📄 CSMShadowNode.js
¶
📊 Analysis Summary¶
Metric | Count |
---|---|
🔧 Functions | 14 |
🧱 Classes | 2 |
📦 Imports | 21 |
📊 Variables & Constants | 43 |
📚 Table of Contents¶
🛠️ File Location:¶
📂 examples/jsm/csm/CSMShadowNode.js
📦 Imports¶
Name | Source |
---|---|
Vector2 |
three/webgpu |
Vector3 |
three/webgpu |
MathUtils |
three/webgpu |
Matrix4 |
three/webgpu |
Box3 |
three/webgpu |
Object3D |
three/webgpu |
WebGLCoordinateSystem |
three/webgpu |
ShadowBaseNode |
three/webgpu |
CSMFrustum |
./CSMFrustum.js |
viewZToOrthographicDepth |
three/tsl |
reference |
three/tsl |
uniform |
three/tsl |
float |
three/tsl |
vec4 |
three/tsl |
vec2 |
three/tsl |
If |
three/tsl |
Fn |
three/tsl |
min |
three/tsl |
renderGroup |
three/tsl |
positionView |
three/tsl |
shadow |
three/tsl |
Variables & Constants¶
Name | Type | Kind | Value | Exported |
---|---|---|---|---|
_cameraToLightMatrix |
any |
let/var | new Matrix4() |
✗ |
_lightSpaceFrustum |
CSMFrustum |
let/var | new CSMFrustum() |
✗ |
_center |
any |
let/var | new Vector3() |
✗ |
_bbox |
any |
let/var | new Box3() |
✗ |
_uniformArray |
any[] |
let/var | [] |
✗ |
_logArray |
any[] |
let/var | [] |
✗ |
_lightDirection |
any |
let/var | new Vector3() |
✗ |
_lightOrientationMatrix |
any |
let/var | new Matrix4() |
✗ |
_lightOrientationMatrixInverse |
any |
let/var | new Matrix4() |
✗ |
_up |
any |
let/var | new Vector3( 0, 1, 0 ) |
✗ |
data |
{ webGL: boolean; } |
let/var | { webGL: renderer.coordinateSystem === WebGLCoordinateSystem } |
✗ |
light |
any |
let/var | this.light |
✗ |
lwLight |
LwLight |
let/var | new LwLight() |
✗ |
camera |
Camera |
let/var | this.camera |
✗ |
camera |
Camera |
let/var | this.camera |
✗ |
amount |
number |
let/var | this.breaks[ i ] |
✗ |
prev |
number |
let/var | this.breaks[ i - 1 ] \|\| 0 |
✗ |
frustums |
CSMFrustum[] |
let/var | this.frustums |
✗ |
shadowCam |
any |
let/var | this.lights[ i ].shadow.camera |
✗ |
frustum |
CSMFrustum |
let/var | this.frustums[ i ] |
✗ |
nearVerts |
any |
let/var | frustum.vertices.near |
✗ |
farVerts |
any |
let/var | frustum.vertices.far |
✗ |
point1 |
any |
let/var | farVerts[ 0 ] |
✗ |
point2 |
any |
let/var | *not shown* |
✗ |
camera |
Camera |
let/var | this.camera |
✗ |
linearDepth |
number |
let/var | frustum.vertices.far[ 0 ].z / ( far - camera.near ) |
✗ |
margin |
number |
let/var | 0.25 * Math.pow( linearDepth, 2.0 ) * ( far - camera.near ) |
✗ |
lastCascade |
number |
let/var | this.cascades - 1 |
✗ |
isLastCascade |
boolean |
let/var | i === lastCascade |
✗ |
light |
any |
let/var | this.light |
✗ |
parent |
any |
let/var | light.parent |
✗ |
camera |
Camera |
let/var | this.camera |
✗ |
frustums |
CSMFrustum[] |
let/var | this.frustums |
✗ |
lwLight |
DirectionalLight |
let/var | this.lights[ i ] |
✗ |
lwLight |
DirectionalLight |
let/var | this.lights[ i ] |
✗ |
shadow |
any |
let/var | lwLight.shadow |
✗ |
shadowCam |
any |
let/var | shadow.camera |
✗ |
texelWidth |
number |
let/var | ( shadowCam.right - shadowCam.left ) / shadow.mapSize.width |
✗ |
texelHeight |
number |
let/var | ( shadowCam.top - shadowCam.bottom ) / shadow.mapSize.height |
✗ |
nearVerts |
any |
let/var | _lightSpaceFrustum.vertices.near |
✗ |
farVerts |
any |
let/var | _lightSpaceFrustum.vertices.far |
✗ |
light |
DirectionalLight |
let/var | this.lights[ i ] |
✗ |
parent |
any |
let/var | light.parent |
✗ |
Functions¶
CSMShadowNode._init({ camera, renderer }: any): void
¶
JSDoc:
Parameters:
{ camera, renderer }
any
Returns: void
Calls:
light.shadow.clone
this.lights.push
this._shadowNodes.push
shadow (from three/tsl)
this._cascades.push
this.updateFrustums
Code
_init( { camera, renderer } ) {
this.camera = camera;
const data = { webGL: renderer.coordinateSystem === WebGLCoordinateSystem };
this.mainFrustum = new CSMFrustum( data );
const light = this.light;
for ( let i = 0; i < this.cascades; i ++ ) {
const lwLight = new LwLight();
lwLight.castShadow = true;
const lShadow = light.shadow.clone();
lShadow.bias = lShadow.bias * ( i + 1 );
this.lights.push( lwLight );
lwLight.shadow = lShadow;
this._shadowNodes.push( shadow( lwLight, lShadow ) );
this._cascades.push( new Vector2() );
}
this.updateFrustums();
}
CSMShadowNode._initCascades(): void
¶
JSDoc:
Returns: void
Calls:
camera.updateProjectionMatrix
this.mainFrustum.setFromProjectionMatrix
this.mainFrustum.split
Code
CSMShadowNode._getBreaks(): void
¶
JSDoc:
/**
* Computes the breaks of this CSM instance based on the scene's camera, number of cascades
* and the selected split mode.
*
* @private
*/
Returns: void
Calls:
Math.min
uniformSplit
logarithmicSplit
practicalSplit
console.error
this.customSplitsCallback
target.push
MathUtils.lerp
Code
_getBreaks() {
const camera = this.camera;
const far = Math.min( camera.far, this.maxFar );
this.breaks.length = 0;
switch ( this.mode ) {
case 'uniform':
uniformSplit( this.cascades, camera.near, far, this.breaks );
break;
case 'logarithmic':
logarithmicSplit( this.cascades, camera.near, far, this.breaks );
break;
case 'practical':
practicalSplit( this.cascades, camera.near, far, 0.5, this.breaks );
break;
case 'custom':
if ( this.customSplitsCallback === undefined ) console.error( 'CSM: Custom split scheme callback not defined.' );
this.customSplitsCallback( this.cascades, camera.near, far, this.breaks );
break;
}
function uniformSplit( amount, near, far, target ) {
for ( let i = 1; i < amount; i ++ ) {
target.push( ( near + ( far - near ) * i / amount ) / far );
}
target.push( 1 );
}
function logarithmicSplit( amount, near, far, target ) {
for ( let i = 1; i < amount; i ++ ) {
target.push( ( near * ( far / near ) ** ( i / amount ) ) / far );
}
target.push( 1 );
}
function practicalSplit( amount, near, far, lambda, target ) {
_uniformArray.length = 0;
_logArray.length = 0;
logarithmicSplit( amount, near, far, _logArray );
uniformSplit( amount, near, far, _uniformArray );
for ( let i = 1; i < amount; i ++ ) {
target.push( MathUtils.lerp( _uniformArray[ i - 1 ], _logArray[ i - 1 ], lambda ) );
}
target.push( 1 );
}
}
CSMShadowNode._setLightBreaks(): void
¶
JSDoc:
Returns: void
Calls:
this._cascades[ i ].set
Code
CSMShadowNode._updateShadowBounds(): void
¶
JSDoc:
Returns: void
Calls:
point1.distanceTo
Math.max
Math.pow
shadowCam.updateProjectionMatrix
Internal Comments:
// Get the two points that represent that furthest points on the frustum assuming (x2)
// that's either the diagonal across the far plane or the diagonal across the whole (x2)
// frustum itself. (x2)
// expand the shadow extents by the fade margin if fade is enabled. (x2)
Code
_updateShadowBounds() {
const frustums = this.frustums;
for ( let i = 0; i < frustums.length; i ++ ) {
const shadowCam = this.lights[ i ].shadow.camera;
const frustum = this.frustums[ i ];
// Get the two points that represent that furthest points on the frustum assuming
// that's either the diagonal across the far plane or the diagonal across the whole
// frustum itself.
const nearVerts = frustum.vertices.near;
const farVerts = frustum.vertices.far;
const point1 = farVerts[ 0 ];
let point2;
if ( point1.distanceTo( farVerts[ 2 ] ) > point1.distanceTo( nearVerts[ 2 ] ) ) {
point2 = farVerts[ 2 ];
} else {
point2 = nearVerts[ 2 ];
}
let squaredBBWidth = point1.distanceTo( point2 );
if ( this.fade ) {
// expand the shadow extents by the fade margin if fade is enabled.
const camera = this.camera;
const far = Math.max( camera.far, this.maxFar );
const linearDepth = frustum.vertices.far[ 0 ].z / ( far - camera.near );
const margin = 0.25 * Math.pow( linearDepth, 2.0 ) * ( far - camera.near );
squaredBBWidth += margin;
}
shadowCam.left = - squaredBBWidth / 2;
shadowCam.right = squaredBBWidth / 2;
shadowCam.top = squaredBBWidth / 2;
shadowCam.bottom = - squaredBBWidth / 2;
shadowCam.updateProjectionMatrix();
}
}
CSMShadowNode.updateFrustums(): void
¶
JSDoc:
Returns: void
Calls:
this._getBreaks
this._initCascades
this._updateShadowBounds
this._setLightBreaks
Code
CSMShadowNode._setupFade(): ShaderCallNodeInternal
¶
JSDoc:
Returns: ShaderCallNodeInternal
Calls:
reference( 'camera.near', 'float', this ).setGroup
reference( '_cascades', 'vec2', this ).setGroup( renderGroup ).setName
uniform( 'float' ).setGroup( renderGroup ).setName( 'shadowFar' ) .onRenderUpdate
Math.min
viewZToOrthographicDepth( positionView.z, cameraNear, shadowFar ).toVar
complex_call_8218
Internal Comments:
Code
_setupFade() {
const cameraNear = reference( 'camera.near', 'float', this ).setGroup( renderGroup );
const cascades = reference( '_cascades', 'vec2', this ).setGroup( renderGroup ).setName( 'cascades' );
const shadowFar = uniform( 'float' ).setGroup( renderGroup ).setName( 'shadowFar' )
.onRenderUpdate( () => Math.min( this.maxFar, this.camera.far ) );
const linearDepth = viewZToOrthographicDepth( positionView.z, cameraNear, shadowFar ).toVar( 'linearDepth' );
const lastCascade = this.cascades - 1;
return Fn( ( builder ) => {
this.setupShadowPosition( builder );
const ret = vec4( 1, 1, 1, 1 ).toVar( 'shadowValue' );
const cascade = vec2().toVar( 'cascade' );
const cascadeCenter = float().toVar( 'cascadeCenter' );
const margin = float().toVar( 'margin' );
const csmX = float().toVar( 'csmX' );
const csmY = float().toVar( 'csmY' );
for ( let i = 0; i < this.cascades; i ++ ) {
const isLastCascade = i === lastCascade;
cascade.assign( cascades.element( i ) );
cascadeCenter.assign( cascade.x.add( cascade.y ).div( 2.0 ) );
const closestEdge = linearDepth.lessThan( cascadeCenter ).select( cascade.x, cascade.y );
margin.assign( float( 0.25 ).mul( closestEdge.pow( 2.0 ) ) );
csmX.assign( cascade.x.sub( margin.div( 2.0 ) ) );
if ( isLastCascade ) {
csmY.assign( cascade.y );
} else {
csmY.assign( cascade.y.add( margin.div( 2.0 ) ) );
}
const inRange = linearDepth.greaterThanEqual( csmX ).and( linearDepth.lessThanEqual( csmY ) );
If( inRange, () => {
const dist = min( linearDepth.sub( csmX ), csmY.sub( linearDepth ) ).toVar();
let ratio = dist.div( margin ).clamp( 0.0, 1.0 );
if ( i === 0 ) {
// don't fade at nearest edge
ratio = linearDepth.greaterThan( cascadeCenter ).select( ratio, 1 );
}
ret.subAssign( this._shadowNodes[ i ].oneMinus().mul( ratio ) );
} );
}
return ret;
} )();
}
CSMShadowNode._setupStandard(): ShaderCallNodeInternal
¶
JSDoc:
Returns: ShaderCallNodeInternal
Calls:
reference( 'camera.near', 'float', this ).setGroup
reference( '_cascades', 'vec2', this ).setGroup( renderGroup ).setName
uniform( 'float' ).setGroup( renderGroup ).setName( 'shadowFar' ) .onRenderUpdate
Math.min
viewZToOrthographicDepth( positionView.z, cameraNear, shadowFar ).toVar
complex_call_10269
Code
_setupStandard() {
const cameraNear = reference( 'camera.near', 'float', this ).setGroup( renderGroup );
const cascades = reference( '_cascades', 'vec2', this ).setGroup( renderGroup ).setName( 'cascades' );
const shadowFar = uniform( 'float' ).setGroup( renderGroup ).setName( 'shadowFar' )
.onRenderUpdate( () => Math.min( this.maxFar, this.camera.far ) );
const linearDepth = viewZToOrthographicDepth( positionView.z, cameraNear, shadowFar ).toVar( 'linearDepth' );
return Fn( ( builder ) => {
this.setupShadowPosition( builder );
const ret = vec4( 1, 1, 1, 1 ).toVar( 'shadowValue' );
const cascade = vec2().toVar( 'cascade' );
for ( let i = 0; i < this.cascades; i ++ ) {
cascade.assign( cascades.element( i ) );
If( linearDepth.greaterThanEqual( cascade.x ).and( linearDepth.lessThanEqual( cascade.y ) ), () => {
ret.assign( this._shadowNodes[ i ] );
} );
}
return ret;
} )();
}
CSMShadowNode.setup(builder: any): any
¶
Parameters:
builder
any
Returns: any
Calls:
this._init
this._setupFade
this._setupStandard
Code
CSMShadowNode.updateBefore(): void
¶
Returns: void
Calls:
parent.add
_lightDirection.subVectors( light.target.position, light.position ).normalize
_lightOrientationMatrix.lookAt
_lightOrientationMatrixInverse.copy( _lightOrientationMatrix ).invert
_cameraToLightMatrix.multiplyMatrices
frustums[ i ].toSpace
_bbox.makeEmpty
_bbox.expandByPoint
_bbox.getCenter
Math.floor
_center.applyMatrix4
lwLight.position.copy
lwLight.target.position.copy
lwLight.target.position.add
Internal Comments:
// make sure the placeholder light objects which represent the
// multiple cascade shadow casters are part of the scene graph
// for each frustum we need to find its min-max box aligned with the light orientation (x4)
// the position in _lightOrientationMatrix does not matter, as we transform there and back (x4)
Code
updateBefore( /*builder*/ ) {
const light = this.light;
const parent = light.parent;
const camera = this.camera;
const frustums = this.frustums;
// make sure the placeholder light objects which represent the
// multiple cascade shadow casters are part of the scene graph
for ( let i = 0; i < this.lights.length; i ++ ) {
const lwLight = this.lights[ i ];
if ( lwLight.parent === null ) {
parent.add( lwLight.target );
parent.add( lwLight );
}
}
_lightDirection.subVectors( light.target.position, light.position ).normalize();
// for each frustum we need to find its min-max box aligned with the light orientation
// the position in _lightOrientationMatrix does not matter, as we transform there and back
_lightOrientationMatrix.lookAt( light.position, light.target.position, _up );
_lightOrientationMatrixInverse.copy( _lightOrientationMatrix ).invert();
for ( let i = 0; i < frustums.length; i ++ ) {
const lwLight = this.lights[ i ];
const shadow = lwLight.shadow;
const shadowCam = shadow.camera;
const texelWidth = ( shadowCam.right - shadowCam.left ) / shadow.mapSize.width;
const texelHeight = ( shadowCam.top - shadowCam.bottom ) / shadow.mapSize.height;
_cameraToLightMatrix.multiplyMatrices( _lightOrientationMatrixInverse, camera.matrixWorld );
frustums[ i ].toSpace( _cameraToLightMatrix, _lightSpaceFrustum );
const nearVerts = _lightSpaceFrustum.vertices.near;
const farVerts = _lightSpaceFrustum.vertices.far;
_bbox.makeEmpty();
for ( let j = 0; j < 4; j ++ ) {
_bbox.expandByPoint( nearVerts[ j ] );
_bbox.expandByPoint( farVerts[ j ] );
}
_bbox.getCenter( _center );
_center.z = _bbox.max.z + this.lightMargin;
_center.x = Math.floor( _center.x / texelWidth ) * texelWidth;
_center.y = Math.floor( _center.y / texelHeight ) * texelHeight;
_center.applyMatrix4( _lightOrientationMatrix );
lwLight.position.copy( _center );
lwLight.target.position.copy( _center );
lwLight.target.position.add( _lightDirection );
}
}
CSMShadowNode.dispose(): void
¶
JSDoc:
/**
* Frees the GPU-related resources allocated by this instance. Call this
* method whenever this instance is no longer used in your app.
*/
Returns: void
Calls:
parent.remove
super.dispose
Code
uniformSplit(amount: any, near: any, far: any, target: any): void
¶
Parameters:
amount
any
near
any
far
any
target
any
Returns: void
Calls:
target.push
Code
logarithmicSplit(amount: any, near: any, far: any, target: any): void
¶
Parameters:
amount
any
near
any
far
any
target
any
Returns: void
Calls:
target.push
Code
practicalSplit(amount: any, near: any, far: any, lambda: any, target: any): void
¶
Parameters:
amount
any
near
any
far
any
lambda
any
target
any
Returns: void
Calls:
logarithmicSplit
uniformSplit
target.push
MathUtils.lerp
Code
function practicalSplit( amount, near, far, lambda, target ) {
_uniformArray.length = 0;
_logArray.length = 0;
logarithmicSplit( amount, near, far, _logArray );
uniformSplit( amount, near, far, _uniformArray );
for ( let i = 1; i < amount; i ++ ) {
target.push( MathUtils.lerp( _uniformArray[ i - 1 ], _logArray[ i - 1 ], lambda ) );
}
target.push( 1 );
}
Classes¶
LwLight
¶
Class Code
CSMShadowNode
¶
Class Code
class CSMShadowNode extends ShadowBaseNode {
/**
* Constructs a new CSM shadow node.
*
* @param {DirectionalLight} light - The CSM light.
* @param {CSMShadowNode~Data} [data={}] - The CSM data.
*/
constructor( light, data = {} ) {
super( light );
/**
* The scene's camera.
*
* @type {?Camera}
* @default null
*/
this.camera = null;
/**
* The number of cascades.
*
* @type {number}
* @default 3
*/
this.cascades = data.cascades || 3;
/**
* The maximum far value.
*
* @type {number}
* @default 100000
*/
this.maxFar = data.maxFar || 100000;
/**
* The frustum split mode.
*
* @type {('practical'|'uniform'|'logarithmic'|'custom')}
* @default 'practical'
*/
this.mode = data.mode || 'practical';
/**
* The light margin.
*
* @type {number}
* @default 200
*/
this.lightMargin = data.lightMargin || 200;
/**
* Custom split callback when using `mode='custom'`.
*
* @type {Function}
*/
this.customSplitsCallback = data.customSplitsCallback;
/**
* Whether to fade between cascades or not.
*
* @type {boolean}
* @default false
*/
this.fade = false;
/**
* An array of numbers in the range `[0,1]` the defines how the
* mainCSM frustum should be split up.
*
* @type {Array<number>}
*/
this.breaks = [];
this._cascades = [];
/**
* The main frustum.
*
* @type {?CSMFrustum}
* @default null
*/
this.mainFrustum = null;
/**
* An array of frustums representing the cascades.
*
* @type {Array<CSMFrustum>}
*/
this.frustums = [];
/**
* An array of directional lights which cast the shadows for
* the different cascades. There is one directional light for each
* cascade.
*
* @type {Array<DirectionalLight>}
*/
this.lights = [];
this._shadowNodes = [];
}
/**
* Inits the CSM shadow node.
*
* @private
* @param {NodeBuilder} builder - The node builder.
*/
_init( { camera, renderer } ) {
this.camera = camera;
const data = { webGL: renderer.coordinateSystem === WebGLCoordinateSystem };
this.mainFrustum = new CSMFrustum( data );
const light = this.light;
for ( let i = 0; i < this.cascades; i ++ ) {
const lwLight = new LwLight();
lwLight.castShadow = true;
const lShadow = light.shadow.clone();
lShadow.bias = lShadow.bias * ( i + 1 );
this.lights.push( lwLight );
lwLight.shadow = lShadow;
this._shadowNodes.push( shadow( lwLight, lShadow ) );
this._cascades.push( new Vector2() );
}
this.updateFrustums();
}
/**
* Inits the cascades according to the scene's camera and breaks configuration.
*
* @private
*/
_initCascades() {
const camera = this.camera;
camera.updateProjectionMatrix();
this.mainFrustum.setFromProjectionMatrix( camera.projectionMatrix, this.maxFar );
this.mainFrustum.split( this.breaks, this.frustums );
}
/**
* Computes the breaks of this CSM instance based on the scene's camera, number of cascades
* and the selected split mode.
*
* @private
*/
_getBreaks() {
const camera = this.camera;
const far = Math.min( camera.far, this.maxFar );
this.breaks.length = 0;
switch ( this.mode ) {
case 'uniform':
uniformSplit( this.cascades, camera.near, far, this.breaks );
break;
case 'logarithmic':
logarithmicSplit( this.cascades, camera.near, far, this.breaks );
break;
case 'practical':
practicalSplit( this.cascades, camera.near, far, 0.5, this.breaks );
break;
case 'custom':
if ( this.customSplitsCallback === undefined ) console.error( 'CSM: Custom split scheme callback not defined.' );
this.customSplitsCallback( this.cascades, camera.near, far, this.breaks );
break;
}
function uniformSplit( amount, near, far, target ) {
for ( let i = 1; i < amount; i ++ ) {
target.push( ( near + ( far - near ) * i / amount ) / far );
}
target.push( 1 );
}
function logarithmicSplit( amount, near, far, target ) {
for ( let i = 1; i < amount; i ++ ) {
target.push( ( near * ( far / near ) ** ( i / amount ) ) / far );
}
target.push( 1 );
}
function practicalSplit( amount, near, far, lambda, target ) {
_uniformArray.length = 0;
_logArray.length = 0;
logarithmicSplit( amount, near, far, _logArray );
uniformSplit( amount, near, far, _uniformArray );
for ( let i = 1; i < amount; i ++ ) {
target.push( MathUtils.lerp( _uniformArray[ i - 1 ], _logArray[ i - 1 ], lambda ) );
}
target.push( 1 );
}
}
/**
* Sets the light breaks.
*
* @private
*/
_setLightBreaks() {
for ( let i = 0, l = this.cascades; i < l; i ++ ) {
const amount = this.breaks[ i ];
const prev = this.breaks[ i - 1 ] || 0;
this._cascades[ i ].set( prev, amount );
}
}
/**
* Updates the shadow bounds of this CSM instance.
*
* @private
*/
_updateShadowBounds() {
const frustums = this.frustums;
for ( let i = 0; i < frustums.length; i ++ ) {
const shadowCam = this.lights[ i ].shadow.camera;
const frustum = this.frustums[ i ];
// Get the two points that represent that furthest points on the frustum assuming
// that's either the diagonal across the far plane or the diagonal across the whole
// frustum itself.
const nearVerts = frustum.vertices.near;
const farVerts = frustum.vertices.far;
const point1 = farVerts[ 0 ];
let point2;
if ( point1.distanceTo( farVerts[ 2 ] ) > point1.distanceTo( nearVerts[ 2 ] ) ) {
point2 = farVerts[ 2 ];
} else {
point2 = nearVerts[ 2 ];
}
let squaredBBWidth = point1.distanceTo( point2 );
if ( this.fade ) {
// expand the shadow extents by the fade margin if fade is enabled.
const camera = this.camera;
const far = Math.max( camera.far, this.maxFar );
const linearDepth = frustum.vertices.far[ 0 ].z / ( far - camera.near );
const margin = 0.25 * Math.pow( linearDepth, 2.0 ) * ( far - camera.near );
squaredBBWidth += margin;
}
shadowCam.left = - squaredBBWidth / 2;
shadowCam.right = squaredBBWidth / 2;
shadowCam.top = squaredBBWidth / 2;
shadowCam.bottom = - squaredBBWidth / 2;
shadowCam.updateProjectionMatrix();
}
}
/**
* Applications must call this method every time they change camera or CSM settings.
*/
updateFrustums() {
this._getBreaks();
this._initCascades();
this._updateShadowBounds();
this._setLightBreaks();
}
/**
* Setups the TSL when using fading.
*
* @private
* @return {ShaderCallNodeInternal}
*/
_setupFade() {
const cameraNear = reference( 'camera.near', 'float', this ).setGroup( renderGroup );
const cascades = reference( '_cascades', 'vec2', this ).setGroup( renderGroup ).setName( 'cascades' );
const shadowFar = uniform( 'float' ).setGroup( renderGroup ).setName( 'shadowFar' )
.onRenderUpdate( () => Math.min( this.maxFar, this.camera.far ) );
const linearDepth = viewZToOrthographicDepth( positionView.z, cameraNear, shadowFar ).toVar( 'linearDepth' );
const lastCascade = this.cascades - 1;
return Fn( ( builder ) => {
this.setupShadowPosition( builder );
const ret = vec4( 1, 1, 1, 1 ).toVar( 'shadowValue' );
const cascade = vec2().toVar( 'cascade' );
const cascadeCenter = float().toVar( 'cascadeCenter' );
const margin = float().toVar( 'margin' );
const csmX = float().toVar( 'csmX' );
const csmY = float().toVar( 'csmY' );
for ( let i = 0; i < this.cascades; i ++ ) {
const isLastCascade = i === lastCascade;
cascade.assign( cascades.element( i ) );
cascadeCenter.assign( cascade.x.add( cascade.y ).div( 2.0 ) );
const closestEdge = linearDepth.lessThan( cascadeCenter ).select( cascade.x, cascade.y );
margin.assign( float( 0.25 ).mul( closestEdge.pow( 2.0 ) ) );
csmX.assign( cascade.x.sub( margin.div( 2.0 ) ) );
if ( isLastCascade ) {
csmY.assign( cascade.y );
} else {
csmY.assign( cascade.y.add( margin.div( 2.0 ) ) );
}
const inRange = linearDepth.greaterThanEqual( csmX ).and( linearDepth.lessThanEqual( csmY ) );
If( inRange, () => {
const dist = min( linearDepth.sub( csmX ), csmY.sub( linearDepth ) ).toVar();
let ratio = dist.div( margin ).clamp( 0.0, 1.0 );
if ( i === 0 ) {
// don't fade at nearest edge
ratio = linearDepth.greaterThan( cascadeCenter ).select( ratio, 1 );
}
ret.subAssign( this._shadowNodes[ i ].oneMinus().mul( ratio ) );
} );
}
return ret;
} )();
}
/**
* Setups the TSL when no fading (default).
*
* @private
* @return {ShaderCallNodeInternal}
*/
_setupStandard() {
const cameraNear = reference( 'camera.near', 'float', this ).setGroup( renderGroup );
const cascades = reference( '_cascades', 'vec2', this ).setGroup( renderGroup ).setName( 'cascades' );
const shadowFar = uniform( 'float' ).setGroup( renderGroup ).setName( 'shadowFar' )
.onRenderUpdate( () => Math.min( this.maxFar, this.camera.far ) );
const linearDepth = viewZToOrthographicDepth( positionView.z, cameraNear, shadowFar ).toVar( 'linearDepth' );
return Fn( ( builder ) => {
this.setupShadowPosition( builder );
const ret = vec4( 1, 1, 1, 1 ).toVar( 'shadowValue' );
const cascade = vec2().toVar( 'cascade' );
for ( let i = 0; i < this.cascades; i ++ ) {
cascade.assign( cascades.element( i ) );
If( linearDepth.greaterThanEqual( cascade.x ).and( linearDepth.lessThanEqual( cascade.y ) ), () => {
ret.assign( this._shadowNodes[ i ] );
} );
}
return ret;
} )();
}
setup( builder ) {
if ( this.camera === null ) this._init( builder );
return this.fade === true ? this._setupFade() : this._setupStandard();
}
updateBefore( /*builder*/ ) {
const light = this.light;
const parent = light.parent;
const camera = this.camera;
const frustums = this.frustums;
// make sure the placeholder light objects which represent the
// multiple cascade shadow casters are part of the scene graph
for ( let i = 0; i < this.lights.length; i ++ ) {
const lwLight = this.lights[ i ];
if ( lwLight.parent === null ) {
parent.add( lwLight.target );
parent.add( lwLight );
}
}
_lightDirection.subVectors( light.target.position, light.position ).normalize();
// for each frustum we need to find its min-max box aligned with the light orientation
// the position in _lightOrientationMatrix does not matter, as we transform there and back
_lightOrientationMatrix.lookAt( light.position, light.target.position, _up );
_lightOrientationMatrixInverse.copy( _lightOrientationMatrix ).invert();
for ( let i = 0; i < frustums.length; i ++ ) {
const lwLight = this.lights[ i ];
const shadow = lwLight.shadow;
const shadowCam = shadow.camera;
const texelWidth = ( shadowCam.right - shadowCam.left ) / shadow.mapSize.width;
const texelHeight = ( shadowCam.top - shadowCam.bottom ) / shadow.mapSize.height;
_cameraToLightMatrix.multiplyMatrices( _lightOrientationMatrixInverse, camera.matrixWorld );
frustums[ i ].toSpace( _cameraToLightMatrix, _lightSpaceFrustum );
const nearVerts = _lightSpaceFrustum.vertices.near;
const farVerts = _lightSpaceFrustum.vertices.far;
_bbox.makeEmpty();
for ( let j = 0; j < 4; j ++ ) {
_bbox.expandByPoint( nearVerts[ j ] );
_bbox.expandByPoint( farVerts[ j ] );
}
_bbox.getCenter( _center );
_center.z = _bbox.max.z + this.lightMargin;
_center.x = Math.floor( _center.x / texelWidth ) * texelWidth;
_center.y = Math.floor( _center.y / texelHeight ) * texelHeight;
_center.applyMatrix4( _lightOrientationMatrix );
lwLight.position.copy( _center );
lwLight.target.position.copy( _center );
lwLight.target.position.add( _lightDirection );
}
}
/**
* Frees the GPU-related resources allocated by this instance. Call this
* method whenever this instance is no longer used in your app.
*/
dispose() {
for ( let i = 0; i < this.lights.length; i ++ ) {
const light = this.lights[ i ];
const parent = light.parent;
parent.remove( light.target );
parent.remove( light );
}
super.dispose();
}
}
Methods¶
_init({ camera, renderer }: any): void
¶
Code
_init( { camera, renderer } ) {
this.camera = camera;
const data = { webGL: renderer.coordinateSystem === WebGLCoordinateSystem };
this.mainFrustum = new CSMFrustum( data );
const light = this.light;
for ( let i = 0; i < this.cascades; i ++ ) {
const lwLight = new LwLight();
lwLight.castShadow = true;
const lShadow = light.shadow.clone();
lShadow.bias = lShadow.bias * ( i + 1 );
this.lights.push( lwLight );
lwLight.shadow = lShadow;
this._shadowNodes.push( shadow( lwLight, lShadow ) );
this._cascades.push( new Vector2() );
}
this.updateFrustums();
}
_initCascades(): void
¶
Code
_getBreaks(): void
¶
Code
_getBreaks() {
const camera = this.camera;
const far = Math.min( camera.far, this.maxFar );
this.breaks.length = 0;
switch ( this.mode ) {
case 'uniform':
uniformSplit( this.cascades, camera.near, far, this.breaks );
break;
case 'logarithmic':
logarithmicSplit( this.cascades, camera.near, far, this.breaks );
break;
case 'practical':
practicalSplit( this.cascades, camera.near, far, 0.5, this.breaks );
break;
case 'custom':
if ( this.customSplitsCallback === undefined ) console.error( 'CSM: Custom split scheme callback not defined.' );
this.customSplitsCallback( this.cascades, camera.near, far, this.breaks );
break;
}
function uniformSplit( amount, near, far, target ) {
for ( let i = 1; i < amount; i ++ ) {
target.push( ( near + ( far - near ) * i / amount ) / far );
}
target.push( 1 );
}
function logarithmicSplit( amount, near, far, target ) {
for ( let i = 1; i < amount; i ++ ) {
target.push( ( near * ( far / near ) ** ( i / amount ) ) / far );
}
target.push( 1 );
}
function practicalSplit( amount, near, far, lambda, target ) {
_uniformArray.length = 0;
_logArray.length = 0;
logarithmicSplit( amount, near, far, _logArray );
uniformSplit( amount, near, far, _uniformArray );
for ( let i = 1; i < amount; i ++ ) {
target.push( MathUtils.lerp( _uniformArray[ i - 1 ], _logArray[ i - 1 ], lambda ) );
}
target.push( 1 );
}
}
_setLightBreaks(): void
¶
Code
_updateShadowBounds(): void
¶
Code
_updateShadowBounds() {
const frustums = this.frustums;
for ( let i = 0; i < frustums.length; i ++ ) {
const shadowCam = this.lights[ i ].shadow.camera;
const frustum = this.frustums[ i ];
// Get the two points that represent that furthest points on the frustum assuming
// that's either the diagonal across the far plane or the diagonal across the whole
// frustum itself.
const nearVerts = frustum.vertices.near;
const farVerts = frustum.vertices.far;
const point1 = farVerts[ 0 ];
let point2;
if ( point1.distanceTo( farVerts[ 2 ] ) > point1.distanceTo( nearVerts[ 2 ] ) ) {
point2 = farVerts[ 2 ];
} else {
point2 = nearVerts[ 2 ];
}
let squaredBBWidth = point1.distanceTo( point2 );
if ( this.fade ) {
// expand the shadow extents by the fade margin if fade is enabled.
const camera = this.camera;
const far = Math.max( camera.far, this.maxFar );
const linearDepth = frustum.vertices.far[ 0 ].z / ( far - camera.near );
const margin = 0.25 * Math.pow( linearDepth, 2.0 ) * ( far - camera.near );
squaredBBWidth += margin;
}
shadowCam.left = - squaredBBWidth / 2;
shadowCam.right = squaredBBWidth / 2;
shadowCam.top = squaredBBWidth / 2;
shadowCam.bottom = - squaredBBWidth / 2;
shadowCam.updateProjectionMatrix();
}
}
updateFrustums(): void
¶
Code
_setupFade(): ShaderCallNodeInternal
¶
Code
_setupFade() {
const cameraNear = reference( 'camera.near', 'float', this ).setGroup( renderGroup );
const cascades = reference( '_cascades', 'vec2', this ).setGroup( renderGroup ).setName( 'cascades' );
const shadowFar = uniform( 'float' ).setGroup( renderGroup ).setName( 'shadowFar' )
.onRenderUpdate( () => Math.min( this.maxFar, this.camera.far ) );
const linearDepth = viewZToOrthographicDepth( positionView.z, cameraNear, shadowFar ).toVar( 'linearDepth' );
const lastCascade = this.cascades - 1;
return Fn( ( builder ) => {
this.setupShadowPosition( builder );
const ret = vec4( 1, 1, 1, 1 ).toVar( 'shadowValue' );
const cascade = vec2().toVar( 'cascade' );
const cascadeCenter = float().toVar( 'cascadeCenter' );
const margin = float().toVar( 'margin' );
const csmX = float().toVar( 'csmX' );
const csmY = float().toVar( 'csmY' );
for ( let i = 0; i < this.cascades; i ++ ) {
const isLastCascade = i === lastCascade;
cascade.assign( cascades.element( i ) );
cascadeCenter.assign( cascade.x.add( cascade.y ).div( 2.0 ) );
const closestEdge = linearDepth.lessThan( cascadeCenter ).select( cascade.x, cascade.y );
margin.assign( float( 0.25 ).mul( closestEdge.pow( 2.0 ) ) );
csmX.assign( cascade.x.sub( margin.div( 2.0 ) ) );
if ( isLastCascade ) {
csmY.assign( cascade.y );
} else {
csmY.assign( cascade.y.add( margin.div( 2.0 ) ) );
}
const inRange = linearDepth.greaterThanEqual( csmX ).and( linearDepth.lessThanEqual( csmY ) );
If( inRange, () => {
const dist = min( linearDepth.sub( csmX ), csmY.sub( linearDepth ) ).toVar();
let ratio = dist.div( margin ).clamp( 0.0, 1.0 );
if ( i === 0 ) {
// don't fade at nearest edge
ratio = linearDepth.greaterThan( cascadeCenter ).select( ratio, 1 );
}
ret.subAssign( this._shadowNodes[ i ].oneMinus().mul( ratio ) );
} );
}
return ret;
} )();
}
_setupStandard(): ShaderCallNodeInternal
¶
Code
_setupStandard() {
const cameraNear = reference( 'camera.near', 'float', this ).setGroup( renderGroup );
const cascades = reference( '_cascades', 'vec2', this ).setGroup( renderGroup ).setName( 'cascades' );
const shadowFar = uniform( 'float' ).setGroup( renderGroup ).setName( 'shadowFar' )
.onRenderUpdate( () => Math.min( this.maxFar, this.camera.far ) );
const linearDepth = viewZToOrthographicDepth( positionView.z, cameraNear, shadowFar ).toVar( 'linearDepth' );
return Fn( ( builder ) => {
this.setupShadowPosition( builder );
const ret = vec4( 1, 1, 1, 1 ).toVar( 'shadowValue' );
const cascade = vec2().toVar( 'cascade' );
for ( let i = 0; i < this.cascades; i ++ ) {
cascade.assign( cascades.element( i ) );
If( linearDepth.greaterThanEqual( cascade.x ).and( linearDepth.lessThanEqual( cascade.y ) ), () => {
ret.assign( this._shadowNodes[ i ] );
} );
}
return ret;
} )();
}
setup(builder: any): any
¶
Code
updateBefore(): void
¶
Code
updateBefore( /*builder*/ ) {
const light = this.light;
const parent = light.parent;
const camera = this.camera;
const frustums = this.frustums;
// make sure the placeholder light objects which represent the
// multiple cascade shadow casters are part of the scene graph
for ( let i = 0; i < this.lights.length; i ++ ) {
const lwLight = this.lights[ i ];
if ( lwLight.parent === null ) {
parent.add( lwLight.target );
parent.add( lwLight );
}
}
_lightDirection.subVectors( light.target.position, light.position ).normalize();
// for each frustum we need to find its min-max box aligned with the light orientation
// the position in _lightOrientationMatrix does not matter, as we transform there and back
_lightOrientationMatrix.lookAt( light.position, light.target.position, _up );
_lightOrientationMatrixInverse.copy( _lightOrientationMatrix ).invert();
for ( let i = 0; i < frustums.length; i ++ ) {
const lwLight = this.lights[ i ];
const shadow = lwLight.shadow;
const shadowCam = shadow.camera;
const texelWidth = ( shadowCam.right - shadowCam.left ) / shadow.mapSize.width;
const texelHeight = ( shadowCam.top - shadowCam.bottom ) / shadow.mapSize.height;
_cameraToLightMatrix.multiplyMatrices( _lightOrientationMatrixInverse, camera.matrixWorld );
frustums[ i ].toSpace( _cameraToLightMatrix, _lightSpaceFrustum );
const nearVerts = _lightSpaceFrustum.vertices.near;
const farVerts = _lightSpaceFrustum.vertices.far;
_bbox.makeEmpty();
for ( let j = 0; j < 4; j ++ ) {
_bbox.expandByPoint( nearVerts[ j ] );
_bbox.expandByPoint( farVerts[ j ] );
}
_bbox.getCenter( _center );
_center.z = _bbox.max.z + this.lightMargin;
_center.x = Math.floor( _center.x / texelWidth ) * texelWidth;
_center.y = Math.floor( _center.y / texelHeight ) * texelHeight;
_center.applyMatrix4( _lightOrientationMatrix );
lwLight.position.copy( _center );
lwLight.target.position.copy( _center );
lwLight.target.position.add( _lightDirection );
}
}