📄 NURBSSurface.js
¶
📊 Analysis Summary¶
Metric | Count |
---|---|
🔧 Functions | 1 |
🧱 Classes | 1 |
📦 Imports | 1 |
📊 Variables & Constants | 5 |
📚 Table of Contents¶
🛠️ File Location:¶
📂 examples/jsm/curves/NURBSSurface.js
📦 Imports¶
Name | Source |
---|---|
Vector4 |
three |
Variables & Constants¶
Name | Type | Kind | Value | Exported |
---|---|---|---|---|
len1 |
number |
let/var | knots1.length - degree1 - 1 |
✗ |
len2 |
number |
let/var | knots2.length - degree2 - 1 |
✗ |
point |
any |
let/var | controlPoints[ i ][ j ] |
✗ |
u |
number |
let/var | this.knots1[ 0 ] + t1 * ( this.knots1[ this.knots1.length - 1 ] - this.knots1... |
✗ |
v |
number |
let/var | this.knots2[ 0 ] + t2 * ( this.knots2[ this.knots2.length - 1 ] - this.knots2... |
✗ |
Functions¶
NURBSSurface.getPoint(t1: number, t2: number, target: Vector3): void
¶
JSDoc:
/**
* This method returns a vector in 3D space for the given interpolation factor. This vector lies on the NURBS surface.
*
* @param {number} t1 - The first interpolation factor representing the `u` position on the surface. Must be in the range `[0,1]`.
* @param {number} t2 - The second interpolation factor representing the `v` position on the surface. Must be in the range `[0,1]`.
* @param {Vector3} target - The target vector the result is written to.
*/
Parameters:
t1
number
t2
number
target
Vector3
Returns: void
Calls:
NURBSUtils.calcSurfacePoint
Code
getPoint( t1, t2, target ) {
const u = this.knots1[ 0 ] + t1 * ( this.knots1[ this.knots1.length - 1 ] - this.knots1[ 0 ] ); // linear mapping t1->u
const v = this.knots2[ 0 ] + t2 * ( this.knots2[ this.knots2.length - 1 ] - this.knots2[ 0 ] ); // linear mapping t2->u
NURBSUtils.calcSurfacePoint( this.degree1, this.degree2, this.knots1, this.knots2, this.controlPoints, u, v, target );
}
Classes¶
NURBSSurface
¶
Class Code
class NURBSSurface {
/**
* Constructs a new NURBS surface.
*
* @param {number} degree1 - The first NURBS degree.
* @param {number} degree2 - The second NURBS degree.
* @param {Array<number>} knots1 - The first knots as a flat array of numbers.
* @param {Array<number>} knots2 - The second knots as a flat array of numbers.
* @param {Array<Array<Vector2|Vector3|Vector4>>} controlPoints - An array^2 holding control points.
*/
constructor( degree1, degree2, knots1, knots2, controlPoints ) {
/**
* The first NURBS degree.
*
* @type {number}
*/
this.degree1 = degree1;
/**
* The second NURBS degree.
*
* @type {number}
*/
this.degree2 = degree2;
/**
* The first knots as a flat array of numbers.
*
* @type {Array<number>}
*/
this.knots1 = knots1;
/**
* The second knots as a flat array of numbers.
*
* @type {Array<number>}
*/
this.knots2 = knots2;
/**
* An array holding arrays of control points.
*
* @type {Array<Array<Vector2|Vector3|Vector4>>}
*/
this.controlPoints = [];
const len1 = knots1.length - degree1 - 1;
const len2 = knots2.length - degree2 - 1;
// ensure Vector4 for control points
for ( let i = 0; i < len1; ++ i ) {
this.controlPoints[ i ] = [];
for ( let j = 0; j < len2; ++ j ) {
const point = controlPoints[ i ][ j ];
this.controlPoints[ i ][ j ] = new Vector4( point.x, point.y, point.z, point.w );
}
}
}
/**
* This method returns a vector in 3D space for the given interpolation factor. This vector lies on the NURBS surface.
*
* @param {number} t1 - The first interpolation factor representing the `u` position on the surface. Must be in the range `[0,1]`.
* @param {number} t2 - The second interpolation factor representing the `v` position on the surface. Must be in the range `[0,1]`.
* @param {Vector3} target - The target vector the result is written to.
*/
getPoint( t1, t2, target ) {
const u = this.knots1[ 0 ] + t1 * ( this.knots1[ this.knots1.length - 1 ] - this.knots1[ 0 ] ); // linear mapping t1->u
const v = this.knots2[ 0 ] + t2 * ( this.knots2[ this.knots2.length - 1 ] - this.knots2[ 0 ] ); // linear mapping t2->u
NURBSUtils.calcSurfacePoint( this.degree1, this.degree2, this.knots1, this.knots2, this.controlPoints, u, v, target );
}
}
Methods¶
getPoint(t1: number, t2: number, target: Vector3): void
¶
Code
getPoint( t1, t2, target ) {
const u = this.knots1[ 0 ] + t1 * ( this.knots1[ this.knots1.length - 1 ] - this.knots1[ 0 ] ); // linear mapping t1->u
const v = this.knots2[ 0 ] + t2 * ( this.knots2[ this.knots2.length - 1 ] - this.knots2[ 0 ] ); // linear mapping t2->u
NURBSUtils.calcSurfacePoint( this.degree1, this.degree2, this.knots1, this.knots2, this.controlPoints, u, v, target );
}