📄 CSMFrustum.js
¶
📊 Analysis Summary¶
Metric | Count |
---|---|
🔧 Functions | 3 |
🧱 Classes | 1 |
📦 Imports | 2 |
📊 Variables & Constants | 4 |
📚 Table of Contents¶
🛠️ File Location:¶
📂 examples/jsm/csm/CSMFrustum.js
📦 Imports¶
Name | Source |
---|---|
Vector3 |
three |
Matrix4 |
three |
Variables & Constants¶
Name | Type | Kind | Value | Exported |
---|---|---|---|---|
inverseProjectionMatrix |
any |
let/var | new Matrix4() |
✗ |
zNear |
number |
let/var | this.zNear |
✗ |
isOrthographic |
boolean |
let/var | projectionMatrix.elements[ 2 * 4 + 3 ] === 0 |
✗ |
cascade |
CSMFrustum |
let/var | target[ i ] |
✗ |
Functions¶
CSMFrustum.setFromProjectionMatrix(projectionMatrix: Matrix4, maxFar: number): any
¶
JSDoc:
/**
* Setups this CSM frustum from the given projection matrix and max far value.
*
* @param {Matrix4} projectionMatrix - The projection matrix, usually of the scene's camera.
* @param {number} maxFar - The maximum far value.
* @returns {Object} An object representing the vertices of the near and far plane in view space.
*/
Parameters:
projectionMatrix
Matrix4
maxFar
number
Returns: any
Calls:
inverseProjectionMatrix.copy( projectionMatrix ).invert
this.vertices.near[ 0 ].set
this.vertices.near[ 1 ].set
this.vertices.near[ 2 ].set
this.vertices.near[ 3 ].set
this.vertices.near.forEach
v.applyMatrix4
this.vertices.far[ 0 ].set
this.vertices.far[ 1 ].set
this.vertices.far[ 2 ].set
this.vertices.far[ 3 ].set
this.vertices.far.forEach
Math.abs
Math.min
v.multiplyScalar
Internal Comments:
// 3 --- 0 vertices.near/far order (x7)
// | | (x7)
// 2 --- 1 (x7)
// clip space spans from [-1, 1] (x7)
Code
setFromProjectionMatrix( projectionMatrix, maxFar ) {
const zNear = this.zNear;
const isOrthographic = projectionMatrix.elements[ 2 * 4 + 3 ] === 0;
inverseProjectionMatrix.copy( projectionMatrix ).invert();
// 3 --- 0 vertices.near/far order
// | |
// 2 --- 1
// clip space spans from [-1, 1]
this.vertices.near[ 0 ].set( 1, 1, zNear );
this.vertices.near[ 1 ].set( 1, - 1, zNear );
this.vertices.near[ 2 ].set( - 1, - 1, zNear );
this.vertices.near[ 3 ].set( - 1, 1, zNear );
this.vertices.near.forEach( function ( v ) {
v.applyMatrix4( inverseProjectionMatrix );
} );
this.vertices.far[ 0 ].set( 1, 1, 1 );
this.vertices.far[ 1 ].set( 1, - 1, 1 );
this.vertices.far[ 2 ].set( - 1, - 1, 1 );
this.vertices.far[ 3 ].set( - 1, 1, 1 );
this.vertices.far.forEach( function ( v ) {
v.applyMatrix4( inverseProjectionMatrix );
const absZ = Math.abs( v.z );
if ( isOrthographic ) {
v.z *= Math.min( maxFar / absZ, 1.0 );
} else {
v.multiplyScalar( Math.min( maxFar / absZ, 1.0 ) );
}
} );
return this.vertices;
}
CSMFrustum.split(breaks: number[], target: CSMFrustum[]): void
¶
JSDoc:
/**
* Splits the CSM frustum by the given array. The new CSM frustum are pushed into the given
* target array.
*
* @param {Array<number>} breaks - An array of numbers in the range `[0,1]` the defines how the
* CSM frustum should be split up.
* @param {Array<CSMFrustum>} target - The target array that holds the new CSM frustums.
*/
Parameters:
breaks
number[]
target
CSMFrustum[]
Returns: void
Calls:
target.push
cascade.vertices.near[ j ].copy
cascade.vertices.near[ j ].lerpVectors
cascade.vertices.far[ j ].copy
cascade.vertices.far[ j ].lerpVectors
Code
split( breaks, target ) {
while ( breaks.length > target.length ) {
target.push( new CSMFrustum() );
}
target.length = breaks.length;
for ( let i = 0; i < breaks.length; i ++ ) {
const cascade = target[ i ];
if ( i === 0 ) {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.near[ j ].copy( this.vertices.near[ j ] );
}
} else {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.near[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i - 1 ] );
}
}
if ( i === breaks.length - 1 ) {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.far[ j ].copy( this.vertices.far[ j ] );
}
} else {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.far[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i ] );
}
}
}
}
CSMFrustum.toSpace(cameraMatrix: Matrix4, target: CSMFrustum): void
¶
JSDoc:
/**
* Transforms the given target CSM frustum into the different coordinate system defined by the
* given camera matrix.
*
* @param {Matrix4} cameraMatrix - The matrix that defines the new coordinate system.
* @param {CSMFrustum} target - The CSM to convert.
*/
Parameters:
cameraMatrix
Matrix4
target
CSMFrustum
Returns: void
Calls:
target.vertices.near[ i ] .copy( this.vertices.near[ i ] ) .applyMatrix4
target.vertices.far[ i ] .copy( this.vertices.far[ i ] ) .applyMatrix4
Code
Classes¶
CSMFrustum
¶
Class Code
class CSMFrustum {
/**
* Constructs a new CSM frustum.
*
* @param {CSMFrustum~Data} [data] - The CSM data.
*/
constructor( data ) {
data = data || {};
/**
* The zNear value. This value depends on whether the CSM
* is used with WebGL or WebGPU. Both API use different
* conventions for their projection matrices.
*
* @type {number}
*/
this.zNear = data.webGL === true ? - 1 : 0;
/**
* An object representing the vertices of the near and
* far plane in view space.
*
* @type {Object}
*/
this.vertices = {
near: [
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3()
],
far: [
new Vector3(),
new Vector3(),
new Vector3(),
new Vector3()
]
};
if ( data.projectionMatrix !== undefined ) {
this.setFromProjectionMatrix( data.projectionMatrix, data.maxFar || 10000 );
}
}
/**
* Setups this CSM frustum from the given projection matrix and max far value.
*
* @param {Matrix4} projectionMatrix - The projection matrix, usually of the scene's camera.
* @param {number} maxFar - The maximum far value.
* @returns {Object} An object representing the vertices of the near and far plane in view space.
*/
setFromProjectionMatrix( projectionMatrix, maxFar ) {
const zNear = this.zNear;
const isOrthographic = projectionMatrix.elements[ 2 * 4 + 3 ] === 0;
inverseProjectionMatrix.copy( projectionMatrix ).invert();
// 3 --- 0 vertices.near/far order
// | |
// 2 --- 1
// clip space spans from [-1, 1]
this.vertices.near[ 0 ].set( 1, 1, zNear );
this.vertices.near[ 1 ].set( 1, - 1, zNear );
this.vertices.near[ 2 ].set( - 1, - 1, zNear );
this.vertices.near[ 3 ].set( - 1, 1, zNear );
this.vertices.near.forEach( function ( v ) {
v.applyMatrix4( inverseProjectionMatrix );
} );
this.vertices.far[ 0 ].set( 1, 1, 1 );
this.vertices.far[ 1 ].set( 1, - 1, 1 );
this.vertices.far[ 2 ].set( - 1, - 1, 1 );
this.vertices.far[ 3 ].set( - 1, 1, 1 );
this.vertices.far.forEach( function ( v ) {
v.applyMatrix4( inverseProjectionMatrix );
const absZ = Math.abs( v.z );
if ( isOrthographic ) {
v.z *= Math.min( maxFar / absZ, 1.0 );
} else {
v.multiplyScalar( Math.min( maxFar / absZ, 1.0 ) );
}
} );
return this.vertices;
}
/**
* Splits the CSM frustum by the given array. The new CSM frustum are pushed into the given
* target array.
*
* @param {Array<number>} breaks - An array of numbers in the range `[0,1]` the defines how the
* CSM frustum should be split up.
* @param {Array<CSMFrustum>} target - The target array that holds the new CSM frustums.
*/
split( breaks, target ) {
while ( breaks.length > target.length ) {
target.push( new CSMFrustum() );
}
target.length = breaks.length;
for ( let i = 0; i < breaks.length; i ++ ) {
const cascade = target[ i ];
if ( i === 0 ) {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.near[ j ].copy( this.vertices.near[ j ] );
}
} else {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.near[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i - 1 ] );
}
}
if ( i === breaks.length - 1 ) {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.far[ j ].copy( this.vertices.far[ j ] );
}
} else {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.far[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i ] );
}
}
}
}
/**
* Transforms the given target CSM frustum into the different coordinate system defined by the
* given camera matrix.
*
* @param {Matrix4} cameraMatrix - The matrix that defines the new coordinate system.
* @param {CSMFrustum} target - The CSM to convert.
*/
toSpace( cameraMatrix, target ) {
for ( let i = 0; i < 4; i ++ ) {
target.vertices.near[ i ]
.copy( this.vertices.near[ i ] )
.applyMatrix4( cameraMatrix );
target.vertices.far[ i ]
.copy( this.vertices.far[ i ] )
.applyMatrix4( cameraMatrix );
}
}
}
Methods¶
setFromProjectionMatrix(projectionMatrix: Matrix4, maxFar: number): any
¶
Code
setFromProjectionMatrix( projectionMatrix, maxFar ) {
const zNear = this.zNear;
const isOrthographic = projectionMatrix.elements[ 2 * 4 + 3 ] === 0;
inverseProjectionMatrix.copy( projectionMatrix ).invert();
// 3 --- 0 vertices.near/far order
// | |
// 2 --- 1
// clip space spans from [-1, 1]
this.vertices.near[ 0 ].set( 1, 1, zNear );
this.vertices.near[ 1 ].set( 1, - 1, zNear );
this.vertices.near[ 2 ].set( - 1, - 1, zNear );
this.vertices.near[ 3 ].set( - 1, 1, zNear );
this.vertices.near.forEach( function ( v ) {
v.applyMatrix4( inverseProjectionMatrix );
} );
this.vertices.far[ 0 ].set( 1, 1, 1 );
this.vertices.far[ 1 ].set( 1, - 1, 1 );
this.vertices.far[ 2 ].set( - 1, - 1, 1 );
this.vertices.far[ 3 ].set( - 1, 1, 1 );
this.vertices.far.forEach( function ( v ) {
v.applyMatrix4( inverseProjectionMatrix );
const absZ = Math.abs( v.z );
if ( isOrthographic ) {
v.z *= Math.min( maxFar / absZ, 1.0 );
} else {
v.multiplyScalar( Math.min( maxFar / absZ, 1.0 ) );
}
} );
return this.vertices;
}
split(breaks: number[], target: CSMFrustum[]): void
¶
Code
split( breaks, target ) {
while ( breaks.length > target.length ) {
target.push( new CSMFrustum() );
}
target.length = breaks.length;
for ( let i = 0; i < breaks.length; i ++ ) {
const cascade = target[ i ];
if ( i === 0 ) {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.near[ j ].copy( this.vertices.near[ j ] );
}
} else {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.near[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i - 1 ] );
}
}
if ( i === breaks.length - 1 ) {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.far[ j ].copy( this.vertices.far[ j ] );
}
} else {
for ( let j = 0; j < 4; j ++ ) {
cascade.vertices.far[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i ] );
}
}
}
}