Skip to content

⬅️ Back to Table of Contents

📄 CSMFrustum.js

📊 Analysis Summary

Metric Count
🔧 Functions 3
🧱 Classes 1
📦 Imports 2
📊 Variables & Constants 4

📚 Table of Contents

🛠️ File Location:

📂 examples/jsm/csm/CSMFrustum.js

📦 Imports

Name Source
Vector3 three
Matrix4 three

Variables & Constants

Name Type Kind Value Exported
inverseProjectionMatrix any let/var new Matrix4()
zNear number let/var this.zNear
isOrthographic boolean let/var projectionMatrix.elements[ 2 * 4 + 3 ] === 0
cascade CSMFrustum let/var target[ i ]

Functions

CSMFrustum.setFromProjectionMatrix(projectionMatrix: Matrix4, maxFar: number): any

JSDoc:

/**
     * Setups this CSM frustum from the given projection matrix and max far value.
     *
     * @param {Matrix4} projectionMatrix - The projection matrix, usually of the scene's camera.
     * @param {number} maxFar - The maximum far value.
     * @returns {Object} An object representing the vertices of the near and far plane in view space.
     */

Parameters:

  • projectionMatrix Matrix4
  • maxFar number

Returns: any

Calls:

  • inverseProjectionMatrix.copy( projectionMatrix ).invert
  • this.vertices.near[ 0 ].set
  • this.vertices.near[ 1 ].set
  • this.vertices.near[ 2 ].set
  • this.vertices.near[ 3 ].set
  • this.vertices.near.forEach
  • v.applyMatrix4
  • this.vertices.far[ 0 ].set
  • this.vertices.far[ 1 ].set
  • this.vertices.far[ 2 ].set
  • this.vertices.far[ 3 ].set
  • this.vertices.far.forEach
  • Math.abs
  • Math.min
  • v.multiplyScalar

Internal Comments:

// 3 --- 0  vertices.near/far order (x7)
// |     | (x7)
// 2 --- 1 (x7)
// clip space spans from [-1, 1] (x7)

Code
setFromProjectionMatrix( projectionMatrix, maxFar ) {

        const zNear = this.zNear;
        const isOrthographic = projectionMatrix.elements[ 2 * 4 + 3 ] === 0;

        inverseProjectionMatrix.copy( projectionMatrix ).invert();

        // 3 --- 0  vertices.near/far order
        // |     |
        // 2 --- 1
        // clip space spans from [-1, 1]

        this.vertices.near[ 0 ].set( 1, 1, zNear );
        this.vertices.near[ 1 ].set( 1, - 1, zNear );
        this.vertices.near[ 2 ].set( - 1, - 1, zNear );
        this.vertices.near[ 3 ].set( - 1, 1, zNear );
        this.vertices.near.forEach( function ( v ) {

            v.applyMatrix4( inverseProjectionMatrix );

        } );

        this.vertices.far[ 0 ].set( 1, 1, 1 );
        this.vertices.far[ 1 ].set( 1, - 1, 1 );
        this.vertices.far[ 2 ].set( - 1, - 1, 1 );
        this.vertices.far[ 3 ].set( - 1, 1, 1 );
        this.vertices.far.forEach( function ( v ) {

            v.applyMatrix4( inverseProjectionMatrix );

            const absZ = Math.abs( v.z );
            if ( isOrthographic ) {

                v.z *= Math.min( maxFar / absZ, 1.0 );

            } else {

                v.multiplyScalar( Math.min( maxFar / absZ, 1.0 ) );

            }

        } );

        return this.vertices;

    }

CSMFrustum.split(breaks: number[], target: CSMFrustum[]): void

JSDoc:

/**
     * Splits the CSM frustum by the given array. The new CSM frustum are pushed into the given
     * target array.
     *
     * @param {Array<number>} breaks - An array of numbers in the range `[0,1]` the defines how the
     * CSM frustum should be split up.
     * @param {Array<CSMFrustum>} target - The target array that holds the new CSM frustums.
     */

Parameters:

  • breaks number[]
  • target CSMFrustum[]

Returns: void

Calls:

  • target.push
  • cascade.vertices.near[ j ].copy
  • cascade.vertices.near[ j ].lerpVectors
  • cascade.vertices.far[ j ].copy
  • cascade.vertices.far[ j ].lerpVectors
Code
split( breaks, target ) {

        while ( breaks.length > target.length ) {

            target.push( new CSMFrustum() );

        }

        target.length = breaks.length;

        for ( let i = 0; i < breaks.length; i ++ ) {

            const cascade = target[ i ];

            if ( i === 0 ) {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.near[ j ].copy( this.vertices.near[ j ] );

                }

            } else {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.near[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i - 1 ] );

                }

            }

            if ( i === breaks.length - 1 ) {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.far[ j ].copy( this.vertices.far[ j ] );

                }

            } else {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.far[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i ] );

                }

            }

        }

    }

CSMFrustum.toSpace(cameraMatrix: Matrix4, target: CSMFrustum): void

JSDoc:

/**
     * Transforms the given target CSM frustum into the different coordinate system defined by the
     * given camera matrix.
     *
     * @param {Matrix4} cameraMatrix - The matrix that defines the new coordinate system.
     * @param {CSMFrustum} target - The CSM to convert.
     */

Parameters:

  • cameraMatrix Matrix4
  • target CSMFrustum

Returns: void

Calls:

  • target.vertices.near[ i ] .copy( this.vertices.near[ i ] ) .applyMatrix4
  • target.vertices.far[ i ] .copy( this.vertices.far[ i ] ) .applyMatrix4
Code
toSpace( cameraMatrix, target ) {

        for ( let i = 0; i < 4; i ++ ) {

            target.vertices.near[ i ]
                .copy( this.vertices.near[ i ] )
                .applyMatrix4( cameraMatrix );

            target.vertices.far[ i ]
                .copy( this.vertices.far[ i ] )
                .applyMatrix4( cameraMatrix );

        }

    }

Classes

CSMFrustum

Class Code
class CSMFrustum {

    /**
     * Constructs a new CSM frustum.
     *
     * @param {CSMFrustum~Data} [data] - The CSM data.
     */
    constructor( data ) {

        data = data || {};

        /**
         * The zNear value. This value depends on whether the CSM
         * is used with WebGL or WebGPU. Both API use different
         * conventions for their projection matrices.
         *
         * @type {number}
         */
        this.zNear = data.webGL === true ? - 1 : 0;

        /**
         * An object representing the vertices of the near and
         * far plane in view space.
         *
         * @type {Object}
         */
        this.vertices = {
            near: [
                new Vector3(),
                new Vector3(),
                new Vector3(),
                new Vector3()
            ],
            far: [
                new Vector3(),
                new Vector3(),
                new Vector3(),
                new Vector3()
            ]
        };

        if ( data.projectionMatrix !== undefined ) {

            this.setFromProjectionMatrix( data.projectionMatrix, data.maxFar || 10000 );

        }

    }

    /**
     * Setups this CSM frustum from the given projection matrix and max far value.
     *
     * @param {Matrix4} projectionMatrix - The projection matrix, usually of the scene's camera.
     * @param {number} maxFar - The maximum far value.
     * @returns {Object} An object representing the vertices of the near and far plane in view space.
     */
    setFromProjectionMatrix( projectionMatrix, maxFar ) {

        const zNear = this.zNear;
        const isOrthographic = projectionMatrix.elements[ 2 * 4 + 3 ] === 0;

        inverseProjectionMatrix.copy( projectionMatrix ).invert();

        // 3 --- 0  vertices.near/far order
        // |     |
        // 2 --- 1
        // clip space spans from [-1, 1]

        this.vertices.near[ 0 ].set( 1, 1, zNear );
        this.vertices.near[ 1 ].set( 1, - 1, zNear );
        this.vertices.near[ 2 ].set( - 1, - 1, zNear );
        this.vertices.near[ 3 ].set( - 1, 1, zNear );
        this.vertices.near.forEach( function ( v ) {

            v.applyMatrix4( inverseProjectionMatrix );

        } );

        this.vertices.far[ 0 ].set( 1, 1, 1 );
        this.vertices.far[ 1 ].set( 1, - 1, 1 );
        this.vertices.far[ 2 ].set( - 1, - 1, 1 );
        this.vertices.far[ 3 ].set( - 1, 1, 1 );
        this.vertices.far.forEach( function ( v ) {

            v.applyMatrix4( inverseProjectionMatrix );

            const absZ = Math.abs( v.z );
            if ( isOrthographic ) {

                v.z *= Math.min( maxFar / absZ, 1.0 );

            } else {

                v.multiplyScalar( Math.min( maxFar / absZ, 1.0 ) );

            }

        } );

        return this.vertices;

    }

    /**
     * Splits the CSM frustum by the given array. The new CSM frustum are pushed into the given
     * target array.
     *
     * @param {Array<number>} breaks - An array of numbers in the range `[0,1]` the defines how the
     * CSM frustum should be split up.
     * @param {Array<CSMFrustum>} target - The target array that holds the new CSM frustums.
     */
    split( breaks, target ) {

        while ( breaks.length > target.length ) {

            target.push( new CSMFrustum() );

        }

        target.length = breaks.length;

        for ( let i = 0; i < breaks.length; i ++ ) {

            const cascade = target[ i ];

            if ( i === 0 ) {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.near[ j ].copy( this.vertices.near[ j ] );

                }

            } else {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.near[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i - 1 ] );

                }

            }

            if ( i === breaks.length - 1 ) {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.far[ j ].copy( this.vertices.far[ j ] );

                }

            } else {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.far[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i ] );

                }

            }

        }

    }

    /**
     * Transforms the given target CSM frustum into the different coordinate system defined by the
     * given camera matrix.
     *
     * @param {Matrix4} cameraMatrix - The matrix that defines the new coordinate system.
     * @param {CSMFrustum} target - The CSM to convert.
     */
    toSpace( cameraMatrix, target ) {

        for ( let i = 0; i < 4; i ++ ) {

            target.vertices.near[ i ]
                .copy( this.vertices.near[ i ] )
                .applyMatrix4( cameraMatrix );

            target.vertices.far[ i ]
                .copy( this.vertices.far[ i ] )
                .applyMatrix4( cameraMatrix );

        }

    }

}

Methods

setFromProjectionMatrix(projectionMatrix: Matrix4, maxFar: number): any
Code
setFromProjectionMatrix( projectionMatrix, maxFar ) {

        const zNear = this.zNear;
        const isOrthographic = projectionMatrix.elements[ 2 * 4 + 3 ] === 0;

        inverseProjectionMatrix.copy( projectionMatrix ).invert();

        // 3 --- 0  vertices.near/far order
        // |     |
        // 2 --- 1
        // clip space spans from [-1, 1]

        this.vertices.near[ 0 ].set( 1, 1, zNear );
        this.vertices.near[ 1 ].set( 1, - 1, zNear );
        this.vertices.near[ 2 ].set( - 1, - 1, zNear );
        this.vertices.near[ 3 ].set( - 1, 1, zNear );
        this.vertices.near.forEach( function ( v ) {

            v.applyMatrix4( inverseProjectionMatrix );

        } );

        this.vertices.far[ 0 ].set( 1, 1, 1 );
        this.vertices.far[ 1 ].set( 1, - 1, 1 );
        this.vertices.far[ 2 ].set( - 1, - 1, 1 );
        this.vertices.far[ 3 ].set( - 1, 1, 1 );
        this.vertices.far.forEach( function ( v ) {

            v.applyMatrix4( inverseProjectionMatrix );

            const absZ = Math.abs( v.z );
            if ( isOrthographic ) {

                v.z *= Math.min( maxFar / absZ, 1.0 );

            } else {

                v.multiplyScalar( Math.min( maxFar / absZ, 1.0 ) );

            }

        } );

        return this.vertices;

    }
split(breaks: number[], target: CSMFrustum[]): void
Code
split( breaks, target ) {

        while ( breaks.length > target.length ) {

            target.push( new CSMFrustum() );

        }

        target.length = breaks.length;

        for ( let i = 0; i < breaks.length; i ++ ) {

            const cascade = target[ i ];

            if ( i === 0 ) {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.near[ j ].copy( this.vertices.near[ j ] );

                }

            } else {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.near[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i - 1 ] );

                }

            }

            if ( i === breaks.length - 1 ) {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.far[ j ].copy( this.vertices.far[ j ] );

                }

            } else {

                for ( let j = 0; j < 4; j ++ ) {

                    cascade.vertices.far[ j ].lerpVectors( this.vertices.near[ j ], this.vertices.far[ j ], breaks[ i ] );

                }

            }

        }

    }
toSpace(cameraMatrix: Matrix4, target: CSMFrustum): void
Code
toSpace( cameraMatrix, target ) {

        for ( let i = 0; i < 4; i ++ ) {

            target.vertices.near[ i ]
                .copy( this.vertices.near[ i ] )
                .applyMatrix4( cameraMatrix );

            target.vertices.far[ i ]
                .copy( this.vertices.far[ i ] )
                .applyMatrix4( cameraMatrix );

        }

    }