📄 NURBSUtils.js
¶
📊 Analysis Summary¶
Metric | Count |
---|---|
🔧 Functions | 10 |
📦 Imports | 2 |
📊 Variables & Constants | 48 |
📚 Table of Contents¶
🛠️ File Location:¶
📂 examples/jsm/curves/NURBSUtils.js
📦 Imports¶
Name | Source |
---|---|
Vector3 |
three |
Vector4 |
three |
Variables & Constants¶
Name | Type | Kind | Value | Exported |
---|---|---|---|---|
n |
number |
let/var | U.length - p - 1 |
✗ |
low |
number |
let/var | p |
✗ |
high |
number |
let/var | n |
✗ |
N |
any[] |
let/var | [] |
✗ |
left |
any[] |
let/var | [] |
✗ |
right |
any[] |
let/var | [] |
✗ |
saved |
number |
let/var | 0.0 |
✗ |
rv |
number |
let/var | right[ r + 1 ] |
✗ |
lv |
number |
let/var | left[ j - r ] |
✗ |
temp |
any |
let/var | N[ r ] / ( rv + lv ) |
✗ |
C |
any |
let/var | new Vector4( 0, 0, 0, 0 ) |
✗ |
point |
Vector4 |
let/var | P[ span - p + j ] |
✗ |
Nj |
number |
let/var | N[ j ] |
✗ |
wNj |
number |
let/var | point.w * Nj |
✗ |
zeroArr |
any[] |
let/var | [] |
✗ |
ders |
any[] |
let/var | [] |
✗ |
ndu |
any[] |
let/var | [] |
✗ |
saved |
number |
let/var | 0.0 |
✗ |
rv |
number |
let/var | right[ r + 1 ] |
✗ |
lv |
number |
let/var | left[ j - r ] |
✗ |
temp |
number |
let/var | ndu[ r ][ j - 1 ] / ndu[ j ][ r ] |
✗ |
s1 |
number |
let/var | 0 |
✗ |
s2 |
number |
let/var | 1 |
✗ |
a |
any[] |
let/var | [] |
✗ |
d |
number |
let/var | 0.0 |
✗ |
rk |
number |
let/var | r - k |
✗ |
pk |
number |
let/var | p - k |
✗ |
j1 |
number |
let/var | ( rk >= - 1 ) ? 1 : - rk |
✗ |
j2 |
number |
let/var | ( r - 1 <= pk ) ? k - 1 : p - r |
✗ |
j |
number |
let/var | s1 |
✗ |
r |
number |
let/var | p |
✗ |
du |
number |
let/var | nd < p ? nd : p |
✗ |
CK |
any[] |
let/var | [] |
✗ |
Pw |
any[] |
let/var | [] |
✗ |
w |
any |
let/var | point.w |
✗ |
nom |
number |
let/var | 1 |
✗ |
denom |
number |
let/var | 1 |
✗ |
nd |
number |
let/var | Pders.length |
✗ |
Aders |
any[] |
let/var | [] |
✗ |
wders |
any[] |
let/var | [] |
✗ |
point |
Vector4 |
let/var | Pders[ i ] |
✗ |
CK |
any[] |
let/var | [] |
✗ |
temp |
any[] |
let/var | [] |
✗ |
w |
any |
let/var | point.w |
✗ |
Sw |
any |
let/var | new Vector4( 0, 0, 0, 0 ) |
✗ |
temp |
any[] |
let/var | [] |
✗ |
w |
any |
let/var | point.w |
✗ |
Sw |
any |
let/var | new Vector4( 0, 0, 0, 0 ) |
✗ |
Functions¶
findSpan(p: number, u: number, U: number[]): number
¶
JSDoc:
/**
* Finds knot vector span.
*
* @param {number} p - The degree.
* @param {number} u - The parametric value.
* @param {Array<number>} U - The knot vector.
* @return {number} The span.
*/
Parameters:
p
number
u
number
U
number[]
Returns: number
Calls:
Math.floor
Code
function findSpan( p, u, U ) {
const n = U.length - p - 1;
if ( u >= U[ n ] ) {
return n - 1;
}
if ( u <= U[ p ] ) {
return p;
}
let low = p;
let high = n;
let mid = Math.floor( ( low + high ) / 2 );
while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
if ( u < U[ mid ] ) {
high = mid;
} else {
low = mid;
}
mid = Math.floor( ( low + high ) / 2 );
}
return mid;
}
calcBasisFunctions(span: number, u: number, p: number, U: number[]): number[]
¶
JSDoc:
/**
* Calculates basis functions. See The NURBS Book, page 70, algorithm A2.2.
*
* @param {number} span - The span in which `u` lies.
* @param {number} u - The parametric value.
* @param {number} p - The degree.
* @param {Array<number>} U - The knot vector.
* @return {Array<number>} Array[p+1] with basis functions values.
*/
Parameters:
span
number
u
number
p
number
U
number[]
Returns: number[]
Code
function calcBasisFunctions( span, u, p, U ) {
const N = [];
const left = [];
const right = [];
N[ 0 ] = 1.0;
for ( let j = 1; j <= p; ++ j ) {
left[ j ] = u - U[ span + 1 - j ];
right[ j ] = U[ span + j ] - u;
let saved = 0.0;
for ( let r = 0; r < j; ++ r ) {
const rv = right[ r + 1 ];
const lv = left[ j - r ];
const temp = N[ r ] / ( rv + lv );
N[ r ] = saved + rv * temp;
saved = lv * temp;
}
N[ j ] = saved;
}
return N;
}
calcBSplinePoint(p: number, U: number[], P: Vector4[], u: number): Vector4
¶
JSDoc:
/**
* Calculates B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
*
* @param {number} p - The degree of the B-Spline.
* @param {Array<number>} U - The knot vector.
* @param {Array<Vector4>} P - The control points
* @param {number} u - The parametric point.
* @return {Vector4} The point for given `u`.
*/
Parameters:
p
number
U
number[]
P
Vector4[]
u
number
Returns: Vector4
Calls:
findSpan
calcBasisFunctions
Code
function calcBSplinePoint( p, U, P, u ) {
const span = findSpan( p, u, U );
const N = calcBasisFunctions( span, u, p, U );
const C = new Vector4( 0, 0, 0, 0 );
for ( let j = 0; j <= p; ++ j ) {
const point = P[ span - p + j ];
const Nj = N[ j ];
const wNj = point.w * Nj;
C.x += point.x * wNj;
C.y += point.y * wNj;
C.z += point.z * wNj;
C.w += point.w * Nj;
}
return C;
}
calcBasisFunctionDerivatives(span: number, u: number, p: number, n: number, U: number[]): number[][]
¶
JSDoc:
/**
* Calculates basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
*
* @param {number} span - The span in which `u` lies.
* @param {number} u - The parametric point.
* @param {number} p - The degree.
* @param {number} n - number of derivatives to calculate
* @param {Array<number>} U - The knot vector.
* @return {Array<Array<number>>} An array[n+1][p+1] with basis functions derivatives.
*/
Parameters:
span
number
u
number
p
number
n
number
U
number[]
Returns: number[][]
Calls:
zeroArr.slice
Code
function calcBasisFunctionDerivatives( span, u, p, n, U ) {
const zeroArr = [];
for ( let i = 0; i <= p; ++ i )
zeroArr[ i ] = 0.0;
const ders = [];
for ( let i = 0; i <= n; ++ i )
ders[ i ] = zeroArr.slice( 0 );
const ndu = [];
for ( let i = 0; i <= p; ++ i )
ndu[ i ] = zeroArr.slice( 0 );
ndu[ 0 ][ 0 ] = 1.0;
const left = zeroArr.slice( 0 );
const right = zeroArr.slice( 0 );
for ( let j = 1; j <= p; ++ j ) {
left[ j ] = u - U[ span + 1 - j ];
right[ j ] = U[ span + j ] - u;
let saved = 0.0;
for ( let r = 0; r < j; ++ r ) {
const rv = right[ r + 1 ];
const lv = left[ j - r ];
ndu[ j ][ r ] = rv + lv;
const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
ndu[ r ][ j ] = saved + rv * temp;
saved = lv * temp;
}
ndu[ j ][ j ] = saved;
}
for ( let j = 0; j <= p; ++ j ) {
ders[ 0 ][ j ] = ndu[ j ][ p ];
}
for ( let r = 0; r <= p; ++ r ) {
let s1 = 0;
let s2 = 1;
const a = [];
for ( let i = 0; i <= p; ++ i ) {
a[ i ] = zeroArr.slice( 0 );
}
a[ 0 ][ 0 ] = 1.0;
for ( let k = 1; k <= n; ++ k ) {
let d = 0.0;
const rk = r - k;
const pk = p - k;
if ( r >= k ) {
a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
}
const j1 = ( rk >= - 1 ) ? 1 : - rk;
const j2 = ( r - 1 <= pk ) ? k - 1 : p - r;
for ( let j = j1; j <= j2; ++ j ) {
a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
}
if ( r <= pk ) {
a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
d += a[ s2 ][ k ] * ndu[ r ][ pk ];
}
ders[ k ][ r ] = d;
const j = s1;
s1 = s2;
s2 = j;
}
}
let r = p;
for ( let k = 1; k <= n; ++ k ) {
for ( let j = 0; j <= p; ++ j ) {
ders[ k ][ j ] *= r;
}
r *= p - k;
}
return ders;
}
calcBSplineDerivatives(p: number, U: number[], P: Vector4[], u: number, nd: number): Vector4[]
¶
JSDoc:
/**
* Calculates derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
*
* @param {number} p - The degree.
* @param {Array<number>} U - The knot vector.
* @param {Array<Vector4>} P - The control points
* @param {number} u - The parametric point.
* @param {number} nd - The number of derivatives.
* @return {Array<Vector4>} An array[d+1] with derivatives.
*/
Parameters:
p
number
U
number[]
P
Vector4[]
u
number
nd
number
Returns: Vector4[]
Calls:
findSpan
calcBasisFunctionDerivatives
P[ i ].clone
Pw[ span - p ].clone().multiplyScalar
point.add
Pw[ span - p + j ].clone().multiplyScalar
Code
function calcBSplineDerivatives( p, U, P, u, nd ) {
const du = nd < p ? nd : p;
const CK = [];
const span = findSpan( p, u, U );
const nders = calcBasisFunctionDerivatives( span, u, p, du, U );
const Pw = [];
for ( let i = 0; i < P.length; ++ i ) {
const point = P[ i ].clone();
const w = point.w;
point.x *= w;
point.y *= w;
point.z *= w;
Pw[ i ] = point;
}
for ( let k = 0; k <= du; ++ k ) {
const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
for ( let j = 1; j <= p; ++ j ) {
point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
}
CK[ k ] = point;
}
for ( let k = du + 1; k <= nd + 1; ++ k ) {
CK[ k ] = new Vector4( 0, 0, 0 );
}
return CK;
}
calcKoverI(k: number, i: number): number
¶
JSDoc:
/**
* Calculates "K over I".
*
* @param {number} k - The K value.
* @param {number} i - The I value.
* @return {number} k!/(i!(k-i)!)
*/
Parameters:
k
number
i
number
Returns: number
Code
calcRationalCurveDerivatives(Pders: Vector4[]): Vector3[]
¶
JSDoc:
/**
* Calculates derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
*
* @param {Array<Vector4>} Pders - Array with derivatives.
* @return {Array<Vector3>} An array with derivatives for rational curve.
*/
Parameters:
Pders
Vector4[]
Returns: Vector3[]
Calls:
Aders[ k ].clone
v.sub
CK[ k - i ].clone().multiplyScalar
calcKoverI
v.divideScalar
Code
function calcRationalCurveDerivatives( Pders ) {
const nd = Pders.length;
const Aders = [];
const wders = [];
for ( let i = 0; i < nd; ++ i ) {
const point = Pders[ i ];
Aders[ i ] = new Vector3( point.x, point.y, point.z );
wders[ i ] = point.w;
}
const CK = [];
for ( let k = 0; k < nd; ++ k ) {
const v = Aders[ k ].clone();
for ( let i = 1; i <= k; ++ i ) {
v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) );
}
CK[ k ] = v.divideScalar( wders[ 0 ] );
}
return CK;
}
calcNURBSDerivatives(p: number, U: number[], P: Vector4[], u: number, nd: number): Vector3[]
¶
JSDoc:
/**
* Calculates NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
*
* @param {number} p - The degree.
* @param {Array<number>} U - The knot vector.
* @param {Array<Vector4>} P - The control points in homogeneous space.
* @param {number} u - The parametric point.
* @param {number} nd - The number of derivatives.
* @return {Array<Vector3>} array with derivatives for rational curve.
*/
Parameters:
p
number
U
number[]
P
Vector4[]
u
number
nd
number
Returns: Vector3[]
Calls:
calcBSplineDerivatives
calcRationalCurveDerivatives
Code
calcSurfacePoint(p: number, q: number, U: number[], V: number[], P: Vector4[][], u: number, v: number, target: Vector3): void
¶
JSDoc:
/**
* Calculates a rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
*
* @param {number} p - The first degree of B-Spline surface.
* @param {number} q - The second degree of B-Spline surface.
* @param {Array<number>} U - The first knot vector.
* @param {Array<number>} V - The second knot vector.
* @param {Array<Array<Vector4>>} P - The control points in homogeneous space.
* @param {number} u - The first parametric point.
* @param {number} v - The second parametric point.
* @param {Vector3} target - The target vector.
*/
Parameters:
p
number
q
number
U
number[]
V
number[]
P
Vector4[][]
u
number
v
number
target
Vector3
Returns: void
Calls:
findSpan
calcBasisFunctions
P[ uspan - p + k ][ vspan - q + l ].clone
temp[ l ].add
point.multiplyScalar
Sw.add
temp[ l ].multiplyScalar
Sw.divideScalar
target.set
Code
function calcSurfacePoint( p, q, U, V, P, u, v, target ) {
const uspan = findSpan( p, u, U );
const vspan = findSpan( q, v, V );
const Nu = calcBasisFunctions( uspan, u, p, U );
const Nv = calcBasisFunctions( vspan, v, q, V );
const temp = [];
for ( let l = 0; l <= q; ++ l ) {
temp[ l ] = new Vector4( 0, 0, 0, 0 );
for ( let k = 0; k <= p; ++ k ) {
const point = P[ uspan - p + k ][ vspan - q + l ].clone();
const w = point.w;
point.x *= w;
point.y *= w;
point.z *= w;
temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
}
}
const Sw = new Vector4( 0, 0, 0, 0 );
for ( let l = 0; l <= q; ++ l ) {
Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
}
Sw.divideScalar( Sw.w );
target.set( Sw.x, Sw.y, Sw.z );
}
calcVolumePoint(p: number, q: number, r: number, U: number[], V: number[], W: number[], P: Vector4[][][], u: number, v: number, w: number, target: Vector3): void
¶
JSDoc:
/**
* Calculates a rational B-Spline volume point. See The NURBS Book, page 134, algorithm A4.3.
*
* @param {number} p - The first degree of B-Spline surface.
* @param {number} q - The second degree of B-Spline surface.
* @param {number} r - The third degree of B-Spline surface.
* @param {Array<number>} U - The first knot vector.
* @param {Array<number>} V - The second knot vector.
* @param {Array<number>} W - The third knot vector.
* @param {Array<Array<Array<Vector4>>>} P - The control points in homogeneous space.
* @param {number} u - The first parametric point.
* @param {number} v - The second parametric point.
* @param {number} w - The third parametric point.
* @param {Vector3} target - The target vector.
*/
Parameters:
p
number
q
number
r
number
U
number[]
V
number[]
W
number[]
P
Vector4[][][]
u
number
v
number
w
number
target
Vector3
Returns: void
Calls:
findSpan
calcBasisFunctions
P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone
temp[ m ][ l ].add
point.multiplyScalar
Sw.add
temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar
Sw.divideScalar
target.set
Code
function calcVolumePoint( p, q, r, U, V, W, P, u, v, w, target ) {
const uspan = findSpan( p, u, U );
const vspan = findSpan( q, v, V );
const wspan = findSpan( r, w, W );
const Nu = calcBasisFunctions( uspan, u, p, U );
const Nv = calcBasisFunctions( vspan, v, q, V );
const Nw = calcBasisFunctions( wspan, w, r, W );
const temp = [];
for ( let m = 0; m <= r; ++ m ) {
temp[ m ] = [];
for ( let l = 0; l <= q; ++ l ) {
temp[ m ][ l ] = new Vector4( 0, 0, 0, 0 );
for ( let k = 0; k <= p; ++ k ) {
const point = P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone();
const w = point.w;
point.x *= w;
point.y *= w;
point.z *= w;
temp[ m ][ l ].add( point.multiplyScalar( Nu[ k ] ) );
}
}
}
const Sw = new Vector4( 0, 0, 0, 0 );
for ( let m = 0; m <= r; ++ m ) {
for ( let l = 0; l <= q; ++ l ) {
Sw.add( temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar( Nv[ l ] ) );
}
}
Sw.divideScalar( Sw.w );
target.set( Sw.x, Sw.y, Sw.z );
}