosition ) );
}
}
break;
case STATE.ROTATE:
if ( this.enableRotate ) {
if ( restart ) {
//switch to rotate operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.copy( this.unprojectOnTbSurface( this.object, _center.x, _center.y, this.domElement, this._tbRadius ) );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( true );
} else {
//continue with rotate operation
this._currentCursorPosition.copy( this.unprojectOnTbSurface( this.object, _center.x, _center.y, this.domElement, this._tbRadius ) );
const distance = this._startCursorPosition.distanceTo( this._currentCursorPosition );
const angle = this._startCursorPosition.angleTo( this._currentCursorPosition );
const amount = Math.max( distance / this._tbRadius, angle ) * this.rotateSpeed; //effective rotation angle
this.applyTransformMatrix( this.rotate( this.calculateRotationAxis( this._startCursorPosition, this._currentCursorPosition ), amount ) );
if ( this.enableAnimations ) {
this._timePrev = this._timeCurrent;
this._timeCurrent = performance.now();
this._anglePrev = this._angleCurrent;
this._angleCurrent = amount;
this._cursorPosPrev.copy( this._cursorPosCurr );
this._cursorPosCurr.copy( this._currentCursorPosition );
this._wPrev = this._wCurr;
this._wCurr = this.calculateAngularSpeed( this._anglePrev, this._angleCurrent, this._timePrev, this._timeCurrent );
}
}
}
break;
case STATE.SCALE:
if ( this.enableZoom ) {
if ( restart ) {
//switch to zoom operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
} else {
//continue with zoom operation
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState );
this.applyTransformMatrix( this.scale( size, this._v3_1 ) );
}
}
break;
case STATE.FOV:
if ( this.enableZoom && this.object.isPerspectiveCamera ) {
if ( restart ) {
//switch to fov operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
} else {
//continue with fov operation
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
const x = this._v3_1.distanceTo( this._gizmos.position );
let xNew = x / size; //distance between camera and gizmos if scale(size, scalepoint) would be performed
//check min and max distance
xNew = MathUtils.clamp( xNew, this.minDistance, this.maxDistance );
const y = x * Math.tan( MathUtils.DEG2RAD * this._fovState * 0.5 );
//calculate new fov
let newFov = MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 );
//check min and max fov
newFov = MathUtils.clamp( newFov, this.minFov, this.maxFov );
const newDistance = y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) );
size = x / newDistance;
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
this.setFov( newFov );
this.applyTransformMatrix( this.scale( size, this._v3_2, false ) );
//adjusting distance
_offset.copy( this._gizmos.position ).sub( this.object.position ).normalize().multiplyScalar( newDistance / x );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
}
}
break;
}
this.dispatchEvent( _changeEvent );
}
}
ArcballControls.onSinglePanEnd(): void
¶
Returns: void
Calls:
performance.now
Math.abs
window.requestAnimationFrame
self.updateTbState
self.calculateRotationAxis
self.onRotationAnim
Math.min
this.updateTbState
this.activateGizmos
this.dispatchEvent
this.disposeGrid
Internal Comments:
//perform rotation animation (x2)
//cursor has been standing still for over 120 ms since last movement (x4)
Code
onSinglePanEnd() {
if ( this._state == STATE.ROTATE ) {
if ( ! this.enableRotate ) {
return;
}
if ( this.enableAnimations ) {
//perform rotation animation
const deltaTime = ( performance.now() - this._timeCurrent );
if ( deltaTime < 120 ) {
const w = Math.abs( ( this._wPrev + this._wCurr ) / 2 );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.updateTbState( STATE.ANIMATION_ROTATE, true );
const rotationAxis = self.calculateRotationAxis( self._cursorPosPrev, self._cursorPosCurr );
self.onRotationAnim( t, rotationAxis, Math.min( w, self.wMax ) );
} );
} else {
//cursor has been standing still for over 120 ms since last movement
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else {
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else if ( this._state == STATE.PAN || this._state == STATE.IDLE ) {
this.updateTbState( STATE.IDLE, false );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.dispatchEvent( _endEvent );
}
ArcballControls.onDoubleTap(event: any): void
¶
Parameters:
event
any
Returns: void
Calls:
this.dispatchEvent
this.setCenter
this.unprojectOnObj
this.getCursorNDC
window.cancelAnimationFrame
window.requestAnimationFrame
self.updateTbState
self.onFocusAnim
this.updateTbState
this.focus
Code
onDoubleTap( event ) {
if ( this.enabled && this.enablePan && this.enableFocus && this.scene != null ) {
this.dispatchEvent( _startEvent );
this.setCenter( event.clientX, event.clientY );
const hitP = this.unprojectOnObj( this.getCursorNDC( _center.x, _center.y, this.domElement ), this.object );
if ( hitP != null && this.enableAnimations ) {
const self = this;
if ( this._animationId != - 1 ) {
window.cancelAnimationFrame( this._animationId );
}
this._timeStart = - 1;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.updateTbState( STATE.ANIMATION_FOCUS, true );
self.onFocusAnim( t, hitP, self._cameraMatrixState, self._gizmoMatrixState );
} );
} else if ( hitP != null && ! this.enableAnimations ) {
this.updateTbState( STATE.FOCUS, true );
this.focus( hitP, this.scaleFactor );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
}
}
this.dispatchEvent( _endEvent );
}
ArcballControls.onDoublePanStart(): void
¶
Returns: void
Calls:
this.dispatchEvent
this.updateTbState
this.setCenter
this._startCursorPosition.copy
this.unprojectOnTbPlane
this._currentCursorPosition.copy
this.activateGizmos
Code
onDoublePanStart() {
if ( this.enabled && this.enablePan ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.PAN, true );
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement, true ) );
this._currentCursorPosition.copy( this._startCursorPosition );
this.activateGizmos( false );
}
}
ArcballControls.onDoublePanMove(): void
¶
Returns: void
Calls:
this.setCenter
this.updateTbState
this._startCursorPosition.copy
this._currentCursorPosition.copy
this.unprojectOnTbPlane
this.applyTransformMatrix
this.pan
this.dispatchEvent
Code
onDoublePanMove() {
if ( this.enabled && this.enablePan ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
if ( this._state != STATE.PAN ) {
this.updateTbState( STATE.PAN, true );
this._startCursorPosition.copy( this._currentCursorPosition );
}
this._currentCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement, true ) );
this.applyTransformMatrix( this.pan( this._startCursorPosition, this._currentCursorPosition, true ) );
this.dispatchEvent( _changeEvent );
}
}
ArcballControls.onDoublePanEnd(): void
¶
Returns: void
Calls:
this.updateTbState
this.dispatchEvent
ArcballControls.onRotateStart(): void
¶
Returns: void
Calls:
this.dispatchEvent
this.updateTbState
this.getAngle
this.object.getWorldDirection
this.activateGizmos
Internal Comments:
Code
onRotateStart() {
if ( this.enabled && this.enableRotate ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.ZROTATE, true );
//this._startFingerRotation = event.rotation;
this._startFingerRotation = this.getAngle( this._touchCurrent[ 1 ], this._touchCurrent[ 0 ] ) + this.getAngle( this._touchStart[ 1 ], this._touchStart[ 0 ] );
this._currentFingerRotation = this._startFingerRotation;
this.object.getWorldDirection( this._rotationAxis ); //rotation axis
if ( ! this.enablePan && ! this.enableZoom ) {
this.activateGizmos( true );
}
}
}
ArcballControls.onRotateMove(): void
¶
Returns: void
Calls:
this.setCenter
this.updateTbState
this.getAngle
new Vector3().setFromMatrixPosition
this._v3_2.setFromMatrixPosition
this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ).applyQuaternion( this.object.quaternion ).multiplyScalar( 1 / this.object.zoom ).add
this.applyTransformMatrix
this.zRotate
this.dispatchEvent
Internal Comments:
Code
onRotateMove() {
if ( this.enabled && this.enableRotate ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
let rotationPoint;
if ( this._state != STATE.ZROTATE ) {
this.updateTbState( STATE.ZROTATE, true );
this._startFingerRotation = this._currentFingerRotation;
}
//this._currentFingerRotation = event.rotation;
this._currentFingerRotation = this.getAngle( this._touchCurrent[ 1 ], this._touchCurrent[ 0 ] ) + this.getAngle( this._touchStart[ 1 ], this._touchStart[ 0 ] );
if ( ! this.enablePan ) {
rotationPoint = new Vector3().setFromMatrixPosition( this._gizmoMatrixState );
} else {
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
rotationPoint = this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ).applyQuaternion( this.object.quaternion ).multiplyScalar( 1 / this.object.zoom ).add( this._v3_2 );
}
const amount = MathUtils.DEG2RAD * ( this._startFingerRotation - this._currentFingerRotation );
this.applyTransformMatrix( this.zRotate( rotationPoint, amount ) );
this.dispatchEvent( _changeEvent );
}
}
ArcballControls.onRotateEnd(): void
¶
Returns: void
Calls:
this.updateTbState
this.activateGizmos
this.dispatchEvent
Code
ArcballControls.onPinchStart(): void
¶
Returns: void
Calls:
this.dispatchEvent
this.updateTbState
this.calculatePointersDistance
this.activateGizmos
Code
onPinchStart() {
if ( this.enabled && this.enableZoom ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.SCALE, true );
this._startFingerDistance = this.calculatePointersDistance( this._touchCurrent[ 0 ], this._touchCurrent[ 1 ] );
this._currentFingerDistance = this._startFingerDistance;
this.activateGizmos( false );
}
}
ArcballControls.onPinchMove(): void
¶
Returns: void
Calls:
this.setCenter
this.updateTbState
Math.max
this.calculatePointersDistance
this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ) .applyQuaternion( this.object.quaternion ) .multiplyScalar( 1 / this.object.zoom ) .add
this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ) .applyQuaternion( this.object.quaternion ) .add
this.applyTransformMatrix
this.scale
this.dispatchEvent
Code
onPinchMove() {
if ( this.enabled && this.enableZoom ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
const minDistance = 12; //minimum distance between fingers (in css pixels)
if ( this._state != STATE.SCALE ) {
this._startFingerDistance = this._currentFingerDistance;
this.updateTbState( STATE.SCALE, true );
}
this._currentFingerDistance = Math.max( this.calculatePointersDistance( this._touchCurrent[ 0 ], this._touchCurrent[ 1 ] ), minDistance * this._devPxRatio );
const amount = this._currentFingerDistance / this._startFingerDistance;
let scalePoint;
if ( ! this.enablePan ) {
scalePoint = this._gizmos.position;
} else {
if ( this.object.isOrthographicCamera ) {
scalePoint = this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement )
.applyQuaternion( this.object.quaternion )
.multiplyScalar( 1 / this.object.zoom )
.add( this._gizmos.position );
} else if ( this.object.isPerspectiveCamera ) {
scalePoint = this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement )
.applyQuaternion( this.object.quaternion )
.add( this._gizmos.position );
}
}
this.applyTransformMatrix( this.scale( amount, scalePoint ) );
this.dispatchEvent( _changeEvent );
}
}
ArcballControls.onPinchEnd(): void
¶
Returns: void
Calls:
this.updateTbState
this.dispatchEvent
ArcballControls.onTriplePanStart(): void
¶
Returns: void
Calls:
this.dispatchEvent
this.updateTbState
this.setCenter
this._startCursorPosition.setY
this.getCursorNDC
this._currentCursorPosition.copy
Internal Comments:
Code
onTriplePanStart() {
if ( this.enabled && this.enableZoom ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.SCALE, true );
//const center = event.center;
let clientX = 0;
let clientY = 0;
const nFingers = this._touchCurrent.length;
for ( let i = 0; i < nFingers; i ++ ) {
clientX += this._touchCurrent[ i ].clientX;
clientY += this._touchCurrent[ i ].clientY;
}
this.setCenter( clientX / nFingers, clientY / nFingers );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
}
}
ArcballControls.onTriplePanMove(): void
¶
Returns: void
Calls:
this.setCenter
this._currentCursorPosition.setY
this.getCursorNDC
Math.pow
this._v3_1.setFromMatrixPosition
this._v3_1.distanceTo
MathUtils.clamp
Math.tan
Math.atan
this._v3_2.setFromMatrixPosition
this.setFov
this.applyTransformMatrix
this.scale
_offset.copy( this._gizmos.position ).sub( this.object.position ).normalize().multiplyScalar
this._m4_1.makeTranslation
this.dispatchEvent
Internal Comments:
// fov / 2 (x2)
// |\ (x2)
// | \ (x2)
// | \ (x2)
// x | \ (x2)
// | \ (x2)
// | \ (x2)
// | _ _ _\ (x2)
// y (x2)
//const center = event.center; (x2)
//check min and max distance (x3)
//calculate new fov (x2)
//check min and max fov (x3)
//adjusting distance (x10)
Code
onTriplePanMove() {
if ( this.enabled && this.enableZoom ) {
// fov / 2
// |\
// | \
// | \
// x | \
// | \
// | \
// | _ _ _\
// y
//const center = event.center;
let clientX = 0;
let clientY = 0;
const nFingers = this._touchCurrent.length;
for ( let i = 0; i < nFingers; i ++ ) {
clientX += this._touchCurrent[ i ].clientX;
clientY += this._touchCurrent[ i ].clientY;
}
this.setCenter( clientX / nFingers, clientY / nFingers );
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
const x = this._v3_1.distanceTo( this._gizmos.position );
let xNew = x / size; //distance between camera and gizmos if scale(size, scalepoint) would be performed
//check min and max distance
xNew = MathUtils.clamp( xNew, this.minDistance, this.maxDistance );
const y = x * Math.tan( MathUtils.DEG2RAD * this._fovState * 0.5 );
//calculate new fov
let newFov = MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 );
//check min and max fov
newFov = MathUtils.clamp( newFov, this.minFov, this.maxFov );
const newDistance = y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) );
size = x / newDistance;
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
this.setFov( newFov );
this.applyTransformMatrix( this.scale( size, this._v3_2, false ) );
//adjusting distance
_offset.copy( this._gizmos.position ).sub( this.object.position ).normalize().multiplyScalar( newDistance / x );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
this.dispatchEvent( _changeEvent );
}
}
ArcballControls.onTriplePanEnd(): void
¶
Returns: void
Calls:
this.updateTbState
this.dispatchEvent
Code
ArcballControls.setCenter(clientX: number, clientY: number): void
¶
JSDoc:
/**
* Set _center's x/y coordinates.
*
* @private
* @param {number} clientX - The x coordinate.
* @param {number} clientY - The y coordinate.
*/
Parameters:
clientX
number
clientY
number
Returns: void
ArcballControls.initializeMouseActions(): void
¶
JSDoc:
Returns: void
Calls:
this.setMouseAction
Code
initializeMouseActions() {
this.setMouseAction( 'PAN', 0, 'CTRL' );
this.setMouseAction( 'PAN', 2 );
this.setMouseAction( 'ROTATE', 0 );
this.setMouseAction( 'ZOOM', 'WHEEL' );
this.setMouseAction( 'ZOOM', 1 );
this.setMouseAction( 'FOV', 'WHEEL', 'SHIFT' );
this.setMouseAction( 'FOV', 1, 'SHIFT' );
}
ArcballControls.compareMouseAction(action1: any, action2: any): boolean
¶
JSDoc:
/**
* Compare two mouse actions.
*
* @private
* @param {Object} action1 - The first mouse action.
* @param {Object} action2 - The second mouse action.
* @returns {boolean} `true` if action1 and action 2 are the same mouse action, `false` otherwise.
*/
Parameters:
action1
any
action2
any
Returns: boolean
Code
ArcballControls.setMouseAction(operation: "PAN" | "ROTATE" | "ZOOM" | "FOV", mouse: 0 | 1 | 2 | "WHEEL", key: "CTRL" | "SHIFT"): boolean
¶
JSDoc:
/**
* Set a new mouse action by specifying the operation to be performed and a mouse/key combination. In case of conflict, replaces the existing one.
*
* @param {'PAN'|'ROTATE'|'ZOOM'|'FOV'} operation - The operation to be performed ('PAN', 'ROTATE', 'ZOOM', 'FOV').
* @param {0|1|2|'WHEEL'} mouse - A mouse button (0, 1, 2) or 'WHEEL' for wheel notches.
* @param {'CTRL'|'SHIFT'|null} [key=null] - The keyboard modifier ('CTRL', 'SHIFT') or null if key is not needed.
* @returns {boolean} `true` if the mouse action has been successfully added, `false` otherwise.
*/
Parameters:
operation
"PAN" | "ROTATE" | "ZOOM" | "FOV"
mouse
0 | 1 | 2 | "WHEEL"
key
"CTRL" | "SHIFT"
Returns: boolean
Calls:
operationInput.includes
mouseInput.includes
keyInput.includes
this.mouseActions.splice
this.mouseActions.push
Internal Comments:
Code
setMouseAction( operation, mouse, key = null ) {
const operationInput = [ 'PAN', 'ROTATE', 'ZOOM', 'FOV' ];
const mouseInput = [ 0, 1, 2, 'WHEEL' ];
const keyInput = [ 'CTRL', 'SHIFT', null ];
let state;
if ( ! operationInput.includes( operation ) || ! mouseInput.includes( mouse ) || ! keyInput.includes( key ) ) {
//invalid parameters
return false;
}
if ( mouse == 'WHEEL' ) {
if ( operation != 'ZOOM' && operation != 'FOV' ) {
//cannot associate 2D operation to 1D input
return false;
}
}
switch ( operation ) {
case 'PAN':
state = STATE.PAN;
break;
case 'ROTATE':
state = STATE.ROTATE;
break;
case 'ZOOM':
state = STATE.SCALE;
break;
case 'FOV':
state = STATE.FOV;
break;
}
const action = {
operation: operation,
mouse: mouse,
key: key,
state: state
};
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
if ( this.mouseActions[ i ].mouse == action.mouse && this.mouseActions[ i ].key == action.key ) {
this.mouseActions.splice( i, 1, action );
return true;
}
}
this.mouseActions.push( action );
return true;
}
ArcballControls.unsetMouseAction(mouse: 0 | 1 | 2 | "WHEEL", key: "CTRL" | "SHIFT"): boolean
¶
JSDoc:
/**
* Remove a mouse action by specifying its mouse/key combination.
*
* @param {0|1|2|'WHEEL'} mouse - A mouse button (0, 1, 2) or 'WHEEL' for wheel notches.
* @param {'CTRL'|'SHIFT'|null} key - The keyboard modifier ('CTRL', 'SHIFT') or null if key is not needed.
* @returns {boolean} `true` if the operation has been successfully removed, `false` otherwise.
*/
Parameters:
mouse
0 | 1 | 2 | "WHEEL"
key
"CTRL" | "SHIFT"
Returns: boolean
Calls:
this.mouseActions.splice
Code
ArcballControls.getOpFromAction(mouse: 0 | 1 | 2 | "WHEEL", key: "CTRL" | "SHIFT"): "PAN" | "ROTATE" | "ZOOM" | "FOV"
¶
JSDoc:
/**
* Return the operation associated to a mouse/keyboard combination.
*
* @private
* @param {0|1|2|'WHEEL'} mouse - Mouse button index (0, 1, 2) or 'WHEEL' for wheel notches.
* @param {'CTRL'|'SHIFT'|null} key - Keyboard modifier.
* @returns {'PAN'|'ROTATE'|'ZOOM'|'FOV'|null} The operation if it has been found, `null` otherwise.
*/
Parameters:
mouse
0 | 1 | 2 | "WHEEL"
key
"CTRL" | "SHIFT"
Returns: "PAN" | "ROTATE" | "ZOOM" | "FOV"
Code
getOpFromAction( mouse, key ) {
let action;
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == key ) {
return action.operation;
}
}
if ( key != null ) {
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == null ) {
return action.operation;
}
}
}
return null;
}
ArcballControls.getOpStateFromAction(mouse: 0 | 1 | 2, key: "CTRL" | "SHIFT"): { IDLE: symbol; ROTATE: symbol; PAN: symbol; SCALE: symbol; FOV: symbol; FOCUS: symbol; ZROTATE: symbol; TOUCH_MULTI: symbol; ANIMATION_FOCUS: symbol; ANIMATION_ROTATE: symbol; }
¶
JSDoc:
/**
* Get the operation associated to mouse and key combination and returns the corresponding FSA state.
*
* @private
* @param {0|1|2} mouse - Mouse button index (0, 1, 2)
* @param {'CTRL'|'SHIFT'|null} key - Keyboard modifier
* @returns {?STATE} The FSA state obtained from the operation associated to mouse/keyboard combination.
*/
Parameters:
mouse
0 | 1 | 2
key
"CTRL" | "SHIFT"
Returns: { IDLE: symbol; ROTATE: symbol; PAN: symbol; SCALE: symbol; FOV: symbol; FOCUS: symbol; ZROTATE: symbol; TOUCH_MULTI: symbol; ANIMATION_FOCUS: symbol; ANIMATION_ROTATE: symbol; }
Code
getOpStateFromAction( mouse, key ) {
let action;
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == key ) {
return action.state;
}
}
if ( key != null ) {
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == null ) {
return action.state;
}
}
}
return null;
}
ArcballControls.getAngle(p1: PointerEvent, p2: PointerEvent): number
¶
JSDoc:
/**
* Calculate the angle between two pointers.
*
* @private
* @param {PointerEvent} p1 - The first pointer event.
* @param {PointerEvent} p2 - The second pointer event.
* @returns {number} The angle between two pointers in degrees.
*/
Parameters:
p1
PointerEvent
p2
PointerEvent
Returns: number
Calls:
Math.atan2
Code
ArcballControls.updateTouchEvent(event: PointerEvent): void
¶
JSDoc:
/**
* Updates a PointerEvent inside current pointerevents array.
*
* @private
* @param {PointerEvent} event - The pointer event.
*/
Parameters:
event
PointerEvent
Returns: void
Calls:
this._touchCurrent.splice
Code
ArcballControls.applyTransformMatrix(transformation: any): void
¶
JSDoc:
/**
* Applies a transformation matrix, to the camera and gizmos.
*
* @private
* @param {Object} transformation - Object containing matrices to apply to camera and gizmos.
*/
Parameters:
transformation
any
Returns: void
Calls:
this._m4_1.copy( this._cameraMatrixState ).premultiply
this._m4_1.decompose
this.object.updateMatrix
this.object.up.copy( this._upState ).applyQuaternion
this._m4_1.copy( this._gizmoMatrixState ).premultiply
this._gizmos.updateMatrix
this.calculateTbRadius
this.object.position.distanceTo
bb.setFromObject
bb.getBoundingSphere
Math.max
sphere.center.length
Math.min
this.object.updateProjectionMatrix
Internal Comments:
Code
applyTransformMatrix( transformation ) {
if ( transformation.camera != null ) {
this._m4_1.copy( this._cameraMatrixState ).premultiply( transformation.camera );
this._m4_1.decompose( this.object.position, this.object.quaternion, this.object.scale );
this.object.updateMatrix();
//update camera up vector
if ( this._state == STATE.ROTATE || this._state == STATE.ZROTATE || this._state == STATE.ANIMATION_ROTATE ) {
this.object.up.copy( this._upState ).applyQuaternion( this.object.quaternion );
}
}
if ( transformation.gizmos != null ) {
this._m4_1.copy( this._gizmoMatrixState ).premultiply( transformation.gizmos );
this._m4_1.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this._gizmos.updateMatrix();
}
if ( this._state == STATE.SCALE || this._state == STATE.FOCUS || this._state == STATE.ANIMATION_FOCUS ) {
this._tbRadius = this.calculateTbRadius( this.object );
if ( this.adjustNearFar ) {
const cameraDistance = this.object.position.distanceTo( this._gizmos.position );
const bb = new Box3();
bb.setFromObject( this._gizmos );
const sphere = new Sphere();
bb.getBoundingSphere( sphere );
const adjustedNearPosition = Math.max( this._nearPos0, sphere.radius + sphere.center.length() );
const regularNearPosition = cameraDistance - this._initialNear;
const minNearPos = Math.min( adjustedNearPosition, regularNearPosition );
this.object.near = cameraDistance - minNearPos;
const adjustedFarPosition = Math.min( this._farPos0, - sphere.radius + sphere.center.length() );
const regularFarPosition = cameraDistance - this._initialFar;
const minFarPos = Math.min( adjustedFarPosition, regularFarPosition );
this.object.far = cameraDistance - minFarPos;
this.object.updateProjectionMatrix();
} else {
let update = false;
if ( this.object.near != this._initialNear ) {
this.object.near = this._initialNear;
update = true;
}
if ( this.object.far != this._initialFar ) {
this.object.far = this._initialFar;
update = true;
}
if ( update ) {
this.object.updateProjectionMatrix();
}
}
}
}
ArcballControls.calculateAngularSpeed(p0: number, p1: number, t0: number, t1: number): number
¶
JSDoc:
/**
* Calculates the angular speed.
*
* @private
* @param {number} p0 - Position at t0.
* @param {number} p1 - Position at t1.
* @param {number} t0 - Initial time in milliseconds.
* @param {number} t1 - Ending time in milliseconds.
* @returns {number} The angular speed.
*/
Parameters:
p0
number
p1
number
t0
number
t1
number
Returns: number
Code
ArcballControls.calculatePointersDistance(p0: PointerEvent, p1: PointerEvent): number
¶
JSDoc:
/**
* Calculates the distance between two pointers.
*
* @private
* @param {PointerEvent} p0 - The first pointer.
* @param {PointerEvent} p1 - The second pointer.
* @returns {number} The distance between the two pointers.
*/
Parameters:
p0
PointerEvent
p1
PointerEvent
Returns: number
Calls:
Math.sqrt
Math.pow
Code
ArcballControls.calculateRotationAxis(vec1: Vector3, vec2: Vector3): Vector3
¶
JSDoc:
/**
* Calculates the rotation axis as the vector perpendicular between two vectors.
*
* @private
* @param {Vector3} vec1 - The first vector.
* @param {Vector3} vec2 - The second vector.
* @returns {Vector3} The normalized rotation axis.
*/
Parameters:
vec1
Vector3
vec2
Vector3
Returns: Vector3
Calls:
this._rotationMatrix.extractRotation
this._quat.setFromRotationMatrix
this._rotationAxis.crossVectors( vec1, vec2 ).applyQuaternion
this._rotationAxis.normalize().clone
Code
ArcballControls.calculateTbRadius(camera: Camera): number
¶
JSDoc:
/**
* Calculates the trackball radius so that gizmo's diameter will be 2/3 of the minimum side of the camera frustum.
*
* @private
* @param {Camera} camera - The camera.
* @returns {number} The trackball radius.
*/
Parameters:
camera
Camera
Returns: number
Calls:
camera.position.distanceTo
Math.atan
Math.tan
Math.min
Code
calculateTbRadius( camera ) {
const distance = camera.position.distanceTo( this._gizmos.position );
if ( camera.type == 'PerspectiveCamera' ) {
const halfFovV = MathUtils.DEG2RAD * camera.fov * 0.5; //vertical fov/2 in radians
const halfFovH = Math.atan( ( camera.aspect ) * Math.tan( halfFovV ) ); //horizontal fov/2 in radians
return Math.tan( Math.min( halfFovV, halfFovH ) ) * distance * this.radiusFactor;
} else if ( camera.type == 'OrthographicCamera' ) {
return Math.min( camera.top, camera.right ) * this.radiusFactor;
}
}
ArcballControls.focus(point: Vector3, size: number, amount: number): void
¶
JSDoc:
/**
* Focus operation consist of positioning the point of interest in front of the camera and a slightly zoom in.
*
* @private
* @param {Vector3} point - The point of interest.
* @param {number} size - Scale factor.
* @param {number} [amount=1] - Amount of operation to be completed (used for focus animations, default is complete full operation).
*/
Parameters:
point
Vector3
size
number
amount
number
Returns: void
Calls:
_offset.copy( point ).sub( this._gizmos.position ).multiplyScalar
this._translationMatrix.makeTranslation
_gizmoMatrixStateTemp.copy
this._gizmoMatrixState.premultiply
this._gizmoMatrixState.decompose
_cameraMatrixStateTemp.copy
this._cameraMatrixState.premultiply
this._cameraMatrixState.decompose
this.applyTransformMatrix
this.scale
this._gizmoMatrixState.copy
this._cameraMatrixState.copy
Internal Comments:
Code
focus( point, size, amount = 1 ) {
//move center of camera (along with gizmos) towards point of interest
_offset.copy( point ).sub( this._gizmos.position ).multiplyScalar( amount );
this._translationMatrix.makeTranslation( _offset.x, _offset.y, _offset.z );
_gizmoMatrixStateTemp.copy( this._gizmoMatrixState );
this._gizmoMatrixState.premultiply( this._translationMatrix );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
_cameraMatrixStateTemp.copy( this._cameraMatrixState );
this._cameraMatrixState.premultiply( this._translationMatrix );
this._cameraMatrixState.decompose( this.object.position, this.object.quaternion, this.object.scale );
//apply zoom
if ( this.enableZoom ) {
this.applyTransformMatrix( this.scale( size, this._gizmos.position ) );
}
this._gizmoMatrixState.copy( _gizmoMatrixStateTemp );
this._cameraMatrixState.copy( _cameraMatrixStateTemp );
}
ArcballControls.drawGrid(): void
¶
JSDoc:
Returns: void
Calls:
Math.max
this.object.position.distanceTo
Math.atan
Math.tan
this._grid.position.copy
this._gridPosition.copy
this._grid.quaternion.copy
this._grid.rotateX
this.scene.add
Code
drawGrid() {
if ( this.scene != null ) {
const color = 0x888888;
const multiplier = 3;
let size, divisions, maxLength, tick;
if ( this.object.isOrthographicCamera ) {
const width = this.object.right - this.object.left;
const height = this.object.bottom - this.object.top;
maxLength = Math.max( width, height );
tick = maxLength / 20;
size = maxLength / this.object.zoom * multiplier;
divisions = size / tick * this.object.zoom;
} else if ( this.object.isPerspectiveCamera ) {
const distance = this.object.position.distanceTo( this._gizmos.position );
const halfFovV = MathUtils.DEG2RAD * this.object.fov * 0.5;
const halfFovH = Math.atan( ( this.object.aspect ) * Math.tan( halfFovV ) );
maxLength = Math.tan( Math.max( halfFovV, halfFovH ) ) * distance * 2;
tick = maxLength / 20;
size = maxLength * multiplier;
divisions = size / tick;
}
if ( this._grid == null ) {
this._grid = new GridHelper( size, divisions, color, color );
this._grid.position.copy( this._gizmos.position );
this._gridPosition.copy( this._grid.position );
this._grid.quaternion.copy( this.object.quaternion );
this._grid.rotateX( Math.PI * 0.5 );
this.scene.add( this._grid );
}
}
}
ArcballControls.dispose(): void
¶
Returns: void
Calls:
window.cancelAnimationFrame
this.disconnect
this.scene.remove
this.disposeGrid
Code
ArcballControls.disposeGrid(): void
¶
JSDoc:
Returns: void
Calls:
this.scene.remove
Code
ArcballControls.easeOutCubic(t: number): number
¶
JSDoc:
/**
* Computes the easing out cubic function for ease out effect in animation.
*
* @private
* @param {number} t - The absolute progress of the animation in the bound of `0` (beginning of the) and `1` (ending of animation).
* @returns {number} Result of easing out cubic at time `t`.
*/
Parameters:
t
number
Returns: number
Calls:
Math.pow
ArcballControls.activateGizmos(isActive: boolean): void
¶
JSDoc:
/**
* Makes rotation gizmos more or less visible.
*
* @param {boolean} isActive - If set to `true`, gizmos are more visible.
*/
Parameters:
isActive
boolean
Returns: void
Calls:
gizmoX.material.setValues
gizmoY.material.setValues
gizmoZ.material.setValues
Code
activateGizmos( isActive ) {
const gizmoX = this._gizmos.children[ 0 ];
const gizmoY = this._gizmos.children[ 1 ];
const gizmoZ = this._gizmos.children[ 2 ];
if ( isActive ) {
gizmoX.material.setValues( { opacity: 1 } );
gizmoY.material.setValues( { opacity: 1 } );
gizmoZ.material.setValues( { opacity: 1 } );
} else {
gizmoX.material.setValues( { opacity: 0.6 } );
gizmoY.material.setValues( { opacity: 0.6 } );
gizmoZ.material.setValues( { opacity: 0.6 } );
}
}
ArcballControls.getCursorNDC(cursorX: number, cursorY: number, canvas: HTMLElement): Vector2
¶
JSDoc:
/**
* Calculates the cursor position in NDC.
*
* @private
* @param {number} cursorX - Cursor horizontal coordinate within the canvas.
* @param {number} cursorY - Cursor vertical coordinate within the canvas.
* @param {HTMLElement} canvas - The canvas where the renderer draws its output.
* @returns {Vector2} Cursor normalized position inside the canvas.
*/
Parameters:
cursorX
number
cursorY
number
canvas
HTMLElement
Returns: Vector2
Calls:
canvas.getBoundingClientRect
this._v2_1.setX
this._v2_1.setY
this._v2_1.clone
Code
ArcballControls.getCursorPosition(cursorX: number, cursorY: number, canvas: HTMLElement): Vector2
¶
JSDoc:
/**
* Calculates the cursor position inside the canvas x/y coordinates with the origin being in the center of the canvas.
*
* @private
* @param {number} cursorX - Cursor horizontal coordinate within the canvas.
* @param {number} cursorY - Cursor vertical coordinate within the canvas.
* @param {HTMLElement} canvas - The canvas where the renderer draws its output.
* @returns {Vector2} Cursor position inside the canvas.
*/
Parameters:
cursorX
number
cursorY
number
canvas
HTMLElement
Returns: Vector2
Calls:
this._v2_1.copy
this.getCursorNDC
this._v2_1.clone
Code
ArcballControls.setCamera(camera: Camera): void
¶
JSDoc:
/**
* Sets the camera to be controlled. Must be called in order to set a new camera to be controlled.
*
* @param {Camera} camera - The camera to be controlled.
*/
Parameters:
camera
Camera
Returns: void
Calls:
camera.lookAt
camera.updateMatrix
this._cameraMatrixState0.copy
this._cameraMatrixState.copy
this._cameraProjectionState.copy
camera.position.distanceTo
this._up0.copy
this._upState.copy
this.object.updateProjectionMatrix
this.calculateTbRadius
this.makeGizmos
Internal Comments:
Code
setCamera( camera ) {
camera.lookAt( this.target );
camera.updateMatrix();
//setting state
if ( camera.type == 'PerspectiveCamera' ) {
this._fov0 = camera.fov;
this._fovState = camera.fov;
}
this._cameraMatrixState0.copy( camera.matrix );
this._cameraMatrixState.copy( this._cameraMatrixState0 );
this._cameraProjectionState.copy( camera.projectionMatrix );
this._zoom0 = camera.zoom;
this._zoomState = this._zoom0;
this._initialNear = camera.near;
this._nearPos0 = camera.position.distanceTo( this.target ) - camera.near;
this._nearPos = this._initialNear;
this._initialFar = camera.far;
this._farPos0 = camera.position.distanceTo( this.target ) - camera.far;
this._farPos = this._initialFar;
this._up0.copy( camera.up );
this._upState.copy( camera.up );
this.object = camera;
this.object.updateProjectionMatrix();
//making gizmos
this._tbRadius = this.calculateTbRadius( camera );
this.makeGizmos( this.target, this._tbRadius );
}
ArcballControls.setGizmosVisible(value: boolean): void
¶
JSDoc:
Parameters:
value
boolean
Returns: void
Calls:
this.dispatchEvent
Code
ArcballControls.setTbRadius(value: number): void
¶
JSDoc:
/**
* Sets gizmos radius factor and redraws gizmos.
*
* @param {number} value - Value of radius factor.
*/
Parameters:
value
number
Returns: void
Calls:
this.calculateTbRadius
curve.getPoints
new BufferGeometry().setFromPoints
this.dispatchEvent
Code
setTbRadius( value ) {
this.radiusFactor = value;
this._tbRadius = this.calculateTbRadius( this.object );
const curve = new EllipseCurve( 0, 0, this._tbRadius, this._tbRadius );
const points = curve.getPoints( this._curvePts );
const curveGeometry = new BufferGeometry().setFromPoints( points );
for ( const gizmo in this._gizmos.children ) {
this._gizmos.children[ gizmo ].geometry = curveGeometry;
}
this.dispatchEvent( _changeEvent );
}
ArcballControls.makeGizmos(tbCenter: Vector3, tbRadius: number): void
¶
JSDoc:
/**
* Creates the rotation gizmos matching trackball center and radius.
*
* @private
* @param {Vector3} tbCenter - The trackball center.
* @param {number} tbRadius - The trackball radius.
*/
Parameters:
tbCenter
Vector3
tbRadius
number
Returns: void
Calls:
curve.getPoints
new BufferGeometry().setFromPoints
this._gizmoMatrixState0.identity().setPosition
this._gizmoMatrixState.copy
this._scaleMatrix.makeScale
this._translationMatrix.makeTranslation
this._gizmoMatrixState.premultiply( this._translationMatrix ).premultiply
this._gizmoMatrixState.premultiply
this._gizmoMatrixState.decompose
this._gizmos.traverse
object.geometry.dispose
object.material.dispose
this._gizmos.clear
this._gizmos.add
Internal Comments:
//geometry (x2)
//material (x2)
//line (x2)
//setting state (x7)
//adapt gizmos size to camera zoom (x2)
// (x10)
Code
makeGizmos( tbCenter, tbRadius ) {
const curve = new EllipseCurve( 0, 0, tbRadius, tbRadius );
const points = curve.getPoints( this._curvePts );
//geometry
const curveGeometry = new BufferGeometry().setFromPoints( points );
//material
const curveMaterialX = new LineBasicMaterial( { color: 0xff8080, fog: false, transparent: true, opacity: 0.6 } );
const curveMaterialY = new LineBasicMaterial( { color: 0x80ff80, fog: false, transparent: true, opacity: 0.6 } );
const curveMaterialZ = new LineBasicMaterial( { color: 0x8080ff, fog: false, transparent: true, opacity: 0.6 } );
//line
const gizmoX = new Line( curveGeometry, curveMaterialX );
const gizmoY = new Line( curveGeometry, curveMaterialY );
const gizmoZ = new Line( curveGeometry, curveMaterialZ );
const rotation = Math.PI * 0.5;
gizmoX.rotation.x = rotation;
gizmoY.rotation.y = rotation;
//setting state
this._gizmoMatrixState0.identity().setPosition( tbCenter );
this._gizmoMatrixState.copy( this._gizmoMatrixState0 );
if ( this.object.zoom !== 1 ) {
//adapt gizmos size to camera zoom
const size = 1 / this.object.zoom;
this._scaleMatrix.makeScale( size, size, size );
this._translationMatrix.makeTranslation( - tbCenter.x, - tbCenter.y, - tbCenter.z );
this._gizmoMatrixState.premultiply( this._translationMatrix ).premultiply( this._scaleMatrix );
this._translationMatrix.makeTranslation( tbCenter.x, tbCenter.y, tbCenter.z );
this._gizmoMatrixState.premultiply( this._translationMatrix );
}
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
//
this._gizmos.traverse( function ( object ) {
if ( object.isLine ) {
object.geometry.dispose();
object.material.dispose();
}
} );
this._gizmos.clear();
//
this._gizmos.add( gizmoX );
this._gizmos.add( gizmoY );
this._gizmos.add( gizmoZ );
}
ArcballControls.onFocusAnim(time: number, point: Vector3, cameraMatrix: Matrix4, gizmoMatrix: Matrix4): void
¶
JSDoc:
/**
* Performs animation for focus operation.
*
* @private
* @param {number} time - Instant in which this function is called as performance.now().
* @param {Vector3} point - Point of interest for focus operation.
* @param {Matrix4} cameraMatrix - Camera matrix.
* @param {Matrix4} gizmoMatrix - Gizmos matrix.
*/
Parameters:
time
number
point
Vector3
cameraMatrix
Matrix4
gizmoMatrix
Matrix4
Returns: void
Calls:
this._gizmoMatrixState.copy
this._gizmoMatrixState.decompose
this.focus
this.updateTbState
this.activateGizmos
this.dispatchEvent
this.easeOutCubic
window.requestAnimationFrame
self.onFocusAnim
gizmoMatrix.clone
Internal Comments:
Code
onFocusAnim( time, point, cameraMatrix, gizmoMatrix ) {
if ( this._timeStart == - 1 ) {
//animation start
this._timeStart = time;
}
if ( this._state == STATE.ANIMATION_FOCUS ) {
const deltaTime = time - this._timeStart;
const animTime = deltaTime / this.focusAnimationTime;
this._gizmoMatrixState.copy( gizmoMatrix );
if ( animTime >= 1 ) {
//animation end
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.focus( point, this.scaleFactor );
this._timeStart = - 1;
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
} else {
const amount = this.easeOutCubic( animTime );
const size = ( ( 1 - amount ) + ( this.scaleFactor * amount ) );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.focus( point, size, amount );
this.dispatchEvent( _changeEvent );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.onFocusAnim( t, point, cameraMatrix, gizmoMatrix.clone() );
} );
}
} else {
//interrupt animation
this._animationId = - 1;
this._timeStart = - 1;
}
}
ArcballControls.onRotationAnim(time: number, rotationAxis: Vector3, w0: number): void
¶
JSDoc:
/**
* Performs animation for rotation operation.
*
* @private
* @param {number} time - Instant in which this function is called as performance.now().
* @param {Vector3} rotationAxis - Rotation axis.
* @param {number} w0 - Initial angular velocity.
*/
Parameters:
time
number
rotationAxis
Vector3
w0
number
Returns: void
Calls:
Math.pow
this.applyTransformMatrix
this.rotate
this.dispatchEvent
window.requestAnimationFrame
self.onRotationAnim
this.updateTbState
this.activateGizmos
Internal Comments:
//animation start (x4)
//w = w0 + alpha * t (x2)
//tetha = 0.5 * alpha * t^2 + w0 * t + tetha0 (x4)
//interrupt animation (x4)
Code
onRotationAnim( time, rotationAxis, w0 ) {
if ( this._timeStart == - 1 ) {
//animation start
this._anglePrev = 0;
this._angleCurrent = 0;
this._timeStart = time;
}
if ( this._state == STATE.ANIMATION_ROTATE ) {
//w = w0 + alpha * t
const deltaTime = ( time - this._timeStart ) / 1000;
const w = w0 + ( ( - this.dampingFactor ) * deltaTime );
if ( w > 0 ) {
//tetha = 0.5 * alpha * t^2 + w0 * t + tetha0
this._angleCurrent = 0.5 * ( - this.dampingFactor ) * Math.pow( deltaTime, 2 ) + w0 * deltaTime + 0;
this.applyTransformMatrix( this.rotate( rotationAxis, this._angleCurrent ) );
this.dispatchEvent( _changeEvent );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.onRotationAnim( t, rotationAxis, w0 );
} );
} else {
this._animationId = - 1;
this._timeStart = - 1;
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else {
//interrupt animation
this._animationId = - 1;
this._timeStart = - 1;
if ( this._state != STATE.ROTATE ) {
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
}
}
ArcballControls.pan(p0: Vector3, p1: Vector3, adjust: boolean): any
¶
JSDoc:
/**
* Performs pan operation moving camera between two points.
*
* @private
* @param {Vector3} p0 - Initial point.
* @param {Vector3} p1 - Ending point.
* @param {boolean} [adjust=false] - If movement should be adjusted considering camera distance (Perspective only).
* @returns {Object}
*/
Parameters:
p0
Vector3
p1
Vector3
adjust
boolean
Returns: any
Calls:
p0.clone().sub
movement.multiplyScalar
this._v3_1.setFromMatrixPosition
this._v3_2.setFromMatrixPosition
this._v3_1.distanceTo
this.object.position.distanceTo
this._v3_1.set( movement.x, movement.y, 0 ).applyQuaternion
this._m4_1.makeTranslation
this.setTransformationMatrices
Internal Comments:
Code
pan( p0, p1, adjust = false ) {
const movement = p0.clone().sub( p1 );
if ( this.object.isOrthographicCamera ) {
//adjust movement amount
movement.multiplyScalar( 1 / this.object.zoom );
} else if ( this.object.isPerspectiveCamera && adjust ) {
//adjust movement amount
this._v3_1.setFromMatrixPosition( this._cameraMatrixState0 ); //camera's initial position
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState0 ); //gizmo's initial position
const distanceFactor = this._v3_1.distanceTo( this._v3_2 ) / this.object.position.distanceTo( this._gizmos.position );
movement.multiplyScalar( 1 / distanceFactor );
}
this._v3_1.set( movement.x, movement.y, 0 ).applyQuaternion( this.object.quaternion );
this._m4_1.makeTranslation( this._v3_1.x, this._v3_1.y, this._v3_1.z );
this.setTransformationMatrices( this._m4_1, this._m4_1 );
return _transformation;
}
ArcballControls.reset(): void
¶
JSDoc:
Returns: void
Calls:
this.target.copy
this._cameraMatrixState.copy
this._cameraMatrixState.decompose
this.object.up.copy
this.object.updateMatrix
this.object.updateProjectionMatrix
this._gizmoMatrixState.copy
this._gizmoMatrixState0.decompose
this._gizmos.updateMatrix
this.calculateTbRadius
this.makeGizmos
this.object.lookAt
this.updateTbState
this.dispatchEvent
Code
reset() {
this.target.copy( this._target0 );
this.object.zoom = this._zoom0;
if ( this.object.isPerspectiveCamera ) {
this.object.fov = this._fov0;
}
this.object.near = this._nearPos;
this.object.far = this._farPos;
this._cameraMatrixState.copy( this._cameraMatrixState0 );
this._cameraMatrixState.decompose( this.object.position, this.object.quaternion, this.object.scale );
this.object.up.copy( this._up0 );
this.object.updateMatrix();
this.object.updateProjectionMatrix();
this._gizmoMatrixState.copy( this._gizmoMatrixState0 );
this._gizmoMatrixState0.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this._gizmos.updateMatrix();
this._tbRadius = this.calculateTbRadius( this.object );
this.makeGizmos( this._gizmos.position, this._tbRadius );
this.object.lookAt( this._gizmos.position );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
}
ArcballControls.rotate(axis: Vector3, angle: number): any
¶
JSDoc:
/**
* Rotates the camera around an axis passing by trackball's center.
*
* @private
* @param {Vector3} axis - Rotation axis.
* @param {number} angle - Angle in radians.
* @returns {Object} Object with 'camera' field containing transformation matrix resulting from the operation to be applied to the camera.
*/
Parameters:
axis
Vector3
angle
number
Returns: any
Calls:
this._translationMatrix.makeTranslation
this._rotationMatrix.makeRotationAxis
this._m4_1.makeTranslation
this._m4_1.multiply
this.setTransformationMatrices
Internal Comments:
Code
rotate( axis, angle ) {
const point = this._gizmos.position; //rotation center
this._translationMatrix.makeTranslation( - point.x, - point.y, - point.z );
this._rotationMatrix.makeRotationAxis( axis, - angle );
//rotate camera
this._m4_1.makeTranslation( point.x, point.y, point.z );
this._m4_1.multiply( this._rotationMatrix );
this._m4_1.multiply( this._translationMatrix );
this.setTransformationMatrices( this._m4_1 );
return _transformation;
}
ArcballControls.copyState(): void
¶
JSDoc:
Returns: void
Calls:
JSON.stringify
navigator.clipboard.writeText
Code
copyState() {
let state;
if ( this.object.isOrthographicCamera ) {
state = JSON.stringify( {
arcballState: {
cameraFar: this.object.far,
cameraMatrix: this.object.matrix,
cameraNear: this.object.near,
cameraUp: this.object.up,
cameraZoom: this.object.zoom,
gizmoMatrix: this._gizmos.matrix,
target: this.target
}
} );
} else if ( this.object.isPerspectiveCamera ) {
state = JSON.stringify( {
arcballState: {
cameraFar: this.object.far,
cameraFov: this.object.fov,
cameraMatrix: this.object.matrix,
cameraNear: this.object.near,
cameraUp: this.object.up,
cameraZoom: this.object.zoom,
gizmoMatrix: this._gizmos.matrix,
target: this.target
}
} );
}
navigator.clipboard.writeText( state );
}
ArcballControls.pasteState(): void
¶
JSDoc:
/**
* Set the controls state from the clipboard, assumes that the clipboard stores a JSON
* text as saved from `copyState()`.
*/
Returns: void
Calls:
navigator.clipboard.readText().then
self.setStateFromJSON
Code
ArcballControls.saveState(): void
¶
JSDoc:
Returns: void
Calls:
this.object.updateMatrix
this._gizmos.updateMatrix
this._target0.copy
this._cameraMatrixState0.copy
this._gizmoMatrixState0.copy
this._up0.copy
Code
saveState() {
this.object.updateMatrix();
this._gizmos.updateMatrix();
this._target0.copy( this.target );
this._cameraMatrixState0.copy( this.object.matrix );
this._gizmoMatrixState0.copy( this._gizmos.matrix );
this._nearPos = this.object.near;
this._farPos = this.object.far;
this._zoom0 = this.object.zoom;
this._up0.copy( this.object.up );
if ( this.object.isPerspectiveCamera ) {
this._fov0 = this.object.fov;
}
}
ArcballControls.scale(size: number, point: Vector3, scaleGizmos: boolean): any
¶
JSDoc:
/**
* Performs uniform scale operation around a given point.
*
* @private
* @param {number} size - Scale factor.
* @param {Vector3} point - Point around which scale.
* @param {boolean} scaleGizmos - If gizmos should be scaled (Perspective only).
* @returns {Object} Object with 'camera' and 'gizmo' fields containing transformation matrices resulting from the operation to be applied to the camera and gizmos.
*/
Parameters:
size
number
point
Vector3
scaleGizmos
boolean
Returns: any
Calls:
_scalePointTemp.copy
this.object.updateProjectionMatrix
this._v3_1.setFromMatrixPosition
this._scaleMatrix.makeScale
this._translationMatrix.makeTranslation
this._m4_2.makeTranslation( this._v3_1.x, this._v3_1.y, this._v3_1.z ).multiply
this._m4_2.multiply
_scalePointTemp.sub
_scalePointTemp.clone().multiplyScalar
this._m4_1.makeTranslation
this._m4_2.premultiply
this.setTransformationMatrices
this._v3_2.setFromMatrixPosition
this._v3_1.distanceTo
_offset.copy( _scalePointTemp ).sub( this._v3_1 ).normalize().multiplyScalar
pos.distanceTo
_offset.copy( _scalePointTemp ).sub( this._v3_2 ).normalize().multiplyScalar
this._m4_2.makeTranslation( _offset.x, _offset.y, _offset.z ).multiply
Internal Comments:
//camera zoom (x5)
//check min and max zoom
//scale gizmos so they appear in the same spot having the same dimension (x7)
//move camera and gizmos to obtain pinch effect (x4)
//move camera (x2)
//check min and max distance (x2)
Code
scale( size, point, scaleGizmos = true ) {
_scalePointTemp.copy( point );
let sizeInverse = 1 / size;
if ( this.object.isOrthographicCamera ) {
//camera zoom
this.object.zoom = this._zoomState;
this.object.zoom *= size;
//check min and max zoom
if ( this.object.zoom > this.maxZoom ) {
this.object.zoom = this.maxZoom;
sizeInverse = this._zoomState / this.maxZoom;
} else if ( this.object.zoom < this.minZoom ) {
this.object.zoom = this.minZoom;
sizeInverse = this._zoomState / this.minZoom;
}
this.object.updateProjectionMatrix();
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState ); //gizmos position
//scale gizmos so they appear in the same spot having the same dimension
this._scaleMatrix.makeScale( sizeInverse, sizeInverse, sizeInverse );
this._translationMatrix.makeTranslation( - this._v3_1.x, - this._v3_1.y, - this._v3_1.z );
this._m4_2.makeTranslation( this._v3_1.x, this._v3_1.y, this._v3_1.z ).multiply( this._scaleMatrix );
this._m4_2.multiply( this._translationMatrix );
//move camera and gizmos to obtain pinch effect
_scalePointTemp.sub( this._v3_1 );
const amount = _scalePointTemp.clone().multiplyScalar( sizeInverse );
_scalePointTemp.sub( amount );
this._m4_1.makeTranslation( _scalePointTemp.x, _scalePointTemp.y, _scalePointTemp.z );
this._m4_2.premultiply( this._m4_1 );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
return _transformation;
} else if ( this.object.isPerspectiveCamera ) {
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
//move camera
let distance = this._v3_1.distanceTo( _scalePointTemp );
let amount = distance - ( distance * sizeInverse );
//check min and max distance
const newDistance = distance - amount;
if ( newDistance < this.minDistance ) {
sizeInverse = this.minDistance / distance;
amount = distance - ( distance * sizeInverse );
} else if ( newDistance > this.maxDistance ) {
sizeInverse = this.maxDistance / distance;
amount = distance - ( distance * sizeInverse );
}
_offset.copy( _scalePointTemp ).sub( this._v3_1 ).normalize().multiplyScalar( amount );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
if ( scaleGizmos ) {
//scale gizmos so they appear in the same spot having the same dimension
const pos = this._v3_2;
distance = pos.distanceTo( _scalePointTemp );
amount = distance - ( distance * sizeInverse );
_offset.copy( _scalePointTemp ).sub( this._v3_2 ).normalize().multiplyScalar( amount );
this._translationMatrix.makeTranslation( pos.x, pos.y, pos.z );
this._scaleMatrix.makeScale( sizeInverse, sizeInverse, sizeInverse );
this._m4_2.makeTranslation( _offset.x, _offset.y, _offset.z ).multiply( this._translationMatrix );
this._m4_2.multiply( this._scaleMatrix );
this._translationMatrix.makeTranslation( - pos.x, - pos.y, - pos.z );
this._m4_2.multiply( this._translationMatrix );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
} else {
this.setTransformationMatrices( this._m4_1 );
}
return _transformation;
}
}
ArcballControls.setFov(value: number): void
¶
JSDoc:
Parameters:
value
number
Returns: void
Calls:
MathUtils.clamp
this.object.updateProjectionMatrix
Code
ArcballControls.setTransformationMatrices(camera: Matrix4, gizmos: Matrix4): void
¶
JSDoc:
/**
* Sets values in transformation object.
*
* @private
* @param {Matrix4} [camera=null] - Transformation to be applied to the camera.
* @param {Matrix4} [gizmos=null] - Transformation to be applied to gizmos.
*/
Parameters:
camera
Matrix4
gizmos
Matrix4
Returns: void
Calls:
_transformation.camera.copy
camera.clone
_transformation.gizmos.copy
gizmos.clone
Code
setTransformationMatrices( camera = null, gizmos = null ) {
if ( camera != null ) {
if ( _transformation.camera != null ) {
_transformation.camera.copy( camera );
} else {
_transformation.camera = camera.clone();
}
} else {
_transformation.camera = null;
}
if ( gizmos != null ) {
if ( _transformation.gizmos != null ) {
_transformation.gizmos.copy( gizmos );
} else {
_transformation.gizmos = gizmos.clone();
}
} else {
_transformation.gizmos = null;
}
}
ArcballControls.zRotate(point: Vector3, angle: number): any
¶
JSDoc:
/**
* Rotates camera around its direction axis passing by a given point by a given angle.
*
* @private
* @param {Vector3} point - The point where the rotation axis is passing trough.
* @param {number} angle - Angle in radians.
* @returns {Object} The computed transformation matrix.
*/
Parameters:
point
Vector3
angle
number
Returns: any
Calls:
this._rotationMatrix.makeRotationAxis
this._translationMatrix.makeTranslation
this._m4_1.makeTranslation
this._m4_1.multiply
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState ).sub
this._v3_2.copy( this._v3_1 ).applyAxisAngle
this._v3_2.sub
this._m4_2.makeTranslation
this.setTransformationMatrices
Code
zRotate( point, angle ) {
this._rotationMatrix.makeRotationAxis( this._rotationAxis, angle );
this._translationMatrix.makeTranslation( - point.x, - point.y, - point.z );
this._m4_1.makeTranslation( point.x, point.y, point.z );
this._m4_1.multiply( this._rotationMatrix );
this._m4_1.multiply( this._translationMatrix );
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState ).sub( point ); //vector from rotation center to gizmos position
this._v3_2.copy( this._v3_1 ).applyAxisAngle( this._rotationAxis, angle ); //apply rotation
this._v3_2.sub( this._v3_1 );
this._m4_2.makeTranslation( this._v3_2.x, this._v3_2.y, this._v3_2.z );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
return _transformation;
}
ArcballControls.getRaycaster(): Raycaster
¶
JSDoc:
/**
* Returns the raycaster that is used for user interaction. This object is shared between all
* instances of `ArcballControls`.
*
* @returns {Raycaster} The internal raycaster.
*/
Returns: Raycaster
ArcballControls.unprojectOnObj(cursor: Vector2, camera: Camera): Vector3
¶
JSDoc:
/**
* Unprojects the cursor on the 3D object surface.
*
* @private
* @param {Vector2} cursor - Cursor coordinates in NDC.
* @param {Camera} camera - Virtual camera.
* @returns {?Vector3} The point of intersection with the model, if exist, null otherwise.
*/
Parameters:
cursor
Vector2
camera
Camera
Returns: Vector3
Calls:
this.getRaycaster
raycaster.setFromCamera
raycaster.intersectObjects
intersect[ i ].point.clone
Code
unprojectOnObj( cursor, camera ) {
const raycaster = this.getRaycaster();
raycaster.near = camera.near;
raycaster.far = camera.far;
raycaster.setFromCamera( cursor, camera );
const intersect = raycaster.intersectObjects( this.scene.children, true );
for ( let i = 0; i < intersect.length; i ++ ) {
if ( intersect[ i ].object.uuid != this._gizmos.uuid && intersect[ i ].face != null ) {
return intersect[ i ].point.clone();
}
}
return null;
}
ArcballControls.unprojectOnTbSurface(camera: Camera, cursorX: number, cursorY: number, canvas: HTMLElement, tbRadius: number): Vector3
¶
JSDoc:
/**
* Unproject the cursor on the trackball surface.
*
* @private
* @param {Camera} camera - The virtual camera.
* @param {number} cursorX - Cursor horizontal coordinate on screen.
* @param {number} cursorY - Cursor vertical coordinate on screen.
* @param {HTMLElement} canvas - The canvas where the renderer draws its output.
* @param {number} tbRadius - The trackball radius.
* @returns {Vector3} The unprojected point on the trackball surface.
*/
Parameters:
camera
Camera
cursorX
number
cursorY
number
canvas
HTMLElement
tbRadius
number
Returns: Vector3
Calls:
this._v2_1.copy
this.getCursorPosition
this._v3_1.set
Math.pow
this._v3_1.setZ
Math.sqrt
this.getCursorNDC
this._v3_1.applyMatrix4
this._v3_1.clone().normalize
camera.position.distanceTo
rayDir.set
this._v2_1.setX
this._v2_1.setY
this._v2_1.angle
rayDir.multiplyScalar
Internal Comments:
//intersection with sphere (x10)
//intersection with hyperboloid (x8)
//unproject cursor on the near plane (x5)
// camera (x2)
// |\ (x2)
// | \ (x2)
// | \ (x2)
// h | \ (x2)
// | \ (x2)
// | \ (x2)
// _ _ | _ _ _\ _ _ near plane (x2)
// l (x2)
//ray aligned with camera (x4)
/*
* calculate intersection point between unprojected ray and trackball surface
*|y = m * x + q
*|x^2 + y^2 = r^2
*
* (m^2 + 1) * x^2 + (2 * m * q) * x + q^2 - r^2 = 0
*/ (x2)
//if angle between intersection point and X' axis is >= 45°, return that point (x2)
//otherwise, calculate intersection point with hyperboloid (x2)
/*
*|y = m * x + q
*|y = (1 / x) * (r^2 / 2)
*
* m * x^2 + q * x - r^2 / 2 = 0
*/ (x3)
Code
unprojectOnTbSurface( camera, cursorX, cursorY, canvas, tbRadius ) {
if ( camera.type == 'OrthographicCamera' ) {
this._v2_1.copy( this.getCursorPosition( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, 0 );
const x2 = Math.pow( this._v2_1.x, 2 );
const y2 = Math.pow( this._v2_1.y, 2 );
const r2 = Math.pow( this._tbRadius, 2 );
if ( x2 + y2 <= r2 * 0.5 ) {
//intersection with sphere
this._v3_1.setZ( Math.sqrt( r2 - ( x2 + y2 ) ) );
} else {
//intersection with hyperboloid
this._v3_1.setZ( ( r2 * 0.5 ) / ( Math.sqrt( x2 + y2 ) ) );
}
return this._v3_1;
} else if ( camera.type == 'PerspectiveCamera' ) {
//unproject cursor on the near plane
this._v2_1.copy( this.getCursorNDC( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, - 1 );
this._v3_1.applyMatrix4( camera.projectionMatrixInverse );
const rayDir = this._v3_1.clone().normalize(); //unprojected ray direction
const cameraGizmoDistance = camera.position.distanceTo( this._gizmos.position );
const radius2 = Math.pow( tbRadius, 2 );
// camera
// |\
// | \
// | \
// h | \
// | \
// | \
// _ _ | _ _ _\ _ _ near plane
// l
const h = this._v3_1.z;
const l = Math.sqrt( Math.pow( this._v3_1.x, 2 ) + Math.pow( this._v3_1.y, 2 ) );
if ( l == 0 ) {
//ray aligned with camera
rayDir.set( this._v3_1.x, this._v3_1.y, tbRadius );
return rayDir;
}
const m = h / l;
const q = cameraGizmoDistance;
/*
* calculate intersection point between unprojected ray and trackball surface
*|y = m * x + q
*|x^2 + y^2 = r^2
*
* (m^2 + 1) * x^2 + (2 * m * q) * x + q^2 - r^2 = 0
*/
let a = Math.pow( m, 2 ) + 1;
let b = 2 * m * q;
let c = Math.pow( q, 2 ) - radius2;
let delta = Math.pow( b, 2 ) - ( 4 * a * c );
if ( delta >= 0 ) {
//intersection with sphere
this._v2_1.setX( ( - b - Math.sqrt( delta ) ) / ( 2 * a ) );
this._v2_1.setY( m * this._v2_1.x + q );
const angle = MathUtils.RAD2DEG * this._v2_1.angle();
if ( angle >= 45 ) {
//if angle between intersection point and X' axis is >= 45°, return that point
//otherwise, calculate intersection point with hyperboloid
const rayLength = Math.sqrt( Math.pow( this._v2_1.x, 2 ) + Math.pow( ( cameraGizmoDistance - this._v2_1.y ), 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z += cameraGizmoDistance;
return rayDir;
}
}
//intersection with hyperboloid
/*
*|y = m * x + q
*|y = (1 / x) * (r^2 / 2)
*
* m * x^2 + q * x - r^2 / 2 = 0
*/
a = m;
b = q;
c = - radius2 * 0.5;
delta = Math.pow( b, 2 ) - ( 4 * a * c );
this._v2_1.setX( ( - b - Math.sqrt( delta ) ) / ( 2 * a ) );
this._v2_1.setY( m * this._v2_1.x + q );
const rayLength = Math.sqrt( Math.pow( this._v2_1.x, 2 ) + Math.pow( ( cameraGizmoDistance - this._v2_1.y ), 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z += cameraGizmoDistance;
return rayDir;
}
}
ArcballControls.unprojectOnTbPlane(camera: Camera, cursorX: number, cursorY: number, canvas: HTMLElement, initialDistance: boolean): Vector3
¶
JSDoc:
/**
* Unprojects the cursor on the plane passing through the center of the trackball orthogonal to the camera.
*
* @private
* @param {Camera} camera - The virtual camera.
* @param {number} cursorX - Cursor horizontal coordinate on screen.
* @param {number} cursorY - Cursor vertical coordinate on screen.
* @param {HTMLElement} canvas - The canvas where the renderer draws its output.
* @param {boolean} [initialDistance=false] - If initial distance between camera and gizmos should be used for calculations instead of current (Perspective only).
* @returns {Vector3} The unprojected point on the trackball plane.
*/
Parameters:
camera
Camera
cursorX
number
cursorY
number
canvas
HTMLElement
initialDistance
boolean
Returns: Vector3
Calls:
this._v2_1.copy
this.getCursorPosition
this._v3_1.set
this._v3_1.clone
this.getCursorNDC
this._v3_1.applyMatrix4
this._v3_1.clone().normalize
Math.sqrt
Math.pow
this._v3_1.setFromMatrixPosition( this._cameraMatrixState0 ).distanceTo
this._v3_2.setFromMatrixPosition
camera.position.distanceTo
rayDir.set
rayDir.multiplyScalar
Internal Comments:
//unproject cursor on the near plane (x5)
// camera (x2)
// |\ (x2)
// | \ (x2)
// | \ (x2)
// h | \ (x2)
// | \ (x2)
// | \ (x2)
// _ _ | _ _ _\ _ _ near plane (x2)
// l (x2)
/*
* calculate intersection point between unprojected ray and the plane
*|y = mx + q
*|y = 0
*
* x = -q/m
*/
//ray aligned with camera (x4)
Code
unprojectOnTbPlane( camera, cursorX, cursorY, canvas, initialDistance = false ) {
if ( camera.type == 'OrthographicCamera' ) {
this._v2_1.copy( this.getCursorPosition( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, 0 );
return this._v3_1.clone();
} else if ( camera.type == 'PerspectiveCamera' ) {
this._v2_1.copy( this.getCursorNDC( cursorX, cursorY, canvas ) );
//unproject cursor on the near plane
this._v3_1.set( this._v2_1.x, this._v2_1.y, - 1 );
this._v3_1.applyMatrix4( camera.projectionMatrixInverse );
const rayDir = this._v3_1.clone().normalize(); //unprojected ray direction
// camera
// |\
// | \
// | \
// h | \
// | \
// | \
// _ _ | _ _ _\ _ _ near plane
// l
const h = this._v3_1.z;
const l = Math.sqrt( Math.pow( this._v3_1.x, 2 ) + Math.pow( this._v3_1.y, 2 ) );
let cameraGizmoDistance;
if ( initialDistance ) {
cameraGizmoDistance = this._v3_1.setFromMatrixPosition( this._cameraMatrixState0 ).distanceTo( this._v3_2.setFromMatrixPosition( this._gizmoMatrixState0 ) );
} else {
cameraGizmoDistance = camera.position.distanceTo( this._gizmos.position );
}
/*
* calculate intersection point between unprojected ray and the plane
*|y = mx + q
*|y = 0
*
* x = -q/m
*/
if ( l == 0 ) {
//ray aligned with camera
rayDir.set( 0, 0, 0 );
return rayDir;
}
const m = h / l;
const q = cameraGizmoDistance;
const x = - q / m;
const rayLength = Math.sqrt( Math.pow( q, 2 ) + Math.pow( x, 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z = 0;
return rayDir;
}
}
ArcballControls.updateMatrixState(): void
¶
JSDoc:
Returns: void
Calls:
this._cameraMatrixState.copy
this._gizmoMatrixState.copy
this._cameraProjectionState.copy
this.object.updateProjectionMatrix
Internal Comments:
Code
updateMatrixState() {
//update camera and gizmos state
this._cameraMatrixState.copy( this.object.matrix );
this._gizmoMatrixState.copy( this._gizmos.matrix );
if ( this.object.isOrthographicCamera ) {
this._cameraProjectionState.copy( this.object.projectionMatrix );
this.object.updateProjectionMatrix();
this._zoomState = this.object.zoom;
} else if ( this.object.isPerspectiveCamera ) {
this._fovState = this.object.fov;
}
}
ArcballControls.updateTbState(newState: { IDLE: symbol; ROTATE: symbol; PAN: symbol; SCALE: symbol; FOV: symbol; FOCUS: symbol; ZROTATE: symbol; TOUCH_MULTI: symbol; ANIMATION_FOCUS: symbol; ANIMATION_ROTATE: symbol; }, updateMatrices: boolean): void
¶
JSDoc:
/**
* Updates the trackball FSA.
*
* @private
* @param {STATE} newState - New state of the FSA.
* @param {boolean} updateMatrices - If matrices state should be updated.
*/
Parameters:
newState
{ IDLE: symbol; ROTATE: symbol; PAN: symbol; SCALE: symbol; FOV: symbol; FOCUS: symbol; ZROTATE: symbol; TOUCH_MULTI: symbol; ANIMATION_FOCUS: symbol; ANIMATION_ROTATE: symbol; }
updateMatrices
boolean
Returns: void
Calls:
this.updateMatrixState
Code
ArcballControls.update(): void
¶
Returns: void
Calls:
this.target.equals
this._gizmos.position.copy
this.calculateTbRadius
this.makeGizmos
this._currentTarget.copy
MathUtils.clamp
this.applyTransformMatrix
this.scale
this.object.position.distanceTo
this.updateMatrixState
this.object.updateProjectionMatrix
curve.getPoints
new BufferGeometry().setFromPoints
this.object.lookAt
Internal Comments:
Code
update() {
if ( this.target.equals( this._currentTarget ) === false ) {
this._gizmos.position.copy( this.target ); //for correct radius calculation
this._tbRadius = this.calculateTbRadius( this.object );
this.makeGizmos( this.target, this._tbRadius );
this._currentTarget.copy( this.target );
}
//check min/max parameters
if ( this.object.isOrthographicCamera ) {
//check zoom
if ( this.object.zoom > this.maxZoom || this.object.zoom < this.minZoom ) {
const newZoom = MathUtils.clamp( this.object.zoom, this.minZoom, this.maxZoom );
this.applyTransformMatrix( this.scale( newZoom / this.object.zoom, this._gizmos.position, true ) );
}
} else if ( this.object.isPerspectiveCamera ) {
//check distance
const distance = this.object.position.distanceTo( this._gizmos.position );
if ( distance > this.maxDistance + _EPS || distance < this.minDistance - _EPS ) {
const newDistance = MathUtils.clamp( distance, this.minDistance, this.maxDistance );
this.applyTransformMatrix( this.scale( newDistance / distance, this._gizmos.position ) );
this.updateMatrixState();
}
//check fov
if ( this.object.fov < this.minFov || this.object.fov > this.maxFov ) {
this.object.fov = MathUtils.clamp( this.object.fov, this.minFov, this.maxFov );
this.object.updateProjectionMatrix();
}
const oldRadius = this._tbRadius;
this._tbRadius = this.calculateTbRadius( this.object );
if ( oldRadius < this._tbRadius - _EPS || oldRadius > this._tbRadius + _EPS ) {
const scale = ( this._gizmos.scale.x + this._gizmos.scale.y + this._gizmos.scale.z ) / 3;
const newRadius = this._tbRadius / scale;
const curve = new EllipseCurve( 0, 0, newRadius, newRadius );
const points = curve.getPoints( this._curvePts );
const curveGeometry = new BufferGeometry().setFromPoints( points );
for ( const gizmo in this._gizmos.children ) {
this._gizmos.children[ gizmo ].geometry = curveGeometry;
}
}
}
this.object.lookAt( this._gizmos.position );
}
ArcballControls.setStateFromJSON(json: any): void
¶
Parameters:
json
any
Returns: void
Calls:
JSON.parse
this.target.fromArray
this._cameraMatrixState.fromArray
this._cameraMatrixState.decompose
this.object.up.copy
this._gizmoMatrixState.fromArray
this._gizmoMatrixState.decompose
this.object.updateMatrix
this.object.updateProjectionMatrix
this._gizmos.updateMatrix
this.calculateTbRadius
new Matrix4().copy
this.makeGizmos
this._gizmoMatrixState0.copy
this.object.lookAt
this.updateTbState
this.dispatchEvent
Code
setStateFromJSON( json ) {
const state = JSON.parse( json );
if ( state.arcballState != undefined ) {
this.target.fromArray( state.arcballState.target );
this._cameraMatrixState.fromArray( state.arcballState.cameraMatrix.elements );
this._cameraMatrixState.decompose( this.object.position, this.object.quaternion, this.object.scale );
this.object.up.copy( state.arcballState.cameraUp );
this.object.near = state.arcballState.cameraNear;
this.object.far = state.arcballState.cameraFar;
this.object.zoom = state.arcballState.cameraZoom;
if ( this.object.isPerspectiveCamera ) {
this.object.fov = state.arcballState.cameraFov;
}
this._gizmoMatrixState.fromArray( state.arcballState.gizmoMatrix.elements );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.object.updateMatrix();
this.object.updateProjectionMatrix();
this._gizmos.updateMatrix();
this._tbRadius = this.calculateTbRadius( this.object );
const gizmoTmp = new Matrix4().copy( this._gizmoMatrixState0 );
this.makeGizmos( this._gizmos.position, this._tbRadius );
this._gizmoMatrixState0.copy( gizmoTmp );
this.object.lookAt( this._gizmos.position );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
}
}
onWindowResize(): void
¶
Returns: void
Calls:
this.calculateTbRadius
curve.getPoints
new BufferGeometry().setFromPoints
this.dispatchEvent
Code
function onWindowResize() {
const scale = ( this._gizmos.scale.x + this._gizmos.scale.y + this._gizmos.scale.z ) / 3;
this._tbRadius = this.calculateTbRadius( this.object );
const newRadius = this._tbRadius / scale;
const curve = new EllipseCurve( 0, 0, newRadius, newRadius );
const points = curve.getPoints( this._curvePts );
const curveGeometry = new BufferGeometry().setFromPoints( points );
for ( const gizmo in this._gizmos.children ) {
this._gizmos.children[ gizmo ].geometry = curveGeometry;
}
this.dispatchEvent( _changeEvent );
}
onContextMenu(event: any): void
¶
Parameters:
event
any
Returns: void
Calls:
event.preventDefault
Internal Comments:
Code
onPointerCancel(): void
¶
Returns: void
Calls:
this._touchStart.splice
this._touchCurrent.splice
Code
onPointerDown(event: any): void
¶
Parameters:
event
any
Returns: void
Calls:
this._downEvents.push
performance.now
this._touchStart.push
this._touchCurrent.push
this.onSinglePanStart
window.addEventListener
this.onRotateStart
this.onPinchStart
this.onDoublePanStart
this.onTriplePanStart
this.getOpFromAction
Internal Comments:
Code
function onPointerDown( event ) {
if ( event.button == 0 && event.isPrimary ) {
this._downValid = true;
this._downEvents.push( event );
this._downStart = performance.now();
} else {
this._downValid = false;
}
if ( event.pointerType == 'touch' && this._input != INPUT.CURSOR ) {
this._touchStart.push( event );
this._touchCurrent.push( event );
switch ( this._input ) {
case INPUT.NONE:
//singleStart
this._input = INPUT.ONE_FINGER;
this.onSinglePanStart( event, 'ROTATE' );
window.addEventListener( 'pointermove', this._onPointerMove );
window.addEventListener( 'pointerup', this._onPointerUp );
break;
case INPUT.ONE_FINGER:
case INPUT.ONE_FINGER_SWITCHED:
//doubleStart
this._input = INPUT.TWO_FINGER;
this.onRotateStart();
this.onPinchStart();
this.onDoublePanStart();
break;
case INPUT.TWO_FINGER:
//multipleStart
this._input = INPUT.MULT_FINGER;
this.onTriplePanStart( event );
break;
}
} else if ( event.pointerType != 'touch' && this._input == INPUT.NONE ) {
let modifier = null;
if ( event.ctrlKey || event.metaKey ) {
modifier = 'CTRL';
} else if ( event.shiftKey ) {
modifier = 'SHIFT';
}
this._mouseOp = this.getOpFromAction( event.button, modifier );
if ( this._mouseOp != null ) {
window.addEventListener( 'pointermove', this._onPointerMove );
window.addEventListener( 'pointerup', this._onPointerUp );
//singleStart
this._input = INPUT.CURSOR;
this._button = event.button;
this.onSinglePanStart( event, this._mouseOp );
}
}
}
onPointerMove(event: any): void
¶
Parameters:
event
any
Returns: void
Calls:
this.updateTouchEvent
this.onSinglePanMove
this.calculatePointersDistance
this.onSinglePanStart
this.onRotateMove
this.onPinchMove
this.onDoublePanMove
this.onTriplePanMove
this.getOpStateFromAction
Internal Comments:
Code
function onPointerMove( event ) {
if ( event.pointerType == 'touch' && this._input != INPUT.CURSOR ) {
switch ( this._input ) {
case INPUT.ONE_FINGER:
//singleMove
this.updateTouchEvent( event );
this.onSinglePanMove( event, STATE.ROTATE );
break;
case INPUT.ONE_FINGER_SWITCHED:
const movement = this.calculatePointersDistance( this._touchCurrent[ 0 ], event ) * this._devPxRatio;
if ( movement >= this._switchSensibility ) {
//singleMove
this._input = INPUT.ONE_FINGER;
this.updateTouchEvent( event );
this.onSinglePanStart( event, 'ROTATE' );
break;
}
break;
case INPUT.TWO_FINGER:
//rotate/pan/pinchMove
this.updateTouchEvent( event );
this.onRotateMove();
this.onPinchMove();
this.onDoublePanMove();
break;
case INPUT.MULT_FINGER:
//multMove
this.updateTouchEvent( event );
this.onTriplePanMove( event );
break;
}
} else if ( event.pointerType != 'touch' && this._input == INPUT.CURSOR ) {
let modifier = null;
if ( event.ctrlKey || event.metaKey ) {
modifier = 'CTRL';
} else if ( event.shiftKey ) {
modifier = 'SHIFT';
}
const mouseOpState = this.getOpStateFromAction( this._button, modifier );
if ( mouseOpState != null ) {
this.onSinglePanMove( event, mouseOpState );
}
}
//checkDistance
if ( this._downValid ) {
const movement = this.calculatePointersDistance( this._downEvents[ this._downEvents.length - 1 ], event ) * this._devPxRatio;
if ( movement > this._movementThreshold ) {
this._downValid = false;
}
}
}
onPointerUp(event: any): void
¶
Parameters:
event
any
Returns: void
Calls:
this._touchCurrent.splice
this._touchStart.splice
window.removeEventListener
this.onSinglePanEnd
this.onDoublePanEnd
this.onPinchEnd
this.onRotateEnd
this.onTriplePanEnd
performance.now
this.calculatePointersDistance
this._downEvents.splice
this.onDoubleTap
this._downEvents.shift
Internal Comments:
//singleEnd (x4)
//doubleEnd (x4)
//switching to singleStart (x4)
//multCancel (x4)
//first valid click detected (x4)
//second valid click detected (x4)
//fire double tap and reset values (x4)
//new 'first click' (x4)
Code
function onPointerUp( event ) {
if ( event.pointerType == 'touch' && this._input != INPUT.CURSOR ) {
const nTouch = this._touchCurrent.length;
for ( let i = 0; i < nTouch; i ++ ) {
if ( this._touchCurrent[ i ].pointerId == event.pointerId ) {
this._touchCurrent.splice( i, 1 );
this._touchStart.splice( i, 1 );
break;
}
}
switch ( this._input ) {
case INPUT.ONE_FINGER:
case INPUT.ONE_FINGER_SWITCHED:
//singleEnd
window.removeEventListener( 'pointermove', this._onPointerMove );
window.removeEventListener( 'pointerup', this._onPointerUp );
this._input = INPUT.NONE;
this.onSinglePanEnd();
break;
case INPUT.TWO_FINGER:
//doubleEnd
this.onDoublePanEnd( event );
this.onPinchEnd( event );
this.onRotateEnd( event );
//switching to singleStart
this._input = INPUT.ONE_FINGER_SWITCHED;
break;
case INPUT.MULT_FINGER:
if ( this._touchCurrent.length == 0 ) {
window.removeEventListener( 'pointermove', this._onPointerMove );
window.removeEventListener( 'pointerup', this._onPointerUp );
//multCancel
this._input = INPUT.NONE;
this.onTriplePanEnd();
}
break;
}
} else if ( event.pointerType != 'touch' && this._input == INPUT.CURSOR ) {
window.removeEventListener( 'pointermove', this._onPointerMove );
window.removeEventListener( 'pointerup', this._onPointerUp );
this._input = INPUT.NONE;
this.onSinglePanEnd();
this._button = - 1;
}
if ( event.isPrimary ) {
if ( this._downValid ) {
const downTime = event.timeStamp - this._downEvents[ this._downEvents.length - 1 ].timeStamp;
if ( downTime <= this._maxDownTime ) {
if ( this._nclicks == 0 ) {
//first valid click detected
this._nclicks = 1;
this._clickStart = performance.now();
} else {
const clickInterval = event.timeStamp - this._clickStart;
const movement = this.calculatePointersDistance( this._downEvents[ 1 ], this._downEvents[ 0 ] ) * this._devPxRatio;
if ( clickInterval <= this._maxInterval && movement <= this._posThreshold ) {
//second valid click detected
//fire double tap and reset values
this._nclicks = 0;
this._downEvents.splice( 0, this._downEvents.length );
this.onDoubleTap( event );
} else {
//new 'first click'
this._nclicks = 1;
this._downEvents.shift();
this._clickStart = performance.now();
}
}
} else {
this._downValid = false;
this._nclicks = 0;
this._downEvents.splice( 0, this._downEvents.length );
}
} else {
this._nclicks = 0;
this._downEvents.splice( 0, this._downEvents.length );
}
}
}
onWheel(event: any): void
¶
Parameters:
event
any
Returns: void
Calls:
this.getOpFromAction
event.preventDefault
this.dispatchEvent
this.updateTbState
Math.pow
this.unprojectOnTbPlane( this.object, event.clientX, event.clientY, this.domElement ).applyQuaternion( this.object.quaternion ).multiplyScalar( 1 / this.object.zoom ).add
this.unprojectOnTbPlane( this.object, event.clientX, event.clientY, this.domElement ).applyQuaternion( this.object.quaternion ).add
this.applyTransformMatrix
this.scale
this.disposeGrid
this.drawGrid
this._v3_1.setFromMatrixPosition
this._v3_1.distanceTo
MathUtils.clamp
Math.tan
Math.atan
this.setFov
Internal Comments:
//Vertigo effect
// fov / 2
// |\
// | \
// | \
// x | \
// | \
// | \
// | _ _ _\
// y
//check for iOs shift shortcut
//check min and max distance (x3)
//calculate new fov (x2)
//check min and max fov
Code
function onWheel( event ) {
if ( this.enabled && this.enableZoom ) {
let modifier = null;
if ( event.ctrlKey || event.metaKey ) {
modifier = 'CTRL';
} else if ( event.shiftKey ) {
modifier = 'SHIFT';
}
const mouseOp = this.getOpFromAction( 'WHEEL', modifier );
if ( mouseOp != null ) {
event.preventDefault();
this.dispatchEvent( _startEvent );
const notchDeltaY = 125; //distance of one notch of mouse wheel
let sgn = event.deltaY / notchDeltaY;
let size = 1;
if ( sgn > 0 ) {
size = 1 / this.scaleFactor;
} else if ( sgn < 0 ) {
size = this.scaleFactor;
}
switch ( mouseOp ) {
case 'ZOOM':
this.updateTbState( STATE.SCALE, true );
if ( sgn > 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, sgn ) );
} else if ( sgn < 0 ) {
size = Math.pow( this.scaleFactor, - sgn );
}
if ( this.cursorZoom && this.enablePan ) {
let scalePoint;
if ( this.object.isOrthographicCamera ) {
scalePoint = this.unprojectOnTbPlane( this.object, event.clientX, event.clientY, this.domElement ).applyQuaternion( this.object.quaternion ).multiplyScalar( 1 / this.object.zoom ).add( this._gizmos.position );
} else if ( this.object.isPerspectiveCamera ) {
scalePoint = this.unprojectOnTbPlane( this.object, event.clientX, event.clientY, this.domElement ).applyQuaternion( this.object.quaternion ).add( this._gizmos.position );
}
this.applyTransformMatrix( this.scale( size, scalePoint ) );
} else {
this.applyTransformMatrix( this.scale( size, this._gizmos.position ) );
}
if ( this._grid != null ) {
this.disposeGrid();
this.drawGrid();
}
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
this.dispatchEvent( _endEvent );
break;
case 'FOV':
if ( this.object.isPerspectiveCamera ) {
this.updateTbState( STATE.FOV, true );
//Vertigo effect
// fov / 2
// |\
// | \
// | \
// x | \
// | \
// | \
// | _ _ _\
// y
//check for iOs shift shortcut
if ( event.deltaX != 0 ) {
sgn = event.deltaX / notchDeltaY;
size = 1;
if ( sgn > 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, sgn ) );
} else if ( sgn < 0 ) {
size = Math.pow( this.scaleFactor, - sgn );
}
}
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
const x = this._v3_1.distanceTo( this._gizmos.position );
let xNew = x / size; //distance between camera and gizmos if scale(size, scalepoint) would be performed
//check min and max distance
xNew = MathUtils.clamp( xNew, this.minDistance, this.maxDistance );
const y = x * Math.tan( MathUtils.DEG2RAD * this.object.fov * 0.5 );
//calculate new fov
let newFov = MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 );
//check min and max fov
if ( newFov > this.maxFov ) {
newFov = this.maxFov;
} else if ( newFov < this.minFov ) {
newFov = this.minFov;
}
const newDistance = y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) );
size = x / newDistance;
this.setFov( newFov );
this.applyTransformMatrix( this.scale( size, this._gizmos.position, false ) );
}
if ( this._grid != null ) {
this.disposeGrid();
this.drawGrid();
}
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
this.dispatchEvent( _endEvent );
break;
}
}
}
}
Classes¶
ArcballControls
¶
Class Code
class ArcballControls extends Controls {
/**
* Constructs a new controls instance.
*
* @param {Camera} camera - The camera to be controlled. The camera must not be a child of another object, unless that object is the scene itself.
* @param {?HTMLDOMElement} [domElement=null] - The HTML element used for event listeners.
* @param {?Scene} [scene=null] The scene rendered by the camera. If not given, gizmos cannot be shown.
*/
constructor( camera, domElement = null, scene = null ) {
super( camera, domElement );
/**
* The scene rendered by the camera. If not given, gizmos cannot be shown.
*
* @type {?Scene}
* @default null
*/
this.scene = scene;
/**
* The control's focus point.
*
* @type {Vector3}
*/
this.target = new Vector3();
this._currentTarget = new Vector3();
/**
* The size of the gizmo relative to the screen width and height.
*
* @type {number}
* @default 0.67
*/
this.radiusFactor = 0.67;
/**
* Holds the mouse actions of this controls. This property is maintained by the methods
* `setMouseAction()` and `unsetMouseAction()`.
*
* @type {Array<Object>}
*/
this.mouseActions = [];
this._mouseOp = null;
//global vectors and matrices that are used in some operations to avoid creating new objects every time (e.g. every time cursor moves)
this._v2_1 = new Vector2();
this._v3_1 = new Vector3();
this._v3_2 = new Vector3();
this._m4_1 = new Matrix4();
this._m4_2 = new Matrix4();
this._quat = new Quaternion();
//transformation matrices
this._translationMatrix = new Matrix4(); //matrix for translation operation
this._rotationMatrix = new Matrix4(); //matrix for rotation operation
this._scaleMatrix = new Matrix4(); //matrix for scaling operation
this._rotationAxis = new Vector3(); //axis for rotate operation
//camera state
this._cameraMatrixState = new Matrix4();
this._cameraProjectionState = new Matrix4();
this._fovState = 1;
this._upState = new Vector3();
this._zoomState = 1;
this._nearPos = 0;
this._farPos = 0;
this._gizmoMatrixState = new Matrix4();
//initial values
this._up0 = new Vector3();
this._zoom0 = 1;
this._fov0 = 0;
this._initialNear = 0;
this._nearPos0 = 0;
this._initialFar = 0;
this._farPos0 = 0;
this._cameraMatrixState0 = new Matrix4();
this._gizmoMatrixState0 = new Matrix4();
this._target0 = new Vector3();
//pointers array
this._button = - 1;
this._touchStart = [];
this._touchCurrent = [];
this._input = INPUT.NONE;
//two fingers touch interaction
this._switchSensibility = 32; //minimum movement to be performed to fire single pan start after the second finger has been released
this._startFingerDistance = 0; //distance between two fingers
this._currentFingerDistance = 0;
this._startFingerRotation = 0; //amount of rotation performed with two fingers
this._currentFingerRotation = 0;
//double tap
this._devPxRatio = 0;
this._downValid = true;
this._nclicks = 0;
this._downEvents = [];
this._downStart = 0; //pointerDown time
this._clickStart = 0; //first click time
this._maxDownTime = 250;
this._maxInterval = 300;
this._posThreshold = 24;
this._movementThreshold = 24;
//cursor positions
this._currentCursorPosition = new Vector3();
this._startCursorPosition = new Vector3();
//grid
this._grid = null; //grid to be visualized during pan operation
this._gridPosition = new Vector3();
//gizmos
this._gizmos = new Group();
this._curvePts = 128;
//animations
this._timeStart = - 1; //initial time
this._animationId = - 1;
/**
* Duration of focus animations in ms.
*
* @type {number}
* @default 500
*/
this.focusAnimationTime = 500;
//rotate animation
this._timePrev = 0; //time at which previous rotate operation has been detected
this._timeCurrent = 0; //time at which current rotate operation has been detected
this._anglePrev = 0; //angle of previous rotation
this._angleCurrent = 0; //angle of current rotation
this._cursorPosPrev = new Vector3(); //cursor position when previous rotate operation has been detected
this._cursorPosCurr = new Vector3();//cursor position when current rotate operation has been detected
this._wPrev = 0; //angular velocity of the previous rotate operation
this._wCurr = 0; //angular velocity of the current rotate operation
//parameters
/**
* If set to `true`, the camera's near and far values will be adjusted every time zoom is
* performed trying to maintain the same visible portion given by initial near and far
* values. Only works with perspective cameras.
*
* @type {boolean}
* @default false
*/
this.adjustNearFar = false;
/**
* The scaling factor used when performing zoom operation.
*
* @type {number}
* @default 1.1
*/
this.scaleFactor = 1.1;
/**
* The damping inertia used if 'enableAnimations` is set to `true`.
*
* @type {number}
* @default 25
*/
this.dampingFactor = 25;
/**
* Maximum angular velocity allowed on rotation animation start.
*
* @type {number}
* @default 20
*/
this.wMax = 20;
/**
* Set to `true` to enable animations for rotation (damping) and focus operation.
*
* @type {boolean}
* @default true
*/
this.enableAnimations = true;
/**
* If set to `true`, a grid will appear when panning operation is being performed
* (desktop interaction only).
*
* @type {boolean}
* @default false
*/
this.enableGrid = false;
/**
* Set to `true` to make zoom become cursor centered.
*
* @type {boolean}
* @default false
*/
this.cursorZoom = false;
/**
* The minimum FOV in degrees.
*
* @type {number}
* @default 5
*/
this.minFov = 5;
/**
* The maximum FOV in degrees.
*
* @type {number}
* @default 90
*/
this.maxFov = 90;
/**
* Speed of rotation.
*
* @type {number}
* @default 1
*/
this.rotateSpeed = 1;
/**
* Enable or disable camera panning.
*
* @type {boolean}
* @default true
*/
this.enablePan = true;
/**
* Enable or disable camera rotation.
*
* @type {boolean}
* @default true
*/
this.enableRotate = true;
/**
* Enable or disable camera zoom.
*
* @type {boolean}
* @default true
*/
this.enableZoom = true;
/**
* Enable or disable gizmos.
*
* @type {boolean}
* @default true
*/
this.enableGizmos = true;
/**
* Enable or disable camera focusing on double-tap (or click) operations.
*
* @type {boolean}
* @default true
*/
this.enableFocus = true;
/**
* How far you can dolly in. For perspective cameras only.
*
* @type {number}
* @default 0
*/
this.minDistance = 0;
/**
* How far you can dolly out. For perspective cameras only.
*
* @type {number}
* @default Infinity
*/
this.maxDistance = Infinity;
/**
* How far you can zoom in. For orthographic cameras only.
*
* @type {number}
* @default 0
*/
this.minZoom = 0;
/**
* How far you can zoom out. For orthographic cameras only.
*
* @type {number}
* @default Infinity
*/
this.maxZoom = Infinity;
//trackball parameters
this._tbRadius = 1;
//FSA
this._state = STATE.IDLE;
this.setCamera( camera );
if ( this.scene != null ) {
this.scene.add( this._gizmos );
}
this.initializeMouseActions();
// event listeners
this._onContextMenu = onContextMenu.bind( this );
this._onWheel = onWheel.bind( this );
this._onPointerUp = onPointerUp.bind( this );
this._onPointerMove = onPointerMove.bind( this );
this._onPointerDown = onPointerDown.bind( this );
this._onPointerCancel = onPointerCancel.bind( this );
this._onWindowResize = onWindowResize.bind( this );
if ( domElement !== null ) {
this.connect( domElement );
}
}
connect( element ) {
super.connect( element );
this.domElement.style.touchAction = 'none';
this._devPxRatio = window.devicePixelRatio;
this.domElement.addEventListener( 'contextmenu', this._onContextMenu );
this.domElement.addEventListener( 'wheel', this._onWheel, { passive: false } );
this.domElement.addEventListener( 'pointerdown', this._onPointerDown );
this.domElement.addEventListener( 'pointercancel', this._onPointerCancel );
window.addEventListener( 'resize', this._onWindowResize );
}
disconnect() {
this.domElement.removeEventListener( 'pointerdown', this._onPointerDown );
this.domElement.removeEventListener( 'pointercancel', this._onPointerCancel );
this.domElement.removeEventListener( 'wheel', this._onWheel );
this.domElement.removeEventListener( 'contextmenu', this._onContextMenu );
window.removeEventListener( 'pointermove', this._onPointerMove );
window.removeEventListener( 'pointerup', this._onPointerUp );
window.removeEventListener( 'resize', this._onWindowResize );
}
onSinglePanStart( event, operation ) {
if ( this.enabled ) {
this.dispatchEvent( _startEvent );
this.setCenter( event.clientX, event.clientY );
switch ( operation ) {
case 'PAN':
if ( ! this.enablePan ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.PAN, true );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ) );
if ( this.enableGrid ) {
this.drawGrid();
this.dispatchEvent( _changeEvent );
}
break;
case 'ROTATE':
if ( ! this.enableRotate ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
}
this.updateTbState( STATE.ROTATE, true );
this._startCursorPosition.copy( this.unprojectOnTbSurface( this.object, _center.x, _center.y, this.domElement, this._tbRadius ) );
this.activateGizmos( true );
if ( this.enableAnimations ) {
this._timePrev = this._timeCurrent = performance.now();
this._angleCurrent = this._anglePrev = 0;
this._cursorPosPrev.copy( this._startCursorPosition );
this._cursorPosCurr.copy( this._cursorPosPrev );
this._wCurr = 0;
this._wPrev = this._wCurr;
}
this.dispatchEvent( _changeEvent );
break;
case 'FOV':
if ( ! this.object.isPerspectiveCamera || ! this.enableZoom ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.FOV, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
break;
case 'ZOOM':
if ( ! this.enableZoom ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.SCALE, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
break;
}
}
}
onSinglePanMove( event, opState ) {
if ( this.enabled ) {
const restart = opState != this._state;
this.setCenter( event.clientX, event.clientY );
switch ( opState ) {
case STATE.PAN:
if ( this.enablePan ) {
if ( restart ) {
//switch to pan operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ) );
if ( this.enableGrid ) {
this.drawGrid();
}
this.activateGizmos( false );
} else {
//continue with pan operation
this._currentCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ) );
this.applyTransformMatrix( this.pan( this._startCursorPosition, this._currentCursorPosition ) );
}
}
break;
case STATE.ROTATE:
if ( this.enableRotate ) {
if ( restart ) {
//switch to rotate operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.copy( this.unprojectOnTbSurface( this.object, _center.x, _center.y, this.domElement, this._tbRadius ) );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( true );
} else {
//continue with rotate operation
this._currentCursorPosition.copy( this.unprojectOnTbSurface( this.object, _center.x, _center.y, this.domElement, this._tbRadius ) );
const distance = this._startCursorPosition.distanceTo( this._currentCursorPosition );
const angle = this._startCursorPosition.angleTo( this._currentCursorPosition );
const amount = Math.max( distance / this._tbRadius, angle ) * this.rotateSpeed; //effective rotation angle
this.applyTransformMatrix( this.rotate( this.calculateRotationAxis( this._startCursorPosition, this._currentCursorPosition ), amount ) );
if ( this.enableAnimations ) {
this._timePrev = this._timeCurrent;
this._timeCurrent = performance.now();
this._anglePrev = this._angleCurrent;
this._angleCurrent = amount;
this._cursorPosPrev.copy( this._cursorPosCurr );
this._cursorPosCurr.copy( this._currentCursorPosition );
this._wPrev = this._wCurr;
this._wCurr = this.calculateAngularSpeed( this._anglePrev, this._angleCurrent, this._timePrev, this._timeCurrent );
}
}
}
break;
case STATE.SCALE:
if ( this.enableZoom ) {
if ( restart ) {
//switch to zoom operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
} else {
//continue with zoom operation
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState );
this.applyTransformMatrix( this.scale( size, this._v3_1 ) );
}
}
break;
case STATE.FOV:
if ( this.enableZoom && this.object.isPerspectiveCamera ) {
if ( restart ) {
//switch to fov operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
} else {
//continue with fov operation
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
const x = this._v3_1.distanceTo( this._gizmos.position );
let xNew = x / size; //distance between camera and gizmos if scale(size, scalepoint) would be performed
//check min and max distance
xNew = MathUtils.clamp( xNew, this.minDistance, this.maxDistance );
const y = x * Math.tan( MathUtils.DEG2RAD * this._fovState * 0.5 );
//calculate new fov
let newFov = MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 );
//check min and max fov
newFov = MathUtils.clamp( newFov, this.minFov, this.maxFov );
const newDistance = y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) );
size = x / newDistance;
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
this.setFov( newFov );
this.applyTransformMatrix( this.scale( size, this._v3_2, false ) );
//adjusting distance
_offset.copy( this._gizmos.position ).sub( this.object.position ).normalize().multiplyScalar( newDistance / x );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
}
}
break;
}
this.dispatchEvent( _changeEvent );
}
}
onSinglePanEnd() {
if ( this._state == STATE.ROTATE ) {
if ( ! this.enableRotate ) {
return;
}
if ( this.enableAnimations ) {
//perform rotation animation
const deltaTime = ( performance.now() - this._timeCurrent );
if ( deltaTime < 120 ) {
const w = Math.abs( ( this._wPrev + this._wCurr ) / 2 );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.updateTbState( STATE.ANIMATION_ROTATE, true );
const rotationAxis = self.calculateRotationAxis( self._cursorPosPrev, self._cursorPosCurr );
self.onRotationAnim( t, rotationAxis, Math.min( w, self.wMax ) );
} );
} else {
//cursor has been standing still for over 120 ms since last movement
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else {
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else if ( this._state == STATE.PAN || this._state == STATE.IDLE ) {
this.updateTbState( STATE.IDLE, false );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.dispatchEvent( _endEvent );
}
onDoubleTap( event ) {
if ( this.enabled && this.enablePan && this.enableFocus && this.scene != null ) {
this.dispatchEvent( _startEvent );
this.setCenter( event.clientX, event.clientY );
const hitP = this.unprojectOnObj( this.getCursorNDC( _center.x, _center.y, this.domElement ), this.object );
if ( hitP != null && this.enableAnimations ) {
const self = this;
if ( this._animationId != - 1 ) {
window.cancelAnimationFrame( this._animationId );
}
this._timeStart = - 1;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.updateTbState( STATE.ANIMATION_FOCUS, true );
self.onFocusAnim( t, hitP, self._cameraMatrixState, self._gizmoMatrixState );
} );
} else if ( hitP != null && ! this.enableAnimations ) {
this.updateTbState( STATE.FOCUS, true );
this.focus( hitP, this.scaleFactor );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
}
}
this.dispatchEvent( _endEvent );
}
onDoublePanStart() {
if ( this.enabled && this.enablePan ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.PAN, true );
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement, true ) );
this._currentCursorPosition.copy( this._startCursorPosition );
this.activateGizmos( false );
}
}
onDoublePanMove() {
if ( this.enabled && this.enablePan ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
if ( this._state != STATE.PAN ) {
this.updateTbState( STATE.PAN, true );
this._startCursorPosition.copy( this._currentCursorPosition );
}
this._currentCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement, true ) );
this.applyTransformMatrix( this.pan( this._startCursorPosition, this._currentCursorPosition, true ) );
this.dispatchEvent( _changeEvent );
}
}
onDoublePanEnd() {
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _endEvent );
}
onRotateStart() {
if ( this.enabled && this.enableRotate ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.ZROTATE, true );
//this._startFingerRotation = event.rotation;
this._startFingerRotation = this.getAngle( this._touchCurrent[ 1 ], this._touchCurrent[ 0 ] ) + this.getAngle( this._touchStart[ 1 ], this._touchStart[ 0 ] );
this._currentFingerRotation = this._startFingerRotation;
this.object.getWorldDirection( this._rotationAxis ); //rotation axis
if ( ! this.enablePan && ! this.enableZoom ) {
this.activateGizmos( true );
}
}
}
onRotateMove() {
if ( this.enabled && this.enableRotate ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
let rotationPoint;
if ( this._state != STATE.ZROTATE ) {
this.updateTbState( STATE.ZROTATE, true );
this._startFingerRotation = this._currentFingerRotation;
}
//this._currentFingerRotation = event.rotation;
this._currentFingerRotation = this.getAngle( this._touchCurrent[ 1 ], this._touchCurrent[ 0 ] ) + this.getAngle( this._touchStart[ 1 ], this._touchStart[ 0 ] );
if ( ! this.enablePan ) {
rotationPoint = new Vector3().setFromMatrixPosition( this._gizmoMatrixState );
} else {
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
rotationPoint = this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ).applyQuaternion( this.object.quaternion ).multiplyScalar( 1 / this.object.zoom ).add( this._v3_2 );
}
const amount = MathUtils.DEG2RAD * ( this._startFingerRotation - this._currentFingerRotation );
this.applyTransformMatrix( this.zRotate( rotationPoint, amount ) );
this.dispatchEvent( _changeEvent );
}
}
onRotateEnd() {
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _endEvent );
}
onPinchStart() {
if ( this.enabled && this.enableZoom ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.SCALE, true );
this._startFingerDistance = this.calculatePointersDistance( this._touchCurrent[ 0 ], this._touchCurrent[ 1 ] );
this._currentFingerDistance = this._startFingerDistance;
this.activateGizmos( false );
}
}
onPinchMove() {
if ( this.enabled && this.enableZoom ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
const minDistance = 12; //minimum distance between fingers (in css pixels)
if ( this._state != STATE.SCALE ) {
this._startFingerDistance = this._currentFingerDistance;
this.updateTbState( STATE.SCALE, true );
}
this._currentFingerDistance = Math.max( this.calculatePointersDistance( this._touchCurrent[ 0 ], this._touchCurrent[ 1 ] ), minDistance * this._devPxRatio );
const amount = this._currentFingerDistance / this._startFingerDistance;
let scalePoint;
if ( ! this.enablePan ) {
scalePoint = this._gizmos.position;
} else {
if ( this.object.isOrthographicCamera ) {
scalePoint = this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement )
.applyQuaternion( this.object.quaternion )
.multiplyScalar( 1 / this.object.zoom )
.add( this._gizmos.position );
} else if ( this.object.isPerspectiveCamera ) {
scalePoint = this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement )
.applyQuaternion( this.object.quaternion )
.add( this._gizmos.position );
}
}
this.applyTransformMatrix( this.scale( amount, scalePoint ) );
this.dispatchEvent( _changeEvent );
}
}
onPinchEnd() {
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _endEvent );
}
onTriplePanStart() {
if ( this.enabled && this.enableZoom ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.SCALE, true );
//const center = event.center;
let clientX = 0;
let clientY = 0;
const nFingers = this._touchCurrent.length;
for ( let i = 0; i < nFingers; i ++ ) {
clientX += this._touchCurrent[ i ].clientX;
clientY += this._touchCurrent[ i ].clientY;
}
this.setCenter( clientX / nFingers, clientY / nFingers );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
}
}
onTriplePanMove() {
if ( this.enabled && this.enableZoom ) {
// fov / 2
// |\
// | \
// | \
// x | \
// | \
// | \
// | _ _ _\
// y
//const center = event.center;
let clientX = 0;
let clientY = 0;
const nFingers = this._touchCurrent.length;
for ( let i = 0; i < nFingers; i ++ ) {
clientX += this._touchCurrent[ i ].clientX;
clientY += this._touchCurrent[ i ].clientY;
}
this.setCenter( clientX / nFingers, clientY / nFingers );
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
const x = this._v3_1.distanceTo( this._gizmos.position );
let xNew = x / size; //distance between camera and gizmos if scale(size, scalepoint) would be performed
//check min and max distance
xNew = MathUtils.clamp( xNew, this.minDistance, this.maxDistance );
const y = x * Math.tan( MathUtils.DEG2RAD * this._fovState * 0.5 );
//calculate new fov
let newFov = MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 );
//check min and max fov
newFov = MathUtils.clamp( newFov, this.minFov, this.maxFov );
const newDistance = y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) );
size = x / newDistance;
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
this.setFov( newFov );
this.applyTransformMatrix( this.scale( size, this._v3_2, false ) );
//adjusting distance
_offset.copy( this._gizmos.position ).sub( this.object.position ).normalize().multiplyScalar( newDistance / x );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
this.dispatchEvent( _changeEvent );
}
}
onTriplePanEnd() {
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _endEvent );
//this.dispatchEvent( _changeEvent );
}
/**
* Set _center's x/y coordinates.
*
* @private
* @param {number} clientX - The x coordinate.
* @param {number} clientY - The y coordinate.
*/
setCenter( clientX, clientY ) {
_center.x = clientX;
_center.y = clientY;
}
/**
* Set default mouse actions.
*
* @private
*/
initializeMouseActions() {
this.setMouseAction( 'PAN', 0, 'CTRL' );
this.setMouseAction( 'PAN', 2 );
this.setMouseAction( 'ROTATE', 0 );
this.setMouseAction( 'ZOOM', 'WHEEL' );
this.setMouseAction( 'ZOOM', 1 );
this.setMouseAction( 'FOV', 'WHEEL', 'SHIFT' );
this.setMouseAction( 'FOV', 1, 'SHIFT' );
}
/**
* Compare two mouse actions.
*
* @private
* @param {Object} action1 - The first mouse action.
* @param {Object} action2 - The second mouse action.
* @returns {boolean} `true` if action1 and action 2 are the same mouse action, `false` otherwise.
*/
compareMouseAction( action1, action2 ) {
if ( action1.operation == action2.operation ) {
if ( action1.mouse == action2.mouse && action1.key == action2.key ) {
return true;
} else {
return false;
}
} else {
return false;
}
}
/**
* Set a new mouse action by specifying the operation to be performed and a mouse/key combination. In case of conflict, replaces the existing one.
*
* @param {'PAN'|'ROTATE'|'ZOOM'|'FOV'} operation - The operation to be performed ('PAN', 'ROTATE', 'ZOOM', 'FOV').
* @param {0|1|2|'WHEEL'} mouse - A mouse button (0, 1, 2) or 'WHEEL' for wheel notches.
* @param {'CTRL'|'SHIFT'|null} [key=null] - The keyboard modifier ('CTRL', 'SHIFT') or null if key is not needed.
* @returns {boolean} `true` if the mouse action has been successfully added, `false` otherwise.
*/
setMouseAction( operation, mouse, key = null ) {
const operationInput = [ 'PAN', 'ROTATE', 'ZOOM', 'FOV' ];
const mouseInput = [ 0, 1, 2, 'WHEEL' ];
const keyInput = [ 'CTRL', 'SHIFT', null ];
let state;
if ( ! operationInput.includes( operation ) || ! mouseInput.includes( mouse ) || ! keyInput.includes( key ) ) {
//invalid parameters
return false;
}
if ( mouse == 'WHEEL' ) {
if ( operation != 'ZOOM' && operation != 'FOV' ) {
//cannot associate 2D operation to 1D input
return false;
}
}
switch ( operation ) {
case 'PAN':
state = STATE.PAN;
break;
case 'ROTATE':
state = STATE.ROTATE;
break;
case 'ZOOM':
state = STATE.SCALE;
break;
case 'FOV':
state = STATE.FOV;
break;
}
const action = {
operation: operation,
mouse: mouse,
key: key,
state: state
};
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
if ( this.mouseActions[ i ].mouse == action.mouse && this.mouseActions[ i ].key == action.key ) {
this.mouseActions.splice( i, 1, action );
return true;
}
}
this.mouseActions.push( action );
return true;
}
/**
* Remove a mouse action by specifying its mouse/key combination.
*
* @param {0|1|2|'WHEEL'} mouse - A mouse button (0, 1, 2) or 'WHEEL' for wheel notches.
* @param {'CTRL'|'SHIFT'|null} key - The keyboard modifier ('CTRL', 'SHIFT') or null if key is not needed.
* @returns {boolean} `true` if the operation has been successfully removed, `false` otherwise.
*/
unsetMouseAction( mouse, key = null ) {
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
if ( this.mouseActions[ i ].mouse == mouse && this.mouseActions[ i ].key == key ) {
this.mouseActions.splice( i, 1 );
return true;
}
}
return false;
}
/**
* Return the operation associated to a mouse/keyboard combination.
*
* @private
* @param {0|1|2|'WHEEL'} mouse - Mouse button index (0, 1, 2) or 'WHEEL' for wheel notches.
* @param {'CTRL'|'SHIFT'|null} key - Keyboard modifier.
* @returns {'PAN'|'ROTATE'|'ZOOM'|'FOV'|null} The operation if it has been found, `null` otherwise.
*/
getOpFromAction( mouse, key ) {
let action;
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == key ) {
return action.operation;
}
}
if ( key != null ) {
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == null ) {
return action.operation;
}
}
}
return null;
}
/**
* Get the operation associated to mouse and key combination and returns the corresponding FSA state.
*
* @private
* @param {0|1|2} mouse - Mouse button index (0, 1, 2)
* @param {'CTRL'|'SHIFT'|null} key - Keyboard modifier
* @returns {?STATE} The FSA state obtained from the operation associated to mouse/keyboard combination.
*/
getOpStateFromAction( mouse, key ) {
let action;
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == key ) {
return action.state;
}
}
if ( key != null ) {
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == null ) {
return action.state;
}
}
}
return null;
}
/**
* Calculate the angle between two pointers.
*
* @private
* @param {PointerEvent} p1 - The first pointer event.
* @param {PointerEvent} p2 - The second pointer event.
* @returns {number} The angle between two pointers in degrees.
*/
getAngle( p1, p2 ) {
return Math.atan2( p2.clientY - p1.clientY, p2.clientX - p1.clientX ) * 180 / Math.PI;
}
/**
* Updates a PointerEvent inside current pointerevents array.
*
* @private
* @param {PointerEvent} event - The pointer event.
*/
updateTouchEvent( event ) {
for ( let i = 0; i < this._touchCurrent.length; i ++ ) {
if ( this._touchCurrent[ i ].pointerId == event.pointerId ) {
this._touchCurrent.splice( i, 1, event );
break;
}
}
}
/**
* Applies a transformation matrix, to the camera and gizmos.
*
* @private
* @param {Object} transformation - Object containing matrices to apply to camera and gizmos.
*/
applyTransformMatrix( transformation ) {
if ( transformation.camera != null ) {
this._m4_1.copy( this._cameraMatrixState ).premultiply( transformation.camera );
this._m4_1.decompose( this.object.position, this.object.quaternion, this.object.scale );
this.object.updateMatrix();
//update camera up vector
if ( this._state == STATE.ROTATE || this._state == STATE.ZROTATE || this._state == STATE.ANIMATION_ROTATE ) {
this.object.up.copy( this._upState ).applyQuaternion( this.object.quaternion );
}
}
if ( transformation.gizmos != null ) {
this._m4_1.copy( this._gizmoMatrixState ).premultiply( transformation.gizmos );
this._m4_1.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this._gizmos.updateMatrix();
}
if ( this._state == STATE.SCALE || this._state == STATE.FOCUS || this._state == STATE.ANIMATION_FOCUS ) {
this._tbRadius = this.calculateTbRadius( this.object );
if ( this.adjustNearFar ) {
const cameraDistance = this.object.position.distanceTo( this._gizmos.position );
const bb = new Box3();
bb.setFromObject( this._gizmos );
const sphere = new Sphere();
bb.getBoundingSphere( sphere );
const adjustedNearPosition = Math.max( this._nearPos0, sphere.radius + sphere.center.length() );
const regularNearPosition = cameraDistance - this._initialNear;
const minNearPos = Math.min( adjustedNearPosition, regularNearPosition );
this.object.near = cameraDistance - minNearPos;
const adjustedFarPosition = Math.min( this._farPos0, - sphere.radius + sphere.center.length() );
const regularFarPosition = cameraDistance - this._initialFar;
const minFarPos = Math.min( adjustedFarPosition, regularFarPosition );
this.object.far = cameraDistance - minFarPos;
this.object.updateProjectionMatrix();
} else {
let update = false;
if ( this.object.near != this._initialNear ) {
this.object.near = this._initialNear;
update = true;
}
if ( this.object.far != this._initialFar ) {
this.object.far = this._initialFar;
update = true;
}
if ( update ) {
this.object.updateProjectionMatrix();
}
}
}
}
/**
* Calculates the angular speed.
*
* @private
* @param {number} p0 - Position at t0.
* @param {number} p1 - Position at t1.
* @param {number} t0 - Initial time in milliseconds.
* @param {number} t1 - Ending time in milliseconds.
* @returns {number} The angular speed.
*/
calculateAngularSpeed( p0, p1, t0, t1 ) {
const s = p1 - p0;
const t = ( t1 - t0 ) / 1000;
if ( t == 0 ) {
return 0;
}
return s / t;
}
/**
* Calculates the distance between two pointers.
*
* @private
* @param {PointerEvent} p0 - The first pointer.
* @param {PointerEvent} p1 - The second pointer.
* @returns {number} The distance between the two pointers.
*/
calculatePointersDistance( p0, p1 ) {
return Math.sqrt( Math.pow( p1.clientX - p0.clientX, 2 ) + Math.pow( p1.clientY - p0.clientY, 2 ) );
}
/**
* Calculates the rotation axis as the vector perpendicular between two vectors.
*
* @private
* @param {Vector3} vec1 - The first vector.
* @param {Vector3} vec2 - The second vector.
* @returns {Vector3} The normalized rotation axis.
*/
calculateRotationAxis( vec1, vec2 ) {
this._rotationMatrix.extractRotation( this._cameraMatrixState );
this._quat.setFromRotationMatrix( this._rotationMatrix );
this._rotationAxis.crossVectors( vec1, vec2 ).applyQuaternion( this._quat );
return this._rotationAxis.normalize().clone();
}
/**
* Calculates the trackball radius so that gizmo's diameter will be 2/3 of the minimum side of the camera frustum.
*
* @private
* @param {Camera} camera - The camera.
* @returns {number} The trackball radius.
*/
calculateTbRadius( camera ) {
const distance = camera.position.distanceTo( this._gizmos.position );
if ( camera.type == 'PerspectiveCamera' ) {
const halfFovV = MathUtils.DEG2RAD * camera.fov * 0.5; //vertical fov/2 in radians
const halfFovH = Math.atan( ( camera.aspect ) * Math.tan( halfFovV ) ); //horizontal fov/2 in radians
return Math.tan( Math.min( halfFovV, halfFovH ) ) * distance * this.radiusFactor;
} else if ( camera.type == 'OrthographicCamera' ) {
return Math.min( camera.top, camera.right ) * this.radiusFactor;
}
}
/**
* Focus operation consist of positioning the point of interest in front of the camera and a slightly zoom in.
*
* @private
* @param {Vector3} point - The point of interest.
* @param {number} size - Scale factor.
* @param {number} [amount=1] - Amount of operation to be completed (used for focus animations, default is complete full operation).
*/
focus( point, size, amount = 1 ) {
//move center of camera (along with gizmos) towards point of interest
_offset.copy( point ).sub( this._gizmos.position ).multiplyScalar( amount );
this._translationMatrix.makeTranslation( _offset.x, _offset.y, _offset.z );
_gizmoMatrixStateTemp.copy( this._gizmoMatrixState );
this._gizmoMatrixState.premultiply( this._translationMatrix );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
_cameraMatrixStateTemp.copy( this._cameraMatrixState );
this._cameraMatrixState.premultiply( this._translationMatrix );
this._cameraMatrixState.decompose( this.object.position, this.object.quaternion, this.object.scale );
//apply zoom
if ( this.enableZoom ) {
this.applyTransformMatrix( this.scale( size, this._gizmos.position ) );
}
this._gizmoMatrixState.copy( _gizmoMatrixStateTemp );
this._cameraMatrixState.copy( _cameraMatrixStateTemp );
}
/**
* Creates a grid if necessary and adds it to the scene.
*
* @private
*/
drawGrid() {
if ( this.scene != null ) {
const color = 0x888888;
const multiplier = 3;
let size, divisions, maxLength, tick;
if ( this.object.isOrthographicCamera ) {
const width = this.object.right - this.object.left;
const height = this.object.bottom - this.object.top;
maxLength = Math.max( width, height );
tick = maxLength / 20;
size = maxLength / this.object.zoom * multiplier;
divisions = size / tick * this.object.zoom;
} else if ( this.object.isPerspectiveCamera ) {
const distance = this.object.position.distanceTo( this._gizmos.position );
const halfFovV = MathUtils.DEG2RAD * this.object.fov * 0.5;
const halfFovH = Math.atan( ( this.object.aspect ) * Math.tan( halfFovV ) );
maxLength = Math.tan( Math.max( halfFovV, halfFovH ) ) * distance * 2;
tick = maxLength / 20;
size = maxLength * multiplier;
divisions = size / tick;
}
if ( this._grid == null ) {
this._grid = new GridHelper( size, divisions, color, color );
this._grid.position.copy( this._gizmos.position );
this._gridPosition.copy( this._grid.position );
this._grid.quaternion.copy( this.object.quaternion );
this._grid.rotateX( Math.PI * 0.5 );
this.scene.add( this._grid );
}
}
}
dispose() {
if ( this._animationId != - 1 ) {
window.cancelAnimationFrame( this._animationId );
}
this.disconnect();
if ( this.scene !== null ) this.scene.remove( this._gizmos );
this.disposeGrid();
}
/**
* Removes the grid from the scene.
*/
disposeGrid() {
if ( this._grid != null && this.scene != null ) {
this.scene.remove( this._grid );
this._grid = null;
}
}
/**
* Computes the easing out cubic function for ease out effect in animation.
*
* @private
* @param {number} t - The absolute progress of the animation in the bound of `0` (beginning of the) and `1` (ending of animation).
* @returns {number} Result of easing out cubic at time `t`.
*/
easeOutCubic( t ) {
return 1 - Math.pow( 1 - t, 3 );
}
/**
* Makes rotation gizmos more or less visible.
*
* @param {boolean} isActive - If set to `true`, gizmos are more visible.
*/
activateGizmos( isActive ) {
const gizmoX = this._gizmos.children[ 0 ];
const gizmoY = this._gizmos.children[ 1 ];
const gizmoZ = this._gizmos.children[ 2 ];
if ( isActive ) {
gizmoX.material.setValues( { opacity: 1 } );
gizmoY.material.setValues( { opacity: 1 } );
gizmoZ.material.setValues( { opacity: 1 } );
} else {
gizmoX.material.setValues( { opacity: 0.6 } );
gizmoY.material.setValues( { opacity: 0.6 } );
gizmoZ.material.setValues( { opacity: 0.6 } );
}
}
/**
* Calculates the cursor position in NDC.
*
* @private
* @param {number} cursorX - Cursor horizontal coordinate within the canvas.
* @param {number} cursorY - Cursor vertical coordinate within the canvas.
* @param {HTMLElement} canvas - The canvas where the renderer draws its output.
* @returns {Vector2} Cursor normalized position inside the canvas.
*/
getCursorNDC( cursorX, cursorY, canvas ) {
const canvasRect = canvas.getBoundingClientRect();
this._v2_1.setX( ( ( cursorX - canvasRect.left ) / canvasRect.width ) * 2 - 1 );
this._v2_1.setY( ( ( canvasRect.bottom - cursorY ) / canvasRect.height ) * 2 - 1 );
return this._v2_1.clone();
}
/**
* Calculates the cursor position inside the canvas x/y coordinates with the origin being in the center of the canvas.
*
* @private
* @param {number} cursorX - Cursor horizontal coordinate within the canvas.
* @param {number} cursorY - Cursor vertical coordinate within the canvas.
* @param {HTMLElement} canvas - The canvas where the renderer draws its output.
* @returns {Vector2} Cursor position inside the canvas.
*/
getCursorPosition( cursorX, cursorY, canvas ) {
this._v2_1.copy( this.getCursorNDC( cursorX, cursorY, canvas ) );
this._v2_1.x *= ( this.object.right - this.object.left ) * 0.5;
this._v2_1.y *= ( this.object.top - this.object.bottom ) * 0.5;
return this._v2_1.clone();
}
/**
* Sets the camera to be controlled. Must be called in order to set a new camera to be controlled.
*
* @param {Camera} camera - The camera to be controlled.
*/
setCamera( camera ) {
camera.lookAt( this.target );
camera.updateMatrix();
//setting state
if ( camera.type == 'PerspectiveCamera' ) {
this._fov0 = camera.fov;
this._fovState = camera.fov;
}
this._cameraMatrixState0.copy( camera.matrix );
this._cameraMatrixState.copy( this._cameraMatrixState0 );
this._cameraProjectionState.copy( camera.projectionMatrix );
this._zoom0 = camera.zoom;
this._zoomState = this._zoom0;
this._initialNear = camera.near;
this._nearPos0 = camera.position.distanceTo( this.target ) - camera.near;
this._nearPos = this._initialNear;
this._initialFar = camera.far;
this._farPos0 = camera.position.distanceTo( this.target ) - camera.far;
this._farPos = this._initialFar;
this._up0.copy( camera.up );
this._upState.copy( camera.up );
this.object = camera;
this.object.updateProjectionMatrix();
//making gizmos
this._tbRadius = this.calculateTbRadius( camera );
this.makeGizmos( this.target, this._tbRadius );
}
/**
* Sets gizmos visibility.
*
* @param {boolean} value - Value of gizmos visibility.
*/
setGizmosVisible( value ) {
this._gizmos.visible = value;
this.dispatchEvent( _changeEvent );
}
/**
* Sets gizmos radius factor and redraws gizmos.
*
* @param {number} value - Value of radius factor.
*/
setTbRadius( value ) {
this.radiusFactor = value;
this._tbRadius = this.calculateTbRadius( this.object );
const curve = new EllipseCurve( 0, 0, this._tbRadius, this._tbRadius );
const points = curve.getPoints( this._curvePts );
const curveGeometry = new BufferGeometry().setFromPoints( points );
for ( const gizmo in this._gizmos.children ) {
this._gizmos.children[ gizmo ].geometry = curveGeometry;
}
this.dispatchEvent( _changeEvent );
}
/**
* Creates the rotation gizmos matching trackball center and radius.
*
* @private
* @param {Vector3} tbCenter - The trackball center.
* @param {number} tbRadius - The trackball radius.
*/
makeGizmos( tbCenter, tbRadius ) {
const curve = new EllipseCurve( 0, 0, tbRadius, tbRadius );
const points = curve.getPoints( this._curvePts );
//geometry
const curveGeometry = new BufferGeometry().setFromPoints( points );
//material
const curveMaterialX = new LineBasicMaterial( { color: 0xff8080, fog: false, transparent: true, opacity: 0.6 } );
const curveMaterialY = new LineBasicMaterial( { color: 0x80ff80, fog: false, transparent: true, opacity: 0.6 } );
const curveMaterialZ = new LineBasicMaterial( { color: 0x8080ff, fog: false, transparent: true, opacity: 0.6 } );
//line
const gizmoX = new Line( curveGeometry, curveMaterialX );
const gizmoY = new Line( curveGeometry, curveMaterialY );
const gizmoZ = new Line( curveGeometry, curveMaterialZ );
const rotation = Math.PI * 0.5;
gizmoX.rotation.x = rotation;
gizmoY.rotation.y = rotation;
//setting state
this._gizmoMatrixState0.identity().setPosition( tbCenter );
this._gizmoMatrixState.copy( this._gizmoMatrixState0 );
if ( this.object.zoom !== 1 ) {
//adapt gizmos size to camera zoom
const size = 1 / this.object.zoom;
this._scaleMatrix.makeScale( size, size, size );
this._translationMatrix.makeTranslation( - tbCenter.x, - tbCenter.y, - tbCenter.z );
this._gizmoMatrixState.premultiply( this._translationMatrix ).premultiply( this._scaleMatrix );
this._translationMatrix.makeTranslation( tbCenter.x, tbCenter.y, tbCenter.z );
this._gizmoMatrixState.premultiply( this._translationMatrix );
}
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
//
this._gizmos.traverse( function ( object ) {
if ( object.isLine ) {
object.geometry.dispose();
object.material.dispose();
}
} );
this._gizmos.clear();
//
this._gizmos.add( gizmoX );
this._gizmos.add( gizmoY );
this._gizmos.add( gizmoZ );
}
/**
* Performs animation for focus operation.
*
* @private
* @param {number} time - Instant in which this function is called as performance.now().
* @param {Vector3} point - Point of interest for focus operation.
* @param {Matrix4} cameraMatrix - Camera matrix.
* @param {Matrix4} gizmoMatrix - Gizmos matrix.
*/
onFocusAnim( time, point, cameraMatrix, gizmoMatrix ) {
if ( this._timeStart == - 1 ) {
//animation start
this._timeStart = time;
}
if ( this._state == STATE.ANIMATION_FOCUS ) {
const deltaTime = time - this._timeStart;
const animTime = deltaTime / this.focusAnimationTime;
this._gizmoMatrixState.copy( gizmoMatrix );
if ( animTime >= 1 ) {
//animation end
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.focus( point, this.scaleFactor );
this._timeStart = - 1;
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
} else {
const amount = this.easeOutCubic( animTime );
const size = ( ( 1 - amount ) + ( this.scaleFactor * amount ) );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.focus( point, size, amount );
this.dispatchEvent( _changeEvent );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.onFocusAnim( t, point, cameraMatrix, gizmoMatrix.clone() );
} );
}
} else {
//interrupt animation
this._animationId = - 1;
this._timeStart = - 1;
}
}
/**
* Performs animation for rotation operation.
*
* @private
* @param {number} time - Instant in which this function is called as performance.now().
* @param {Vector3} rotationAxis - Rotation axis.
* @param {number} w0 - Initial angular velocity.
*/
onRotationAnim( time, rotationAxis, w0 ) {
if ( this._timeStart == - 1 ) {
//animation start
this._anglePrev = 0;
this._angleCurrent = 0;
this._timeStart = time;
}
if ( this._state == STATE.ANIMATION_ROTATE ) {
//w = w0 + alpha * t
const deltaTime = ( time - this._timeStart ) / 1000;
const w = w0 + ( ( - this.dampingFactor ) * deltaTime );
if ( w > 0 ) {
//tetha = 0.5 * alpha * t^2 + w0 * t + tetha0
this._angleCurrent = 0.5 * ( - this.dampingFactor ) * Math.pow( deltaTime, 2 ) + w0 * deltaTime + 0;
this.applyTransformMatrix( this.rotate( rotationAxis, this._angleCurrent ) );
this.dispatchEvent( _changeEvent );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.onRotationAnim( t, rotationAxis, w0 );
} );
} else {
this._animationId = - 1;
this._timeStart = - 1;
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else {
//interrupt animation
this._animationId = - 1;
this._timeStart = - 1;
if ( this._state != STATE.ROTATE ) {
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
}
}
/**
* Performs pan operation moving camera between two points.
*
* @private
* @param {Vector3} p0 - Initial point.
* @param {Vector3} p1 - Ending point.
* @param {boolean} [adjust=false] - If movement should be adjusted considering camera distance (Perspective only).
* @returns {Object}
*/
pan( p0, p1, adjust = false ) {
const movement = p0.clone().sub( p1 );
if ( this.object.isOrthographicCamera ) {
//adjust movement amount
movement.multiplyScalar( 1 / this.object.zoom );
} else if ( this.object.isPerspectiveCamera && adjust ) {
//adjust movement amount
this._v3_1.setFromMatrixPosition( this._cameraMatrixState0 ); //camera's initial position
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState0 ); //gizmo's initial position
const distanceFactor = this._v3_1.distanceTo( this._v3_2 ) / this.object.position.distanceTo( this._gizmos.position );
movement.multiplyScalar( 1 / distanceFactor );
}
this._v3_1.set( movement.x, movement.y, 0 ).applyQuaternion( this.object.quaternion );
this._m4_1.makeTranslation( this._v3_1.x, this._v3_1.y, this._v3_1.z );
this.setTransformationMatrices( this._m4_1, this._m4_1 );
return _transformation;
}
/**
* Resets the controls.
*/
reset() {
this.target.copy( this._target0 );
this.object.zoom = this._zoom0;
if ( this.object.isPerspectiveCamera ) {
this.object.fov = this._fov0;
}
this.object.near = this._nearPos;
this.object.far = this._farPos;
this._cameraMatrixState.copy( this._cameraMatrixState0 );
this._cameraMatrixState.decompose( this.object.position, this.object.quaternion, this.object.scale );
this.object.up.copy( this._up0 );
this.object.updateMatrix();
this.object.updateProjectionMatrix();
this._gizmoMatrixState.copy( this._gizmoMatrixState0 );
this._gizmoMatrixState0.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this._gizmos.updateMatrix();
this._tbRadius = this.calculateTbRadius( this.object );
this.makeGizmos( this._gizmos.position, this._tbRadius );
this.object.lookAt( this._gizmos.position );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
}
/**
* Rotates the camera around an axis passing by trackball's center.
*
* @private
* @param {Vector3} axis - Rotation axis.
* @param {number} angle - Angle in radians.
* @returns {Object} Object with 'camera' field containing transformation matrix resulting from the operation to be applied to the camera.
*/
rotate( axis, angle ) {
const point = this._gizmos.position; //rotation center
this._translationMatrix.makeTranslation( - point.x, - point.y, - point.z );
this._rotationMatrix.makeRotationAxis( axis, - angle );
//rotate camera
this._m4_1.makeTranslation( point.x, point.y, point.z );
this._m4_1.multiply( this._rotationMatrix );
this._m4_1.multiply( this._translationMatrix );
this.setTransformationMatrices( this._m4_1 );
return _transformation;
}
/**
* Copy the current state to clipboard (as a readable JSON text).
*/
copyState() {
let state;
if ( this.object.isOrthographicCamera ) {
state = JSON.stringify( {
arcballState: {
cameraFar: this.object.far,
cameraMatrix: this.object.matrix,
cameraNear: this.object.near,
cameraUp: this.object.up,
cameraZoom: this.object.zoom,
gizmoMatrix: this._gizmos.matrix,
target: this.target
}
} );
} else if ( this.object.isPerspectiveCamera ) {
state = JSON.stringify( {
arcballState: {
cameraFar: this.object.far,
cameraFov: this.object.fov,
cameraMatrix: this.object.matrix,
cameraNear: this.object.near,
cameraUp: this.object.up,
cameraZoom: this.object.zoom,
gizmoMatrix: this._gizmos.matrix,
target: this.target
}
} );
}
navigator.clipboard.writeText( state );
}
/**
* Set the controls state from the clipboard, assumes that the clipboard stores a JSON
* text as saved from `copyState()`.
*/
pasteState() {
const self = this;
navigator.clipboard.readText().then( function resolved( value ) {
self.setStateFromJSON( value );
} );
}
/**
* Saves the current state of the control. This can later be recover with `reset()`.
*/
saveState() {
this.object.updateMatrix();
this._gizmos.updateMatrix();
this._target0.copy( this.target );
this._cameraMatrixState0.copy( this.object.matrix );
this._gizmoMatrixState0.copy( this._gizmos.matrix );
this._nearPos = this.object.near;
this._farPos = this.object.far;
this._zoom0 = this.object.zoom;
this._up0.copy( this.object.up );
if ( this.object.isPerspectiveCamera ) {
this._fov0 = this.object.fov;
}
}
/**
* Performs uniform scale operation around a given point.
*
* @private
* @param {number} size - Scale factor.
* @param {Vector3} point - Point around which scale.
* @param {boolean} scaleGizmos - If gizmos should be scaled (Perspective only).
* @returns {Object} Object with 'camera' and 'gizmo' fields containing transformation matrices resulting from the operation to be applied to the camera and gizmos.
*/
scale( size, point, scaleGizmos = true ) {
_scalePointTemp.copy( point );
let sizeInverse = 1 / size;
if ( this.object.isOrthographicCamera ) {
//camera zoom
this.object.zoom = this._zoomState;
this.object.zoom *= size;
//check min and max zoom
if ( this.object.zoom > this.maxZoom ) {
this.object.zoom = this.maxZoom;
sizeInverse = this._zoomState / this.maxZoom;
} else if ( this.object.zoom < this.minZoom ) {
this.object.zoom = this.minZoom;
sizeInverse = this._zoomState / this.minZoom;
}
this.object.updateProjectionMatrix();
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState ); //gizmos position
//scale gizmos so they appear in the same spot having the same dimension
this._scaleMatrix.makeScale( sizeInverse, sizeInverse, sizeInverse );
this._translationMatrix.makeTranslation( - this._v3_1.x, - this._v3_1.y, - this._v3_1.z );
this._m4_2.makeTranslation( this._v3_1.x, this._v3_1.y, this._v3_1.z ).multiply( this._scaleMatrix );
this._m4_2.multiply( this._translationMatrix );
//move camera and gizmos to obtain pinch effect
_scalePointTemp.sub( this._v3_1 );
const amount = _scalePointTemp.clone().multiplyScalar( sizeInverse );
_scalePointTemp.sub( amount );
this._m4_1.makeTranslation( _scalePointTemp.x, _scalePointTemp.y, _scalePointTemp.z );
this._m4_2.premultiply( this._m4_1 );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
return _transformation;
} else if ( this.object.isPerspectiveCamera ) {
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
//move camera
let distance = this._v3_1.distanceTo( _scalePointTemp );
let amount = distance - ( distance * sizeInverse );
//check min and max distance
const newDistance = distance - amount;
if ( newDistance < this.minDistance ) {
sizeInverse = this.minDistance / distance;
amount = distance - ( distance * sizeInverse );
} else if ( newDistance > this.maxDistance ) {
sizeInverse = this.maxDistance / distance;
amount = distance - ( distance * sizeInverse );
}
_offset.copy( _scalePointTemp ).sub( this._v3_1 ).normalize().multiplyScalar( amount );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
if ( scaleGizmos ) {
//scale gizmos so they appear in the same spot having the same dimension
const pos = this._v3_2;
distance = pos.distanceTo( _scalePointTemp );
amount = distance - ( distance * sizeInverse );
_offset.copy( _scalePointTemp ).sub( this._v3_2 ).normalize().multiplyScalar( amount );
this._translationMatrix.makeTranslation( pos.x, pos.y, pos.z );
this._scaleMatrix.makeScale( sizeInverse, sizeInverse, sizeInverse );
this._m4_2.makeTranslation( _offset.x, _offset.y, _offset.z ).multiply( this._translationMatrix );
this._m4_2.multiply( this._scaleMatrix );
this._translationMatrix.makeTranslation( - pos.x, - pos.y, - pos.z );
this._m4_2.multiply( this._translationMatrix );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
} else {
this.setTransformationMatrices( this._m4_1 );
}
return _transformation;
}
}
/**
* Sets camera fov.
*
* @private
* @param {number} value - The FOV to be set.
*/
setFov( value ) {
if ( this.object.isPerspectiveCamera ) {
this.object.fov = MathUtils.clamp( value, this.minFov, this.maxFov );
this.object.updateProjectionMatrix();
}
}
/**
* Sets values in transformation object.
*
* @private
* @param {Matrix4} [camera=null] - Transformation to be applied to the camera.
* @param {Matrix4} [gizmos=null] - Transformation to be applied to gizmos.
*/
setTransformationMatrices( camera = null, gizmos = null ) {
if ( camera != null ) {
if ( _transformation.camera != null ) {
_transformation.camera.copy( camera );
} else {
_transformation.camera = camera.clone();
}
} else {
_transformation.camera = null;
}
if ( gizmos != null ) {
if ( _transformation.gizmos != null ) {
_transformation.gizmos.copy( gizmos );
} else {
_transformation.gizmos = gizmos.clone();
}
} else {
_transformation.gizmos = null;
}
}
/**
* Rotates camera around its direction axis passing by a given point by a given angle.
*
* @private
* @param {Vector3} point - The point where the rotation axis is passing trough.
* @param {number} angle - Angle in radians.
* @returns {Object} The computed transformation matrix.
*/
zRotate( point, angle ) {
this._rotationMatrix.makeRotationAxis( this._rotationAxis, angle );
this._translationMatrix.makeTranslation( - point.x, - point.y, - point.z );
this._m4_1.makeTranslation( point.x, point.y, point.z );
this._m4_1.multiply( this._rotationMatrix );
this._m4_1.multiply( this._translationMatrix );
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState ).sub( point ); //vector from rotation center to gizmos position
this._v3_2.copy( this._v3_1 ).applyAxisAngle( this._rotationAxis, angle ); //apply rotation
this._v3_2.sub( this._v3_1 );
this._m4_2.makeTranslation( this._v3_2.x, this._v3_2.y, this._v3_2.z );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
return _transformation;
}
/**
* Returns the raycaster that is used for user interaction. This object is shared between all
* instances of `ArcballControls`.
*
* @returns {Raycaster} The internal raycaster.
*/
getRaycaster() {
return _raycaster;
}
/**
* Unprojects the cursor on the 3D object surface.
*
* @private
* @param {Vector2} cursor - Cursor coordinates in NDC.
* @param {Camera} camera - Virtual camera.
* @returns {?Vector3} The point of intersection with the model, if exist, null otherwise.
*/
unprojectOnObj( cursor, camera ) {
const raycaster = this.getRaycaster();
raycaster.near = camera.near;
raycaster.far = camera.far;
raycaster.setFromCamera( cursor, camera );
const intersect = raycaster.intersectObjects( this.scene.children, true );
for ( let i = 0; i < intersect.length; i ++ ) {
if ( intersect[ i ].object.uuid != this._gizmos.uuid && intersect[ i ].face != null ) {
return intersect[ i ].point.clone();
}
}
return null;
}
/**
* Unproject the cursor on the trackball surface.
*
* @private
* @param {Camera} camera - The virtual camera.
* @param {number} cursorX - Cursor horizontal coordinate on screen.
* @param {number} cursorY - Cursor vertical coordinate on screen.
* @param {HTMLElement} canvas - The canvas where the renderer draws its output.
* @param {number} tbRadius - The trackball radius.
* @returns {Vector3} The unprojected point on the trackball surface.
*/
unprojectOnTbSurface( camera, cursorX, cursorY, canvas, tbRadius ) {
if ( camera.type == 'OrthographicCamera' ) {
this._v2_1.copy( this.getCursorPosition( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, 0 );
const x2 = Math.pow( this._v2_1.x, 2 );
const y2 = Math.pow( this._v2_1.y, 2 );
const r2 = Math.pow( this._tbRadius, 2 );
if ( x2 + y2 <= r2 * 0.5 ) {
//intersection with sphere
this._v3_1.setZ( Math.sqrt( r2 - ( x2 + y2 ) ) );
} else {
//intersection with hyperboloid
this._v3_1.setZ( ( r2 * 0.5 ) / ( Math.sqrt( x2 + y2 ) ) );
}
return this._v3_1;
} else if ( camera.type == 'PerspectiveCamera' ) {
//unproject cursor on the near plane
this._v2_1.copy( this.getCursorNDC( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, - 1 );
this._v3_1.applyMatrix4( camera.projectionMatrixInverse );
const rayDir = this._v3_1.clone().normalize(); //unprojected ray direction
const cameraGizmoDistance = camera.position.distanceTo( this._gizmos.position );
const radius2 = Math.pow( tbRadius, 2 );
// camera
// |\
// | \
// | \
// h | \
// | \
// | \
// _ _ | _ _ _\ _ _ near plane
// l
const h = this._v3_1.z;
const l = Math.sqrt( Math.pow( this._v3_1.x, 2 ) + Math.pow( this._v3_1.y, 2 ) );
if ( l == 0 ) {
//ray aligned with camera
rayDir.set( this._v3_1.x, this._v3_1.y, tbRadius );
return rayDir;
}
const m = h / l;
const q = cameraGizmoDistance;
/*
* calculate intersection point between unprojected ray and trackball surface
*|y = m * x + q
*|x^2 + y^2 = r^2
*
* (m^2 + 1) * x^2 + (2 * m * q) * x + q^2 - r^2 = 0
*/
let a = Math.pow( m, 2 ) + 1;
let b = 2 * m * q;
let c = Math.pow( q, 2 ) - radius2;
let delta = Math.pow( b, 2 ) - ( 4 * a * c );
if ( delta >= 0 ) {
//intersection with sphere
this._v2_1.setX( ( - b - Math.sqrt( delta ) ) / ( 2 * a ) );
this._v2_1.setY( m * this._v2_1.x + q );
const angle = MathUtils.RAD2DEG * this._v2_1.angle();
if ( angle >= 45 ) {
//if angle between intersection point and X' axis is >= 45°, return that point
//otherwise, calculate intersection point with hyperboloid
const rayLength = Math.sqrt( Math.pow( this._v2_1.x, 2 ) + Math.pow( ( cameraGizmoDistance - this._v2_1.y ), 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z += cameraGizmoDistance;
return rayDir;
}
}
//intersection with hyperboloid
/*
*|y = m * x + q
*|y = (1 / x) * (r^2 / 2)
*
* m * x^2 + q * x - r^2 / 2 = 0
*/
a = m;
b = q;
c = - radius2 * 0.5;
delta = Math.pow( b, 2 ) - ( 4 * a * c );
this._v2_1.setX( ( - b - Math.sqrt( delta ) ) / ( 2 * a ) );
this._v2_1.setY( m * this._v2_1.x + q );
const rayLength = Math.sqrt( Math.pow( this._v2_1.x, 2 ) + Math.pow( ( cameraGizmoDistance - this._v2_1.y ), 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z += cameraGizmoDistance;
return rayDir;
}
}
/**
* Unprojects the cursor on the plane passing through the center of the trackball orthogonal to the camera.
*
* @private
* @param {Camera} camera - The virtual camera.
* @param {number} cursorX - Cursor horizontal coordinate on screen.
* @param {number} cursorY - Cursor vertical coordinate on screen.
* @param {HTMLElement} canvas - The canvas where the renderer draws its output.
* @param {boolean} [initialDistance=false] - If initial distance between camera and gizmos should be used for calculations instead of current (Perspective only).
* @returns {Vector3} The unprojected point on the trackball plane.
*/
unprojectOnTbPlane( camera, cursorX, cursorY, canvas, initialDistance = false ) {
if ( camera.type == 'OrthographicCamera' ) {
this._v2_1.copy( this.getCursorPosition( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, 0 );
return this._v3_1.clone();
} else if ( camera.type == 'PerspectiveCamera' ) {
this._v2_1.copy( this.getCursorNDC( cursorX, cursorY, canvas ) );
//unproject cursor on the near plane
this._v3_1.set( this._v2_1.x, this._v2_1.y, - 1 );
this._v3_1.applyMatrix4( camera.projectionMatrixInverse );
const rayDir = this._v3_1.clone().normalize(); //unprojected ray direction
// camera
// |\
// | \
// | \
// h | \
// | \
// | \
// _ _ | _ _ _\ _ _ near plane
// l
const h = this._v3_1.z;
const l = Math.sqrt( Math.pow( this._v3_1.x, 2 ) + Math.pow( this._v3_1.y, 2 ) );
let cameraGizmoDistance;
if ( initialDistance ) {
cameraGizmoDistance = this._v3_1.setFromMatrixPosition( this._cameraMatrixState0 ).distanceTo( this._v3_2.setFromMatrixPosition( this._gizmoMatrixState0 ) );
} else {
cameraGizmoDistance = camera.position.distanceTo( this._gizmos.position );
}
/*
* calculate intersection point between unprojected ray and the plane
*|y = mx + q
*|y = 0
*
* x = -q/m
*/
if ( l == 0 ) {
//ray aligned with camera
rayDir.set( 0, 0, 0 );
return rayDir;
}
const m = h / l;
const q = cameraGizmoDistance;
const x = - q / m;
const rayLength = Math.sqrt( Math.pow( q, 2 ) + Math.pow( x, 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z = 0;
return rayDir;
}
}
/**
* Updates camera and gizmos state.
*
* @private
*/
updateMatrixState() {
//update camera and gizmos state
this._cameraMatrixState.copy( this.object.matrix );
this._gizmoMatrixState.copy( this._gizmos.matrix );
if ( this.object.isOrthographicCamera ) {
this._cameraProjectionState.copy( this.object.projectionMatrix );
this.object.updateProjectionMatrix();
this._zoomState = this.object.zoom;
} else if ( this.object.isPerspectiveCamera ) {
this._fovState = this.object.fov;
}
}
/**
* Updates the trackball FSA.
*
* @private
* @param {STATE} newState - New state of the FSA.
* @param {boolean} updateMatrices - If matrices state should be updated.
*/
updateTbState( newState, updateMatrices ) {
this._state = newState;
if ( updateMatrices ) {
this.updateMatrixState();
}
}
update() {
if ( this.target.equals( this._currentTarget ) === false ) {
this._gizmos.position.copy( this.target ); //for correct radius calculation
this._tbRadius = this.calculateTbRadius( this.object );
this.makeGizmos( this.target, this._tbRadius );
this._currentTarget.copy( this.target );
}
//check min/max parameters
if ( this.object.isOrthographicCamera ) {
//check zoom
if ( this.object.zoom > this.maxZoom || this.object.zoom < this.minZoom ) {
const newZoom = MathUtils.clamp( this.object.zoom, this.minZoom, this.maxZoom );
this.applyTransformMatrix( this.scale( newZoom / this.object.zoom, this._gizmos.position, true ) );
}
} else if ( this.object.isPerspectiveCamera ) {
//check distance
const distance = this.object.position.distanceTo( this._gizmos.position );
if ( distance > this.maxDistance + _EPS || distance < this.minDistance - _EPS ) {
const newDistance = MathUtils.clamp( distance, this.minDistance, this.maxDistance );
this.applyTransformMatrix( this.scale( newDistance / distance, this._gizmos.position ) );
this.updateMatrixState();
}
//check fov
if ( this.object.fov < this.minFov || this.object.fov > this.maxFov ) {
this.object.fov = MathUtils.clamp( this.object.fov, this.minFov, this.maxFov );
this.object.updateProjectionMatrix();
}
const oldRadius = this._tbRadius;
this._tbRadius = this.calculateTbRadius( this.object );
if ( oldRadius < this._tbRadius - _EPS || oldRadius > this._tbRadius + _EPS ) {
const scale = ( this._gizmos.scale.x + this._gizmos.scale.y + this._gizmos.scale.z ) / 3;
const newRadius = this._tbRadius / scale;
const curve = new EllipseCurve( 0, 0, newRadius, newRadius );
const points = curve.getPoints( this._curvePts );
const curveGeometry = new BufferGeometry().setFromPoints( points );
for ( const gizmo in this._gizmos.children ) {
this._gizmos.children[ gizmo ].geometry = curveGeometry;
}
}
}
this.object.lookAt( this._gizmos.position );
}
setStateFromJSON( json ) {
const state = JSON.parse( json );
if ( state.arcballState != undefined ) {
this.target.fromArray( state.arcballState.target );
this._cameraMatrixState.fromArray( state.arcballState.cameraMatrix.elements );
this._cameraMatrixState.decompose( this.object.position, this.object.quaternion, this.object.scale );
this.object.up.copy( state.arcballState.cameraUp );
this.object.near = state.arcballState.cameraNear;
this.object.far = state.arcballState.cameraFar;
this.object.zoom = state.arcballState.cameraZoom;
if ( this.object.isPerspectiveCamera ) {
this.object.fov = state.arcballState.cameraFov;
}
this._gizmoMatrixState.fromArray( state.arcballState.gizmoMatrix.elements );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.object.updateMatrix();
this.object.updateProjectionMatrix();
this._gizmos.updateMatrix();
this._tbRadius = this.calculateTbRadius( this.object );
const gizmoTmp = new Matrix4().copy( this._gizmoMatrixState0 );
this.makeGizmos( this._gizmos.position, this._tbRadius );
this._gizmoMatrixState0.copy( gizmoTmp );
this.object.lookAt( this._gizmos.position );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
}
}
}
Methods¶
connect(element: any): void
¶
Code
connect( element ) {
super.connect( element );
this.domElement.style.touchAction = 'none';
this._devPxRatio = window.devicePixelRatio;
this.domElement.addEventListener( 'contextmenu', this._onContextMenu );
this.domElement.addEventListener( 'wheel', this._onWheel, { passive: false } );
this.domElement.addEventListener( 'pointerdown', this._onPointerDown );
this.domElement.addEventListener( 'pointercancel', this._onPointerCancel );
window.addEventListener( 'resize', this._onWindowResize );
}
disconnect(): void
¶
Code
disconnect() {
this.domElement.removeEventListener( 'pointerdown', this._onPointerDown );
this.domElement.removeEventListener( 'pointercancel', this._onPointerCancel );
this.domElement.removeEventListener( 'wheel', this._onWheel );
this.domElement.removeEventListener( 'contextmenu', this._onContextMenu );
window.removeEventListener( 'pointermove', this._onPointerMove );
window.removeEventListener( 'pointerup', this._onPointerUp );
window.removeEventListener( 'resize', this._onWindowResize );
}
onSinglePanStart(event: any, operation: any): void
¶
Code
onSinglePanStart( event, operation ) {
if ( this.enabled ) {
this.dispatchEvent( _startEvent );
this.setCenter( event.clientX, event.clientY );
switch ( operation ) {
case 'PAN':
if ( ! this.enablePan ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.PAN, true );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ) );
if ( this.enableGrid ) {
this.drawGrid();
this.dispatchEvent( _changeEvent );
}
break;
case 'ROTATE':
if ( ! this.enableRotate ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
}
this.updateTbState( STATE.ROTATE, true );
this._startCursorPosition.copy( this.unprojectOnTbSurface( this.object, _center.x, _center.y, this.domElement, this._tbRadius ) );
this.activateGizmos( true );
if ( this.enableAnimations ) {
this._timePrev = this._timeCurrent = performance.now();
this._angleCurrent = this._anglePrev = 0;
this._cursorPosPrev.copy( this._startCursorPosition );
this._cursorPosCurr.copy( this._cursorPosPrev );
this._wCurr = 0;
this._wPrev = this._wCurr;
}
this.dispatchEvent( _changeEvent );
break;
case 'FOV':
if ( ! this.object.isPerspectiveCamera || ! this.enableZoom ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.FOV, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
break;
case 'ZOOM':
if ( ! this.enableZoom ) {
return;
}
if ( this._animationId != - 1 ) {
cancelAnimationFrame( this._animationId );
this._animationId = - 1;
this._timeStart = - 1;
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.updateTbState( STATE.SCALE, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
break;
}
}
}
onSinglePanMove(event: any, opState: any): void
¶
Code
onSinglePanMove( event, opState ) {
if ( this.enabled ) {
const restart = opState != this._state;
this.setCenter( event.clientX, event.clientY );
switch ( opState ) {
case STATE.PAN:
if ( this.enablePan ) {
if ( restart ) {
//switch to pan operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ) );
if ( this.enableGrid ) {
this.drawGrid();
}
this.activateGizmos( false );
} else {
//continue with pan operation
this._currentCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ) );
this.applyTransformMatrix( this.pan( this._startCursorPosition, this._currentCursorPosition ) );
}
}
break;
case STATE.ROTATE:
if ( this.enableRotate ) {
if ( restart ) {
//switch to rotate operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.copy( this.unprojectOnTbSurface( this.object, _center.x, _center.y, this.domElement, this._tbRadius ) );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( true );
} else {
//continue with rotate operation
this._currentCursorPosition.copy( this.unprojectOnTbSurface( this.object, _center.x, _center.y, this.domElement, this._tbRadius ) );
const distance = this._startCursorPosition.distanceTo( this._currentCursorPosition );
const angle = this._startCursorPosition.angleTo( this._currentCursorPosition );
const amount = Math.max( distance / this._tbRadius, angle ) * this.rotateSpeed; //effective rotation angle
this.applyTransformMatrix( this.rotate( this.calculateRotationAxis( this._startCursorPosition, this._currentCursorPosition ), amount ) );
if ( this.enableAnimations ) {
this._timePrev = this._timeCurrent;
this._timeCurrent = performance.now();
this._anglePrev = this._angleCurrent;
this._angleCurrent = amount;
this._cursorPosPrev.copy( this._cursorPosCurr );
this._cursorPosCurr.copy( this._currentCursorPosition );
this._wPrev = this._wCurr;
this._wCurr = this.calculateAngularSpeed( this._anglePrev, this._angleCurrent, this._timePrev, this._timeCurrent );
}
}
}
break;
case STATE.SCALE:
if ( this.enableZoom ) {
if ( restart ) {
//switch to zoom operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
} else {
//continue with zoom operation
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState );
this.applyTransformMatrix( this.scale( size, this._v3_1 ) );
}
}
break;
case STATE.FOV:
if ( this.enableZoom && this.object.isPerspectiveCamera ) {
if ( restart ) {
//switch to fov operation
this.dispatchEvent( _endEvent );
this.dispatchEvent( _startEvent );
this.updateTbState( opState, true );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
} else {
//continue with fov operation
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
const x = this._v3_1.distanceTo( this._gizmos.position );
let xNew = x / size; //distance between camera and gizmos if scale(size, scalepoint) would be performed
//check min and max distance
xNew = MathUtils.clamp( xNew, this.minDistance, this.maxDistance );
const y = x * Math.tan( MathUtils.DEG2RAD * this._fovState * 0.5 );
//calculate new fov
let newFov = MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 );
//check min and max fov
newFov = MathUtils.clamp( newFov, this.minFov, this.maxFov );
const newDistance = y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) );
size = x / newDistance;
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
this.setFov( newFov );
this.applyTransformMatrix( this.scale( size, this._v3_2, false ) );
//adjusting distance
_offset.copy( this._gizmos.position ).sub( this.object.position ).normalize().multiplyScalar( newDistance / x );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
}
}
break;
}
this.dispatchEvent( _changeEvent );
}
}
onSinglePanEnd(): void
¶
Code
onSinglePanEnd() {
if ( this._state == STATE.ROTATE ) {
if ( ! this.enableRotate ) {
return;
}
if ( this.enableAnimations ) {
//perform rotation animation
const deltaTime = ( performance.now() - this._timeCurrent );
if ( deltaTime < 120 ) {
const w = Math.abs( ( this._wPrev + this._wCurr ) / 2 );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.updateTbState( STATE.ANIMATION_ROTATE, true );
const rotationAxis = self.calculateRotationAxis( self._cursorPosPrev, self._cursorPosCurr );
self.onRotationAnim( t, rotationAxis, Math.min( w, self.wMax ) );
} );
} else {
//cursor has been standing still for over 120 ms since last movement
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else {
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else if ( this._state == STATE.PAN || this._state == STATE.IDLE ) {
this.updateTbState( STATE.IDLE, false );
if ( this.enableGrid ) {
this.disposeGrid();
}
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
this.dispatchEvent( _endEvent );
}
onDoubleTap(event: any): void
¶
Code
onDoubleTap( event ) {
if ( this.enabled && this.enablePan && this.enableFocus && this.scene != null ) {
this.dispatchEvent( _startEvent );
this.setCenter( event.clientX, event.clientY );
const hitP = this.unprojectOnObj( this.getCursorNDC( _center.x, _center.y, this.domElement ), this.object );
if ( hitP != null && this.enableAnimations ) {
const self = this;
if ( this._animationId != - 1 ) {
window.cancelAnimationFrame( this._animationId );
}
this._timeStart = - 1;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.updateTbState( STATE.ANIMATION_FOCUS, true );
self.onFocusAnim( t, hitP, self._cameraMatrixState, self._gizmoMatrixState );
} );
} else if ( hitP != null && ! this.enableAnimations ) {
this.updateTbState( STATE.FOCUS, true );
this.focus( hitP, this.scaleFactor );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
}
}
this.dispatchEvent( _endEvent );
}
onDoublePanStart(): void
¶
Code
onDoublePanStart() {
if ( this.enabled && this.enablePan ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.PAN, true );
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
this._startCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement, true ) );
this._currentCursorPosition.copy( this._startCursorPosition );
this.activateGizmos( false );
}
}
onDoublePanMove(): void
¶
Code
onDoublePanMove() {
if ( this.enabled && this.enablePan ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
if ( this._state != STATE.PAN ) {
this.updateTbState( STATE.PAN, true );
this._startCursorPosition.copy( this._currentCursorPosition );
}
this._currentCursorPosition.copy( this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement, true ) );
this.applyTransformMatrix( this.pan( this._startCursorPosition, this._currentCursorPosition, true ) );
this.dispatchEvent( _changeEvent );
}
}
onDoublePanEnd(): void
¶
onRotateStart(): void
¶
Code
onRotateStart() {
if ( this.enabled && this.enableRotate ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.ZROTATE, true );
//this._startFingerRotation = event.rotation;
this._startFingerRotation = this.getAngle( this._touchCurrent[ 1 ], this._touchCurrent[ 0 ] ) + this.getAngle( this._touchStart[ 1 ], this._touchStart[ 0 ] );
this._currentFingerRotation = this._startFingerRotation;
this.object.getWorldDirection( this._rotationAxis ); //rotation axis
if ( ! this.enablePan && ! this.enableZoom ) {
this.activateGizmos( true );
}
}
}
onRotateMove(): void
¶
Code
onRotateMove() {
if ( this.enabled && this.enableRotate ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
let rotationPoint;
if ( this._state != STATE.ZROTATE ) {
this.updateTbState( STATE.ZROTATE, true );
this._startFingerRotation = this._currentFingerRotation;
}
//this._currentFingerRotation = event.rotation;
this._currentFingerRotation = this.getAngle( this._touchCurrent[ 1 ], this._touchCurrent[ 0 ] ) + this.getAngle( this._touchStart[ 1 ], this._touchStart[ 0 ] );
if ( ! this.enablePan ) {
rotationPoint = new Vector3().setFromMatrixPosition( this._gizmoMatrixState );
} else {
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
rotationPoint = this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement ).applyQuaternion( this.object.quaternion ).multiplyScalar( 1 / this.object.zoom ).add( this._v3_2 );
}
const amount = MathUtils.DEG2RAD * ( this._startFingerRotation - this._currentFingerRotation );
this.applyTransformMatrix( this.zRotate( rotationPoint, amount ) );
this.dispatchEvent( _changeEvent );
}
}
onRotateEnd(): void
¶
Code
onPinchStart(): void
¶
Code
onPinchStart() {
if ( this.enabled && this.enableZoom ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.SCALE, true );
this._startFingerDistance = this.calculatePointersDistance( this._touchCurrent[ 0 ], this._touchCurrent[ 1 ] );
this._currentFingerDistance = this._startFingerDistance;
this.activateGizmos( false );
}
}
onPinchMove(): void
¶
Code
onPinchMove() {
if ( this.enabled && this.enableZoom ) {
this.setCenter( ( this._touchCurrent[ 0 ].clientX + this._touchCurrent[ 1 ].clientX ) / 2, ( this._touchCurrent[ 0 ].clientY + this._touchCurrent[ 1 ].clientY ) / 2 );
const minDistance = 12; //minimum distance between fingers (in css pixels)
if ( this._state != STATE.SCALE ) {
this._startFingerDistance = this._currentFingerDistance;
this.updateTbState( STATE.SCALE, true );
}
this._currentFingerDistance = Math.max( this.calculatePointersDistance( this._touchCurrent[ 0 ], this._touchCurrent[ 1 ] ), minDistance * this._devPxRatio );
const amount = this._currentFingerDistance / this._startFingerDistance;
let scalePoint;
if ( ! this.enablePan ) {
scalePoint = this._gizmos.position;
} else {
if ( this.object.isOrthographicCamera ) {
scalePoint = this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement )
.applyQuaternion( this.object.quaternion )
.multiplyScalar( 1 / this.object.zoom )
.add( this._gizmos.position );
} else if ( this.object.isPerspectiveCamera ) {
scalePoint = this.unprojectOnTbPlane( this.object, _center.x, _center.y, this.domElement )
.applyQuaternion( this.object.quaternion )
.add( this._gizmos.position );
}
}
this.applyTransformMatrix( this.scale( amount, scalePoint ) );
this.dispatchEvent( _changeEvent );
}
}
onPinchEnd(): void
¶
onTriplePanStart(): void
¶
Code
onTriplePanStart() {
if ( this.enabled && this.enableZoom ) {
this.dispatchEvent( _startEvent );
this.updateTbState( STATE.SCALE, true );
//const center = event.center;
let clientX = 0;
let clientY = 0;
const nFingers = this._touchCurrent.length;
for ( let i = 0; i < nFingers; i ++ ) {
clientX += this._touchCurrent[ i ].clientX;
clientY += this._touchCurrent[ i ].clientY;
}
this.setCenter( clientX / nFingers, clientY / nFingers );
this._startCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
this._currentCursorPosition.copy( this._startCursorPosition );
}
}
onTriplePanMove(): void
¶
Code
onTriplePanMove() {
if ( this.enabled && this.enableZoom ) {
// fov / 2
// |\
// | \
// | \
// x | \
// | \
// | \
// | _ _ _\
// y
//const center = event.center;
let clientX = 0;
let clientY = 0;
const nFingers = this._touchCurrent.length;
for ( let i = 0; i < nFingers; i ++ ) {
clientX += this._touchCurrent[ i ].clientX;
clientY += this._touchCurrent[ i ].clientY;
}
this.setCenter( clientX / nFingers, clientY / nFingers );
const screenNotches = 8; //how many wheel notches corresponds to a full screen pan
this._currentCursorPosition.setY( this.getCursorNDC( _center.x, _center.y, this.domElement ).y * 0.5 );
const movement = this._currentCursorPosition.y - this._startCursorPosition.y;
let size = 1;
if ( movement < 0 ) {
size = 1 / ( Math.pow( this.scaleFactor, - movement * screenNotches ) );
} else if ( movement > 0 ) {
size = Math.pow( this.scaleFactor, movement * screenNotches );
}
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
const x = this._v3_1.distanceTo( this._gizmos.position );
let xNew = x / size; //distance between camera and gizmos if scale(size, scalepoint) would be performed
//check min and max distance
xNew = MathUtils.clamp( xNew, this.minDistance, this.maxDistance );
const y = x * Math.tan( MathUtils.DEG2RAD * this._fovState * 0.5 );
//calculate new fov
let newFov = MathUtils.RAD2DEG * ( Math.atan( y / xNew ) * 2 );
//check min and max fov
newFov = MathUtils.clamp( newFov, this.minFov, this.maxFov );
const newDistance = y / Math.tan( MathUtils.DEG2RAD * ( newFov / 2 ) );
size = x / newDistance;
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
this.setFov( newFov );
this.applyTransformMatrix( this.scale( size, this._v3_2, false ) );
//adjusting distance
_offset.copy( this._gizmos.position ).sub( this.object.position ).normalize().multiplyScalar( newDistance / x );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
this.dispatchEvent( _changeEvent );
}
}
onTriplePanEnd(): void
¶
Code
setCenter(clientX: number, clientY: number): void
¶
initializeMouseActions(): void
¶
Code
initializeMouseActions() {
this.setMouseAction( 'PAN', 0, 'CTRL' );
this.setMouseAction( 'PAN', 2 );
this.setMouseAction( 'ROTATE', 0 );
this.setMouseAction( 'ZOOM', 'WHEEL' );
this.setMouseAction( 'ZOOM', 1 );
this.setMouseAction( 'FOV', 'WHEEL', 'SHIFT' );
this.setMouseAction( 'FOV', 1, 'SHIFT' );
}
compareMouseAction(action1: any, action2: any): boolean
¶
Code
setMouseAction(operation: "PAN" | "ROTATE" | "ZOOM" | "FOV", mouse: 0 | 1 | 2 | "WHEEL", key: "CTRL" | "SHIFT"): boolean
¶
Code
setMouseAction( operation, mouse, key = null ) {
const operationInput = [ 'PAN', 'ROTATE', 'ZOOM', 'FOV' ];
const mouseInput = [ 0, 1, 2, 'WHEEL' ];
const keyInput = [ 'CTRL', 'SHIFT', null ];
let state;
if ( ! operationInput.includes( operation ) || ! mouseInput.includes( mouse ) || ! keyInput.includes( key ) ) {
//invalid parameters
return false;
}
if ( mouse == 'WHEEL' ) {
if ( operation != 'ZOOM' && operation != 'FOV' ) {
//cannot associate 2D operation to 1D input
return false;
}
}
switch ( operation ) {
case 'PAN':
state = STATE.PAN;
break;
case 'ROTATE':
state = STATE.ROTATE;
break;
case 'ZOOM':
state = STATE.SCALE;
break;
case 'FOV':
state = STATE.FOV;
break;
}
const action = {
operation: operation,
mouse: mouse,
key: key,
state: state
};
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
if ( this.mouseActions[ i ].mouse == action.mouse && this.mouseActions[ i ].key == action.key ) {
this.mouseActions.splice( i, 1, action );
return true;
}
}
this.mouseActions.push( action );
return true;
}
unsetMouseAction(mouse: 0 | 1 | 2 | "WHEEL", key: "CTRL" | "SHIFT"): boolean
¶
Code
getOpFromAction(mouse: 0 | 1 | 2 | "WHEEL", key: "CTRL" | "SHIFT"): "PAN" | "ROTATE" | "ZOOM" | "FOV"
¶
Code
getOpFromAction( mouse, key ) {
let action;
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == key ) {
return action.operation;
}
}
if ( key != null ) {
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == null ) {
return action.operation;
}
}
}
return null;
}
getOpStateFromAction(mouse: 0 | 1 | 2, key: "CTRL" | "SHIFT"): { IDLE: symbol; ROTATE: symbol; PAN: symbol; SCALE: symbol; FOV: symbol; FOCUS: symbol; ZROTATE: symbol; TOUCH_MULTI: symbol; ANIMATION_FOCUS: symbol; ANIMATION_ROTATE: symbol; }
¶
Code
getOpStateFromAction( mouse, key ) {
let action;
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == key ) {
return action.state;
}
}
if ( key != null ) {
for ( let i = 0; i < this.mouseActions.length; i ++ ) {
action = this.mouseActions[ i ];
if ( action.mouse == mouse && action.key == null ) {
return action.state;
}
}
}
return null;
}
getAngle(p1: PointerEvent, p2: PointerEvent): number
¶
Code
updateTouchEvent(event: PointerEvent): void
¶
Code
applyTransformMatrix(transformation: any): void
¶
Code
applyTransformMatrix( transformation ) {
if ( transformation.camera != null ) {
this._m4_1.copy( this._cameraMatrixState ).premultiply( transformation.camera );
this._m4_1.decompose( this.object.position, this.object.quaternion, this.object.scale );
this.object.updateMatrix();
//update camera up vector
if ( this._state == STATE.ROTATE || this._state == STATE.ZROTATE || this._state == STATE.ANIMATION_ROTATE ) {
this.object.up.copy( this._upState ).applyQuaternion( this.object.quaternion );
}
}
if ( transformation.gizmos != null ) {
this._m4_1.copy( this._gizmoMatrixState ).premultiply( transformation.gizmos );
this._m4_1.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this._gizmos.updateMatrix();
}
if ( this._state == STATE.SCALE || this._state == STATE.FOCUS || this._state == STATE.ANIMATION_FOCUS ) {
this._tbRadius = this.calculateTbRadius( this.object );
if ( this.adjustNearFar ) {
const cameraDistance = this.object.position.distanceTo( this._gizmos.position );
const bb = new Box3();
bb.setFromObject( this._gizmos );
const sphere = new Sphere();
bb.getBoundingSphere( sphere );
const adjustedNearPosition = Math.max( this._nearPos0, sphere.radius + sphere.center.length() );
const regularNearPosition = cameraDistance - this._initialNear;
const minNearPos = Math.min( adjustedNearPosition, regularNearPosition );
this.object.near = cameraDistance - minNearPos;
const adjustedFarPosition = Math.min( this._farPos0, - sphere.radius + sphere.center.length() );
const regularFarPosition = cameraDistance - this._initialFar;
const minFarPos = Math.min( adjustedFarPosition, regularFarPosition );
this.object.far = cameraDistance - minFarPos;
this.object.updateProjectionMatrix();
} else {
let update = false;
if ( this.object.near != this._initialNear ) {
this.object.near = this._initialNear;
update = true;
}
if ( this.object.far != this._initialFar ) {
this.object.far = this._initialFar;
update = true;
}
if ( update ) {
this.object.updateProjectionMatrix();
}
}
}
}
calculateAngularSpeed(p0: number, p1: number, t0: number, t1: number): number
¶
Code
calculatePointersDistance(p0: PointerEvent, p1: PointerEvent): number
¶
Code
calculateRotationAxis(vec1: Vector3, vec2: Vector3): Vector3
¶
Code
calculateTbRadius(camera: Camera): number
¶
Code
calculateTbRadius( camera ) {
const distance = camera.position.distanceTo( this._gizmos.position );
if ( camera.type == 'PerspectiveCamera' ) {
const halfFovV = MathUtils.DEG2RAD * camera.fov * 0.5; //vertical fov/2 in radians
const halfFovH = Math.atan( ( camera.aspect ) * Math.tan( halfFovV ) ); //horizontal fov/2 in radians
return Math.tan( Math.min( halfFovV, halfFovH ) ) * distance * this.radiusFactor;
} else if ( camera.type == 'OrthographicCamera' ) {
return Math.min( camera.top, camera.right ) * this.radiusFactor;
}
}
focus(point: Vector3, size: number, amount: number): void
¶
Code
focus( point, size, amount = 1 ) {
//move center of camera (along with gizmos) towards point of interest
_offset.copy( point ).sub( this._gizmos.position ).multiplyScalar( amount );
this._translationMatrix.makeTranslation( _offset.x, _offset.y, _offset.z );
_gizmoMatrixStateTemp.copy( this._gizmoMatrixState );
this._gizmoMatrixState.premultiply( this._translationMatrix );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
_cameraMatrixStateTemp.copy( this._cameraMatrixState );
this._cameraMatrixState.premultiply( this._translationMatrix );
this._cameraMatrixState.decompose( this.object.position, this.object.quaternion, this.object.scale );
//apply zoom
if ( this.enableZoom ) {
this.applyTransformMatrix( this.scale( size, this._gizmos.position ) );
}
this._gizmoMatrixState.copy( _gizmoMatrixStateTemp );
this._cameraMatrixState.copy( _cameraMatrixStateTemp );
}
drawGrid(): void
¶
Code
drawGrid() {
if ( this.scene != null ) {
const color = 0x888888;
const multiplier = 3;
let size, divisions, maxLength, tick;
if ( this.object.isOrthographicCamera ) {
const width = this.object.right - this.object.left;
const height = this.object.bottom - this.object.top;
maxLength = Math.max( width, height );
tick = maxLength / 20;
size = maxLength / this.object.zoom * multiplier;
divisions = size / tick * this.object.zoom;
} else if ( this.object.isPerspectiveCamera ) {
const distance = this.object.position.distanceTo( this._gizmos.position );
const halfFovV = MathUtils.DEG2RAD * this.object.fov * 0.5;
const halfFovH = Math.atan( ( this.object.aspect ) * Math.tan( halfFovV ) );
maxLength = Math.tan( Math.max( halfFovV, halfFovH ) ) * distance * 2;
tick = maxLength / 20;
size = maxLength * multiplier;
divisions = size / tick;
}
if ( this._grid == null ) {
this._grid = new GridHelper( size, divisions, color, color );
this._grid.position.copy( this._gizmos.position );
this._gridPosition.copy( this._grid.position );
this._grid.quaternion.copy( this.object.quaternion );
this._grid.rotateX( Math.PI * 0.5 );
this.scene.add( this._grid );
}
}
}
dispose(): void
¶
Code
disposeGrid(): void
¶
Code
easeOutCubic(t: number): number
¶
activateGizmos(isActive: boolean): void
¶
Code
activateGizmos( isActive ) {
const gizmoX = this._gizmos.children[ 0 ];
const gizmoY = this._gizmos.children[ 1 ];
const gizmoZ = this._gizmos.children[ 2 ];
if ( isActive ) {
gizmoX.material.setValues( { opacity: 1 } );
gizmoY.material.setValues( { opacity: 1 } );
gizmoZ.material.setValues( { opacity: 1 } );
} else {
gizmoX.material.setValues( { opacity: 0.6 } );
gizmoY.material.setValues( { opacity: 0.6 } );
gizmoZ.material.setValues( { opacity: 0.6 } );
}
}
getCursorNDC(cursorX: number, cursorY: number, canvas: HTMLElement): Vector2
¶
Code
getCursorPosition(cursorX: number, cursorY: number, canvas: HTMLElement): Vector2
¶
Code
setCamera(camera: Camera): void
¶
Code
setCamera( camera ) {
camera.lookAt( this.target );
camera.updateMatrix();
//setting state
if ( camera.type == 'PerspectiveCamera' ) {
this._fov0 = camera.fov;
this._fovState = camera.fov;
}
this._cameraMatrixState0.copy( camera.matrix );
this._cameraMatrixState.copy( this._cameraMatrixState0 );
this._cameraProjectionState.copy( camera.projectionMatrix );
this._zoom0 = camera.zoom;
this._zoomState = this._zoom0;
this._initialNear = camera.near;
this._nearPos0 = camera.position.distanceTo( this.target ) - camera.near;
this._nearPos = this._initialNear;
this._initialFar = camera.far;
this._farPos0 = camera.position.distanceTo( this.target ) - camera.far;
this._farPos = this._initialFar;
this._up0.copy( camera.up );
this._upState.copy( camera.up );
this.object = camera;
this.object.updateProjectionMatrix();
//making gizmos
this._tbRadius = this.calculateTbRadius( camera );
this.makeGizmos( this.target, this._tbRadius );
}
setGizmosVisible(value: boolean): void
¶
Code
setTbRadius(value: number): void
¶
Code
setTbRadius( value ) {
this.radiusFactor = value;
this._tbRadius = this.calculateTbRadius( this.object );
const curve = new EllipseCurve( 0, 0, this._tbRadius, this._tbRadius );
const points = curve.getPoints( this._curvePts );
const curveGeometry = new BufferGeometry().setFromPoints( points );
for ( const gizmo in this._gizmos.children ) {
this._gizmos.children[ gizmo ].geometry = curveGeometry;
}
this.dispatchEvent( _changeEvent );
}
makeGizmos(tbCenter: Vector3, tbRadius: number): void
¶
Code
makeGizmos( tbCenter, tbRadius ) {
const curve = new EllipseCurve( 0, 0, tbRadius, tbRadius );
const points = curve.getPoints( this._curvePts );
//geometry
const curveGeometry = new BufferGeometry().setFromPoints( points );
//material
const curveMaterialX = new LineBasicMaterial( { color: 0xff8080, fog: false, transparent: true, opacity: 0.6 } );
const curveMaterialY = new LineBasicMaterial( { color: 0x80ff80, fog: false, transparent: true, opacity: 0.6 } );
const curveMaterialZ = new LineBasicMaterial( { color: 0x8080ff, fog: false, transparent: true, opacity: 0.6 } );
//line
const gizmoX = new Line( curveGeometry, curveMaterialX );
const gizmoY = new Line( curveGeometry, curveMaterialY );
const gizmoZ = new Line( curveGeometry, curveMaterialZ );
const rotation = Math.PI * 0.5;
gizmoX.rotation.x = rotation;
gizmoY.rotation.y = rotation;
//setting state
this._gizmoMatrixState0.identity().setPosition( tbCenter );
this._gizmoMatrixState.copy( this._gizmoMatrixState0 );
if ( this.object.zoom !== 1 ) {
//adapt gizmos size to camera zoom
const size = 1 / this.object.zoom;
this._scaleMatrix.makeScale( size, size, size );
this._translationMatrix.makeTranslation( - tbCenter.x, - tbCenter.y, - tbCenter.z );
this._gizmoMatrixState.premultiply( this._translationMatrix ).premultiply( this._scaleMatrix );
this._translationMatrix.makeTranslation( tbCenter.x, tbCenter.y, tbCenter.z );
this._gizmoMatrixState.premultiply( this._translationMatrix );
}
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
//
this._gizmos.traverse( function ( object ) {
if ( object.isLine ) {
object.geometry.dispose();
object.material.dispose();
}
} );
this._gizmos.clear();
//
this._gizmos.add( gizmoX );
this._gizmos.add( gizmoY );
this._gizmos.add( gizmoZ );
}
onFocusAnim(time: number, point: Vector3, cameraMatrix: Matrix4, gizmoMatrix: Matrix4): void
¶
Code
onFocusAnim( time, point, cameraMatrix, gizmoMatrix ) {
if ( this._timeStart == - 1 ) {
//animation start
this._timeStart = time;
}
if ( this._state == STATE.ANIMATION_FOCUS ) {
const deltaTime = time - this._timeStart;
const animTime = deltaTime / this.focusAnimationTime;
this._gizmoMatrixState.copy( gizmoMatrix );
if ( animTime >= 1 ) {
//animation end
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.focus( point, this.scaleFactor );
this._timeStart = - 1;
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
} else {
const amount = this.easeOutCubic( animTime );
const size = ( ( 1 - amount ) + ( this.scaleFactor * amount ) );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.focus( point, size, amount );
this.dispatchEvent( _changeEvent );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.onFocusAnim( t, point, cameraMatrix, gizmoMatrix.clone() );
} );
}
} else {
//interrupt animation
this._animationId = - 1;
this._timeStart = - 1;
}
}
onRotationAnim(time: number, rotationAxis: Vector3, w0: number): void
¶
Code
onRotationAnim( time, rotationAxis, w0 ) {
if ( this._timeStart == - 1 ) {
//animation start
this._anglePrev = 0;
this._angleCurrent = 0;
this._timeStart = time;
}
if ( this._state == STATE.ANIMATION_ROTATE ) {
//w = w0 + alpha * t
const deltaTime = ( time - this._timeStart ) / 1000;
const w = w0 + ( ( - this.dampingFactor ) * deltaTime );
if ( w > 0 ) {
//tetha = 0.5 * alpha * t^2 + w0 * t + tetha0
this._angleCurrent = 0.5 * ( - this.dampingFactor ) * Math.pow( deltaTime, 2 ) + w0 * deltaTime + 0;
this.applyTransformMatrix( this.rotate( rotationAxis, this._angleCurrent ) );
this.dispatchEvent( _changeEvent );
const self = this;
this._animationId = window.requestAnimationFrame( function ( t ) {
self.onRotationAnim( t, rotationAxis, w0 );
} );
} else {
this._animationId = - 1;
this._timeStart = - 1;
this.updateTbState( STATE.IDLE, false );
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
} else {
//interrupt animation
this._animationId = - 1;
this._timeStart = - 1;
if ( this._state != STATE.ROTATE ) {
this.activateGizmos( false );
this.dispatchEvent( _changeEvent );
}
}
}
pan(p0: Vector3, p1: Vector3, adjust: boolean): any
¶
Code
pan( p0, p1, adjust = false ) {
const movement = p0.clone().sub( p1 );
if ( this.object.isOrthographicCamera ) {
//adjust movement amount
movement.multiplyScalar( 1 / this.object.zoom );
} else if ( this.object.isPerspectiveCamera && adjust ) {
//adjust movement amount
this._v3_1.setFromMatrixPosition( this._cameraMatrixState0 ); //camera's initial position
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState0 ); //gizmo's initial position
const distanceFactor = this._v3_1.distanceTo( this._v3_2 ) / this.object.position.distanceTo( this._gizmos.position );
movement.multiplyScalar( 1 / distanceFactor );
}
this._v3_1.set( movement.x, movement.y, 0 ).applyQuaternion( this.object.quaternion );
this._m4_1.makeTranslation( this._v3_1.x, this._v3_1.y, this._v3_1.z );
this.setTransformationMatrices( this._m4_1, this._m4_1 );
return _transformation;
}
reset(): void
¶
Code
reset() {
this.target.copy( this._target0 );
this.object.zoom = this._zoom0;
if ( this.object.isPerspectiveCamera ) {
this.object.fov = this._fov0;
}
this.object.near = this._nearPos;
this.object.far = this._farPos;
this._cameraMatrixState.copy( this._cameraMatrixState0 );
this._cameraMatrixState.decompose( this.object.position, this.object.quaternion, this.object.scale );
this.object.up.copy( this._up0 );
this.object.updateMatrix();
this.object.updateProjectionMatrix();
this._gizmoMatrixState.copy( this._gizmoMatrixState0 );
this._gizmoMatrixState0.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this._gizmos.updateMatrix();
this._tbRadius = this.calculateTbRadius( this.object );
this.makeGizmos( this._gizmos.position, this._tbRadius );
this.object.lookAt( this._gizmos.position );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
}
rotate(axis: Vector3, angle: number): any
¶
Code
rotate( axis, angle ) {
const point = this._gizmos.position; //rotation center
this._translationMatrix.makeTranslation( - point.x, - point.y, - point.z );
this._rotationMatrix.makeRotationAxis( axis, - angle );
//rotate camera
this._m4_1.makeTranslation( point.x, point.y, point.z );
this._m4_1.multiply( this._rotationMatrix );
this._m4_1.multiply( this._translationMatrix );
this.setTransformationMatrices( this._m4_1 );
return _transformation;
}
copyState(): void
¶
Code
copyState() {
let state;
if ( this.object.isOrthographicCamera ) {
state = JSON.stringify( {
arcballState: {
cameraFar: this.object.far,
cameraMatrix: this.object.matrix,
cameraNear: this.object.near,
cameraUp: this.object.up,
cameraZoom: this.object.zoom,
gizmoMatrix: this._gizmos.matrix,
target: this.target
}
} );
} else if ( this.object.isPerspectiveCamera ) {
state = JSON.stringify( {
arcballState: {
cameraFar: this.object.far,
cameraFov: this.object.fov,
cameraMatrix: this.object.matrix,
cameraNear: this.object.near,
cameraUp: this.object.up,
cameraZoom: this.object.zoom,
gizmoMatrix: this._gizmos.matrix,
target: this.target
}
} );
}
navigator.clipboard.writeText( state );
}
pasteState(): void
¶
Code
saveState(): void
¶
Code
saveState() {
this.object.updateMatrix();
this._gizmos.updateMatrix();
this._target0.copy( this.target );
this._cameraMatrixState0.copy( this.object.matrix );
this._gizmoMatrixState0.copy( this._gizmos.matrix );
this._nearPos = this.object.near;
this._farPos = this.object.far;
this._zoom0 = this.object.zoom;
this._up0.copy( this.object.up );
if ( this.object.isPerspectiveCamera ) {
this._fov0 = this.object.fov;
}
}
scale(size: number, point: Vector3, scaleGizmos: boolean): any
¶
Code
scale( size, point, scaleGizmos = true ) {
_scalePointTemp.copy( point );
let sizeInverse = 1 / size;
if ( this.object.isOrthographicCamera ) {
//camera zoom
this.object.zoom = this._zoomState;
this.object.zoom *= size;
//check min and max zoom
if ( this.object.zoom > this.maxZoom ) {
this.object.zoom = this.maxZoom;
sizeInverse = this._zoomState / this.maxZoom;
} else if ( this.object.zoom < this.minZoom ) {
this.object.zoom = this.minZoom;
sizeInverse = this._zoomState / this.minZoom;
}
this.object.updateProjectionMatrix();
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState ); //gizmos position
//scale gizmos so they appear in the same spot having the same dimension
this._scaleMatrix.makeScale( sizeInverse, sizeInverse, sizeInverse );
this._translationMatrix.makeTranslation( - this._v3_1.x, - this._v3_1.y, - this._v3_1.z );
this._m4_2.makeTranslation( this._v3_1.x, this._v3_1.y, this._v3_1.z ).multiply( this._scaleMatrix );
this._m4_2.multiply( this._translationMatrix );
//move camera and gizmos to obtain pinch effect
_scalePointTemp.sub( this._v3_1 );
const amount = _scalePointTemp.clone().multiplyScalar( sizeInverse );
_scalePointTemp.sub( amount );
this._m4_1.makeTranslation( _scalePointTemp.x, _scalePointTemp.y, _scalePointTemp.z );
this._m4_2.premultiply( this._m4_1 );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
return _transformation;
} else if ( this.object.isPerspectiveCamera ) {
this._v3_1.setFromMatrixPosition( this._cameraMatrixState );
this._v3_2.setFromMatrixPosition( this._gizmoMatrixState );
//move camera
let distance = this._v3_1.distanceTo( _scalePointTemp );
let amount = distance - ( distance * sizeInverse );
//check min and max distance
const newDistance = distance - amount;
if ( newDistance < this.minDistance ) {
sizeInverse = this.minDistance / distance;
amount = distance - ( distance * sizeInverse );
} else if ( newDistance > this.maxDistance ) {
sizeInverse = this.maxDistance / distance;
amount = distance - ( distance * sizeInverse );
}
_offset.copy( _scalePointTemp ).sub( this._v3_1 ).normalize().multiplyScalar( amount );
this._m4_1.makeTranslation( _offset.x, _offset.y, _offset.z );
if ( scaleGizmos ) {
//scale gizmos so they appear in the same spot having the same dimension
const pos = this._v3_2;
distance = pos.distanceTo( _scalePointTemp );
amount = distance - ( distance * sizeInverse );
_offset.copy( _scalePointTemp ).sub( this._v3_2 ).normalize().multiplyScalar( amount );
this._translationMatrix.makeTranslation( pos.x, pos.y, pos.z );
this._scaleMatrix.makeScale( sizeInverse, sizeInverse, sizeInverse );
this._m4_2.makeTranslation( _offset.x, _offset.y, _offset.z ).multiply( this._translationMatrix );
this._m4_2.multiply( this._scaleMatrix );
this._translationMatrix.makeTranslation( - pos.x, - pos.y, - pos.z );
this._m4_2.multiply( this._translationMatrix );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
} else {
this.setTransformationMatrices( this._m4_1 );
}
return _transformation;
}
}
setFov(value: number): void
¶
Code
setTransformationMatrices(camera: Matrix4, gizmos: Matrix4): void
¶
Code
setTransformationMatrices( camera = null, gizmos = null ) {
if ( camera != null ) {
if ( _transformation.camera != null ) {
_transformation.camera.copy( camera );
} else {
_transformation.camera = camera.clone();
}
} else {
_transformation.camera = null;
}
if ( gizmos != null ) {
if ( _transformation.gizmos != null ) {
_transformation.gizmos.copy( gizmos );
} else {
_transformation.gizmos = gizmos.clone();
}
} else {
_transformation.gizmos = null;
}
}
zRotate(point: Vector3, angle: number): any
¶
Code
zRotate( point, angle ) {
this._rotationMatrix.makeRotationAxis( this._rotationAxis, angle );
this._translationMatrix.makeTranslation( - point.x, - point.y, - point.z );
this._m4_1.makeTranslation( point.x, point.y, point.z );
this._m4_1.multiply( this._rotationMatrix );
this._m4_1.multiply( this._translationMatrix );
this._v3_1.setFromMatrixPosition( this._gizmoMatrixState ).sub( point ); //vector from rotation center to gizmos position
this._v3_2.copy( this._v3_1 ).applyAxisAngle( this._rotationAxis, angle ); //apply rotation
this._v3_2.sub( this._v3_1 );
this._m4_2.makeTranslation( this._v3_2.x, this._v3_2.y, this._v3_2.z );
this.setTransformationMatrices( this._m4_1, this._m4_2 );
return _transformation;
}
getRaycaster(): Raycaster
¶
unprojectOnObj(cursor: Vector2, camera: Camera): Vector3
¶
Code
unprojectOnObj( cursor, camera ) {
const raycaster = this.getRaycaster();
raycaster.near = camera.near;
raycaster.far = camera.far;
raycaster.setFromCamera( cursor, camera );
const intersect = raycaster.intersectObjects( this.scene.children, true );
for ( let i = 0; i < intersect.length; i ++ ) {
if ( intersect[ i ].object.uuid != this._gizmos.uuid && intersect[ i ].face != null ) {
return intersect[ i ].point.clone();
}
}
return null;
}
unprojectOnTbSurface(camera: Camera, cursorX: number, cursorY: number, canvas: HTMLElement, tbRadius: number): Vector3
¶
Code
unprojectOnTbSurface( camera, cursorX, cursorY, canvas, tbRadius ) {
if ( camera.type == 'OrthographicCamera' ) {
this._v2_1.copy( this.getCursorPosition( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, 0 );
const x2 = Math.pow( this._v2_1.x, 2 );
const y2 = Math.pow( this._v2_1.y, 2 );
const r2 = Math.pow( this._tbRadius, 2 );
if ( x2 + y2 <= r2 * 0.5 ) {
//intersection with sphere
this._v3_1.setZ( Math.sqrt( r2 - ( x2 + y2 ) ) );
} else {
//intersection with hyperboloid
this._v3_1.setZ( ( r2 * 0.5 ) / ( Math.sqrt( x2 + y2 ) ) );
}
return this._v3_1;
} else if ( camera.type == 'PerspectiveCamera' ) {
//unproject cursor on the near plane
this._v2_1.copy( this.getCursorNDC( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, - 1 );
this._v3_1.applyMatrix4( camera.projectionMatrixInverse );
const rayDir = this._v3_1.clone().normalize(); //unprojected ray direction
const cameraGizmoDistance = camera.position.distanceTo( this._gizmos.position );
const radius2 = Math.pow( tbRadius, 2 );
// camera
// |\
// | \
// | \
// h | \
// | \
// | \
// _ _ | _ _ _\ _ _ near plane
// l
const h = this._v3_1.z;
const l = Math.sqrt( Math.pow( this._v3_1.x, 2 ) + Math.pow( this._v3_1.y, 2 ) );
if ( l == 0 ) {
//ray aligned with camera
rayDir.set( this._v3_1.x, this._v3_1.y, tbRadius );
return rayDir;
}
const m = h / l;
const q = cameraGizmoDistance;
/*
* calculate intersection point between unprojected ray and trackball surface
*|y = m * x + q
*|x^2 + y^2 = r^2
*
* (m^2 + 1) * x^2 + (2 * m * q) * x + q^2 - r^2 = 0
*/
let a = Math.pow( m, 2 ) + 1;
let b = 2 * m * q;
let c = Math.pow( q, 2 ) - radius2;
let delta = Math.pow( b, 2 ) - ( 4 * a * c );
if ( delta >= 0 ) {
//intersection with sphere
this._v2_1.setX( ( - b - Math.sqrt( delta ) ) / ( 2 * a ) );
this._v2_1.setY( m * this._v2_1.x + q );
const angle = MathUtils.RAD2DEG * this._v2_1.angle();
if ( angle >= 45 ) {
//if angle between intersection point and X' axis is >= 45°, return that point
//otherwise, calculate intersection point with hyperboloid
const rayLength = Math.sqrt( Math.pow( this._v2_1.x, 2 ) + Math.pow( ( cameraGizmoDistance - this._v2_1.y ), 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z += cameraGizmoDistance;
return rayDir;
}
}
//intersection with hyperboloid
/*
*|y = m * x + q
*|y = (1 / x) * (r^2 / 2)
*
* m * x^2 + q * x - r^2 / 2 = 0
*/
a = m;
b = q;
c = - radius2 * 0.5;
delta = Math.pow( b, 2 ) - ( 4 * a * c );
this._v2_1.setX( ( - b - Math.sqrt( delta ) ) / ( 2 * a ) );
this._v2_1.setY( m * this._v2_1.x + q );
const rayLength = Math.sqrt( Math.pow( this._v2_1.x, 2 ) + Math.pow( ( cameraGizmoDistance - this._v2_1.y ), 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z += cameraGizmoDistance;
return rayDir;
}
}
unprojectOnTbPlane(camera: Camera, cursorX: number, cursorY: number, canvas: HTMLElement, initialDistance: boolean): Vector3
¶
Code
unprojectOnTbPlane( camera, cursorX, cursorY, canvas, initialDistance = false ) {
if ( camera.type == 'OrthographicCamera' ) {
this._v2_1.copy( this.getCursorPosition( cursorX, cursorY, canvas ) );
this._v3_1.set( this._v2_1.x, this._v2_1.y, 0 );
return this._v3_1.clone();
} else if ( camera.type == 'PerspectiveCamera' ) {
this._v2_1.copy( this.getCursorNDC( cursorX, cursorY, canvas ) );
//unproject cursor on the near plane
this._v3_1.set( this._v2_1.x, this._v2_1.y, - 1 );
this._v3_1.applyMatrix4( camera.projectionMatrixInverse );
const rayDir = this._v3_1.clone().normalize(); //unprojected ray direction
// camera
// |\
// | \
// | \
// h | \
// | \
// | \
// _ _ | _ _ _\ _ _ near plane
// l
const h = this._v3_1.z;
const l = Math.sqrt( Math.pow( this._v3_1.x, 2 ) + Math.pow( this._v3_1.y, 2 ) );
let cameraGizmoDistance;
if ( initialDistance ) {
cameraGizmoDistance = this._v3_1.setFromMatrixPosition( this._cameraMatrixState0 ).distanceTo( this._v3_2.setFromMatrixPosition( this._gizmoMatrixState0 ) );
} else {
cameraGizmoDistance = camera.position.distanceTo( this._gizmos.position );
}
/*
* calculate intersection point between unprojected ray and the plane
*|y = mx + q
*|y = 0
*
* x = -q/m
*/
if ( l == 0 ) {
//ray aligned with camera
rayDir.set( 0, 0, 0 );
return rayDir;
}
const m = h / l;
const q = cameraGizmoDistance;
const x = - q / m;
const rayLength = Math.sqrt( Math.pow( q, 2 ) + Math.pow( x, 2 ) );
rayDir.multiplyScalar( rayLength );
rayDir.z = 0;
return rayDir;
}
}
updateMatrixState(): void
¶
Code
updateMatrixState() {
//update camera and gizmos state
this._cameraMatrixState.copy( this.object.matrix );
this._gizmoMatrixState.copy( this._gizmos.matrix );
if ( this.object.isOrthographicCamera ) {
this._cameraProjectionState.copy( this.object.projectionMatrix );
this.object.updateProjectionMatrix();
this._zoomState = this.object.zoom;
} else if ( this.object.isPerspectiveCamera ) {
this._fovState = this.object.fov;
}
}
updateTbState(newState: { IDLE: symbol; ROTATE: symbol; PAN: symbol; SCALE: symbol; FOV: symbol; FOCUS: symbol; ZROTATE: symbol; TOUCH_MULTI: symbol; ANIMATION_FOCUS: symbol; ANIMATION_ROTATE: symbol; }, updateMatrices: boolean): void
¶
Code
update(): void
¶
Code
update() {
if ( this.target.equals( this._currentTarget ) === false ) {
this._gizmos.position.copy( this.target ); //for correct radius calculation
this._tbRadius = this.calculateTbRadius( this.object );
this.makeGizmos( this.target, this._tbRadius );
this._currentTarget.copy( this.target );
}
//check min/max parameters
if ( this.object.isOrthographicCamera ) {
//check zoom
if ( this.object.zoom > this.maxZoom || this.object.zoom < this.minZoom ) {
const newZoom = MathUtils.clamp( this.object.zoom, this.minZoom, this.maxZoom );
this.applyTransformMatrix( this.scale( newZoom / this.object.zoom, this._gizmos.position, true ) );
}
} else if ( this.object.isPerspectiveCamera ) {
//check distance
const distance = this.object.position.distanceTo( this._gizmos.position );
if ( distance > this.maxDistance + _EPS || distance < this.minDistance - _EPS ) {
const newDistance = MathUtils.clamp( distance, this.minDistance, this.maxDistance );
this.applyTransformMatrix( this.scale( newDistance / distance, this._gizmos.position ) );
this.updateMatrixState();
}
//check fov
if ( this.object.fov < this.minFov || this.object.fov > this.maxFov ) {
this.object.fov = MathUtils.clamp( this.object.fov, this.minFov, this.maxFov );
this.object.updateProjectionMatrix();
}
const oldRadius = this._tbRadius;
this._tbRadius = this.calculateTbRadius( this.object );
if ( oldRadius < this._tbRadius - _EPS || oldRadius > this._tbRadius + _EPS ) {
const scale = ( this._gizmos.scale.x + this._gizmos.scale.y + this._gizmos.scale.z ) / 3;
const newRadius = this._tbRadius / scale;
const curve = new EllipseCurve( 0, 0, newRadius, newRadius );
const points = curve.getPoints( this._curvePts );
const curveGeometry = new BufferGeometry().setFromPoints( points );
for ( const gizmo in this._gizmos.children ) {
this._gizmos.children[ gizmo ].geometry = curveGeometry;
}
}
}
this.object.lookAt( this._gizmos.position );
}
setStateFromJSON(json: any): void
¶
Code
setStateFromJSON( json ) {
const state = JSON.parse( json );
if ( state.arcballState != undefined ) {
this.target.fromArray( state.arcballState.target );
this._cameraMatrixState.fromArray( state.arcballState.cameraMatrix.elements );
this._cameraMatrixState.decompose( this.object.position, this.object.quaternion, this.object.scale );
this.object.up.copy( state.arcballState.cameraUp );
this.object.near = state.arcballState.cameraNear;
this.object.far = state.arcballState.cameraFar;
this.object.zoom = state.arcballState.cameraZoom;
if ( this.object.isPerspectiveCamera ) {
this.object.fov = state.arcballState.cameraFov;
}
this._gizmoMatrixState.fromArray( state.arcballState.gizmoMatrix.elements );
this._gizmoMatrixState.decompose( this._gizmos.position, this._gizmos.quaternion, this._gizmos.scale );
this.object.updateMatrix();
this.object.updateProjectionMatrix();
this._gizmos.updateMatrix();
this._tbRadius = this.calculateTbRadius( this.object );
const gizmoTmp = new Matrix4().copy( this._gizmoMatrixState0 );
this.makeGizmos( this._gizmos.position, this._tbRadius );
this._gizmoMatrixState0.copy( gizmoTmp );
this.object.lookAt( this._gizmos.position );
this.updateTbState( STATE.IDLE, false );
this.dispatchEvent( _changeEvent );
}
}