Skip to content

⬅️ Back to Table of Contents

📄 NURBSUtils.js

📊 Analysis Summary

Metric Count
🔧 Functions 10
📦 Imports 2
📊 Variables & Constants 48

📚 Table of Contents

🛠️ File Location:

📂 examples/jsm/curves/NURBSUtils.js

📦 Imports

Name Source
Vector3 three
Vector4 three

Variables & Constants

Name Type Kind Value Exported
n number let/var U.length - p - 1
low number let/var p
high number let/var n
N any[] let/var []
left any[] let/var []
right any[] let/var []
saved number let/var 0.0
rv number let/var right[ r + 1 ]
lv number let/var left[ j - r ]
temp any let/var N[ r ] / ( rv + lv )
C any let/var new Vector4( 0, 0, 0, 0 )
point Vector4 let/var P[ span - p + j ]
Nj number let/var N[ j ]
wNj number let/var point.w * Nj
zeroArr any[] let/var []
ders any[] let/var []
ndu any[] let/var []
saved number let/var 0.0
rv number let/var right[ r + 1 ]
lv number let/var left[ j - r ]
temp number let/var ndu[ r ][ j - 1 ] / ndu[ j ][ r ]
s1 number let/var 0
s2 number let/var 1
a any[] let/var []
d number let/var 0.0
rk number let/var r - k
pk number let/var p - k
j1 number let/var ( rk >= - 1 ) ? 1 : - rk
j2 number let/var ( r - 1 <= pk ) ? k - 1 : p - r
j number let/var s1
r number let/var p
du number let/var nd < p ? nd : p
CK any[] let/var []
Pw any[] let/var []
w any let/var point.w
nom number let/var 1
denom number let/var 1
nd number let/var Pders.length
Aders any[] let/var []
wders any[] let/var []
point Vector4 let/var Pders[ i ]
CK any[] let/var []
temp any[] let/var []
w any let/var point.w
Sw any let/var new Vector4( 0, 0, 0, 0 )
temp any[] let/var []
w any let/var point.w
Sw any let/var new Vector4( 0, 0, 0, 0 )

Functions

findSpan(p: number, u: number, U: number[]): number

JSDoc:

/**
 * Finds knot vector span.
 *
 * @param {number} p - The degree.
 * @param {number} u - The parametric value.
 * @param {Array<number>} U - The knot vector.
 * @return {number} The span.
 */

Parameters:

  • p number
  • u number
  • U number[]

Returns: number

Calls:

  • Math.floor
Code
function findSpan( p, u, U ) {

    const n = U.length - p - 1;

    if ( u >= U[ n ] ) {

        return n - 1;

    }

    if ( u <= U[ p ] ) {

        return p;

    }

    let low = p;
    let high = n;
    let mid = Math.floor( ( low + high ) / 2 );

    while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {

        if ( u < U[ mid ] ) {

            high = mid;

        } else {

            low = mid;

        }

        mid = Math.floor( ( low + high ) / 2 );

    }

    return mid;

}

calcBasisFunctions(span: number, u: number, p: number, U: number[]): number[]

JSDoc:

/**
 * Calculates basis functions. See The NURBS Book, page 70, algorithm A2.2.
 *
 * @param {number} span - The span in which `u` lies.
 * @param {number} u - The parametric value.
 * @param {number} p - The degree.
 * @param {Array<number>} U - The knot vector.
 * @return {Array<number>} Array[p+1] with basis functions values.
 */

Parameters:

  • span number
  • u number
  • p number
  • U number[]

Returns: number[]

Code
function calcBasisFunctions( span, u, p, U ) {

    const N = [];
    const left = [];
    const right = [];
    N[ 0 ] = 1.0;

    for ( let j = 1; j <= p; ++ j ) {

        left[ j ] = u - U[ span + 1 - j ];
        right[ j ] = U[ span + j ] - u;

        let saved = 0.0;

        for ( let r = 0; r < j; ++ r ) {

            const rv = right[ r + 1 ];
            const lv = left[ j - r ];
            const temp = N[ r ] / ( rv + lv );
            N[ r ] = saved + rv * temp;
            saved = lv * temp;

        }

        N[ j ] = saved;

    }

    return N;

}

calcBSplinePoint(p: number, U: number[], P: Vector4[], u: number): Vector4

JSDoc:

/**
 * Calculates B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
 *
 * @param {number} p - The degree of the B-Spline.
 * @param {Array<number>} U - The knot vector.
 * @param {Array<Vector4>} P - The control points
 * @param {number} u - The parametric point.
 * @return {Vector4} The point for given `u`.
 */

Parameters:

  • p number
  • U number[]
  • P Vector4[]
  • u number

Returns: Vector4

Calls:

  • findSpan
  • calcBasisFunctions
Code
function calcBSplinePoint( p, U, P, u ) {

    const span = findSpan( p, u, U );
    const N = calcBasisFunctions( span, u, p, U );
    const C = new Vector4( 0, 0, 0, 0 );

    for ( let j = 0; j <= p; ++ j ) {

        const point = P[ span - p + j ];
        const Nj = N[ j ];
        const wNj = point.w * Nj;
        C.x += point.x * wNj;
        C.y += point.y * wNj;
        C.z += point.z * wNj;
        C.w += point.w * Nj;

    }

    return C;

}

calcBasisFunctionDerivatives(span: number, u: number, p: number, n: number, U: number[]): number[][]

JSDoc:

/**
 * Calculates basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
 *
 * @param {number} span - The span in which `u` lies.
 * @param {number} u - The parametric point.
 * @param {number} p - The degree.
 * @param {number} n - number of derivatives to calculate
 * @param {Array<number>} U - The knot vector.
 * @return {Array<Array<number>>} An array[n+1][p+1] with basis functions derivatives.
 */

Parameters:

  • span number
  • u number
  • p number
  • n number
  • U number[]

Returns: number[][]

Calls:

  • zeroArr.slice
Code
function calcBasisFunctionDerivatives( span, u, p, n, U ) {

    const zeroArr = [];
    for ( let i = 0; i <= p; ++ i )
        zeroArr[ i ] = 0.0;

    const ders = [];

    for ( let i = 0; i <= n; ++ i )
        ders[ i ] = zeroArr.slice( 0 );

    const ndu = [];

    for ( let i = 0; i <= p; ++ i )
        ndu[ i ] = zeroArr.slice( 0 );

    ndu[ 0 ][ 0 ] = 1.0;

    const left = zeroArr.slice( 0 );
    const right = zeroArr.slice( 0 );

    for ( let j = 1; j <= p; ++ j ) {

        left[ j ] = u - U[ span + 1 - j ];
        right[ j ] = U[ span + j ] - u;

        let saved = 0.0;

        for ( let r = 0; r < j; ++ r ) {

            const rv = right[ r + 1 ];
            const lv = left[ j - r ];
            ndu[ j ][ r ] = rv + lv;

            const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
            ndu[ r ][ j ] = saved + rv * temp;
            saved = lv * temp;

        }

        ndu[ j ][ j ] = saved;

    }

    for ( let j = 0; j <= p; ++ j ) {

        ders[ 0 ][ j ] = ndu[ j ][ p ];

    }

    for ( let r = 0; r <= p; ++ r ) {

        let s1 = 0;
        let s2 = 1;

        const a = [];
        for ( let i = 0; i <= p; ++ i ) {

            a[ i ] = zeroArr.slice( 0 );

        }

        a[ 0 ][ 0 ] = 1.0;

        for ( let k = 1; k <= n; ++ k ) {

            let d = 0.0;
            const rk = r - k;
            const pk = p - k;

            if ( r >= k ) {

                a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
                d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];

            }

            const j1 = ( rk >= - 1 ) ? 1 : - rk;
            const j2 = ( r - 1 <= pk ) ? k - 1 : p - r;

            for ( let j = j1; j <= j2; ++ j ) {

                a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
                d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];

            }

            if ( r <= pk ) {

                a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
                d += a[ s2 ][ k ] * ndu[ r ][ pk ];

            }

            ders[ k ][ r ] = d;

            const j = s1;
            s1 = s2;
            s2 = j;

        }

    }

    let r = p;

    for ( let k = 1; k <= n; ++ k ) {

        for ( let j = 0; j <= p; ++ j ) {

            ders[ k ][ j ] *= r;

        }

        r *= p - k;

    }

    return ders;

}

calcBSplineDerivatives(p: number, U: number[], P: Vector4[], u: number, nd: number): Vector4[]

JSDoc:

/**
 * Calculates derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
 *
 * @param {number} p - The degree.
 * @param {Array<number>} U - The knot vector.
 * @param {Array<Vector4>} P - The control points
 * @param {number} u - The parametric point.
 * @param {number} nd - The number of derivatives.
 * @return {Array<Vector4>} An array[d+1] with derivatives.
 */

Parameters:

  • p number
  • U number[]
  • P Vector4[]
  • u number
  • nd number

Returns: Vector4[]

Calls:

  • findSpan
  • calcBasisFunctionDerivatives
  • P[ i ].clone
  • Pw[ span - p ].clone().multiplyScalar
  • point.add
  • Pw[ span - p + j ].clone().multiplyScalar
Code
function calcBSplineDerivatives( p, U, P, u, nd ) {

    const du = nd < p ? nd : p;
    const CK = [];
    const span = findSpan( p, u, U );
    const nders = calcBasisFunctionDerivatives( span, u, p, du, U );
    const Pw = [];

    for ( let i = 0; i < P.length; ++ i ) {

        const point = P[ i ].clone();
        const w = point.w;

        point.x *= w;
        point.y *= w;
        point.z *= w;

        Pw[ i ] = point;

    }

    for ( let k = 0; k <= du; ++ k ) {

        const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );

        for ( let j = 1; j <= p; ++ j ) {

            point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );

        }

        CK[ k ] = point;

    }

    for ( let k = du + 1; k <= nd + 1; ++ k ) {

        CK[ k ] = new Vector4( 0, 0, 0 );

    }

    return CK;

}

calcKoverI(k: number, i: number): number

JSDoc:

/**
 * Calculates "K over I".
 *
 * @param {number} k - The K value.
 * @param {number} i - The I value.
 * @return {number} k!/(i!(k-i)!)
 */

Parameters:

  • k number
  • i number

Returns: number

Code
function calcKoverI( k, i ) {

    let nom = 1;

    for ( let j = 2; j <= k; ++ j ) {

        nom *= j;

    }

    let denom = 1;

    for ( let j = 2; j <= i; ++ j ) {

        denom *= j;

    }

    for ( let j = 2; j <= k - i; ++ j ) {

        denom *= j;

    }

    return nom / denom;

}

calcRationalCurveDerivatives(Pders: Vector4[]): Vector3[]

JSDoc:

/**
 * Calculates derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
 *
 * @param {Array<Vector4>} Pders - Array with derivatives.
 * @return {Array<Vector3>} An array with derivatives for rational curve.
 */

Parameters:

  • Pders Vector4[]

Returns: Vector3[]

Calls:

  • Aders[ k ].clone
  • v.sub
  • CK[ k - i ].clone().multiplyScalar
  • calcKoverI
  • v.divideScalar
Code
function calcRationalCurveDerivatives( Pders ) {

    const nd = Pders.length;
    const Aders = [];
    const wders = [];

    for ( let i = 0; i < nd; ++ i ) {

        const point = Pders[ i ];
        Aders[ i ] = new Vector3( point.x, point.y, point.z );
        wders[ i ] = point.w;

    }

    const CK = [];

    for ( let k = 0; k < nd; ++ k ) {

        const v = Aders[ k ].clone();

        for ( let i = 1; i <= k; ++ i ) {

            v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) );

        }

        CK[ k ] = v.divideScalar( wders[ 0 ] );

    }

    return CK;

}

calcNURBSDerivatives(p: number, U: number[], P: Vector4[], u: number, nd: number): Vector3[]

JSDoc:

/**
 * Calculates NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
 *
 * @param {number} p - The degree.
 * @param {Array<number>} U - The knot vector.
 * @param {Array<Vector4>} P - The control points in homogeneous space.
 * @param {number} u - The parametric point.
 * @param {number} nd - The number of derivatives.
 * @return {Array<Vector3>} array with derivatives for rational curve.
 */

Parameters:

  • p number
  • U number[]
  • P Vector4[]
  • u number
  • nd number

Returns: Vector3[]

Calls:

  • calcBSplineDerivatives
  • calcRationalCurveDerivatives
Code
function calcNURBSDerivatives( p, U, P, u, nd ) {

    const Pders = calcBSplineDerivatives( p, U, P, u, nd );
    return calcRationalCurveDerivatives( Pders );

}

calcSurfacePoint(p: number, q: number, U: number[], V: number[], P: Vector4[][], u: number, v: number, target: Vector3): void

JSDoc:

/**
 * Calculates a rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
 *
 * @param {number} p - The first degree of B-Spline surface.
 * @param {number} q - The second degree of B-Spline surface.
 * @param {Array<number>} U - The first knot vector.
 * @param {Array<number>} V - The second knot vector.
 * @param {Array<Array<Vector4>>} P - The control points in homogeneous space.
 * @param {number} u - The first parametric point.
 * @param {number} v - The second parametric point.
 * @param {Vector3} target - The target vector.
 */

Parameters:

  • p number
  • q number
  • U number[]
  • V number[]
  • P Vector4[][]
  • u number
  • v number
  • target Vector3

Returns: void

Calls:

  • findSpan
  • calcBasisFunctions
  • P[ uspan - p + k ][ vspan - q + l ].clone
  • temp[ l ].add
  • point.multiplyScalar
  • Sw.add
  • temp[ l ].multiplyScalar
  • Sw.divideScalar
  • target.set
Code
function calcSurfacePoint( p, q, U, V, P, u, v, target ) {

    const uspan = findSpan( p, u, U );
    const vspan = findSpan( q, v, V );
    const Nu = calcBasisFunctions( uspan, u, p, U );
    const Nv = calcBasisFunctions( vspan, v, q, V );
    const temp = [];

    for ( let l = 0; l <= q; ++ l ) {

        temp[ l ] = new Vector4( 0, 0, 0, 0 );
        for ( let k = 0; k <= p; ++ k ) {

            const point = P[ uspan - p + k ][ vspan - q + l ].clone();
            const w = point.w;
            point.x *= w;
            point.y *= w;
            point.z *= w;
            temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );

        }

    }

    const Sw = new Vector4( 0, 0, 0, 0 );
    for ( let l = 0; l <= q; ++ l ) {

        Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );

    }

    Sw.divideScalar( Sw.w );
    target.set( Sw.x, Sw.y, Sw.z );

}

calcVolumePoint(p: number, q: number, r: number, U: number[], V: number[], W: number[], P: Vector4[][][], u: number, v: number, w: number, target: Vector3): void

JSDoc:

/**
 * Calculates a rational B-Spline volume point. See The NURBS Book, page 134, algorithm A4.3.
 *
 * @param {number} p - The first degree of B-Spline surface.
 * @param {number} q - The second degree of B-Spline surface.
 * @param {number} r - The third degree of B-Spline surface.
 * @param {Array<number>} U - The first knot vector.
 * @param {Array<number>} V - The second knot vector.
 * @param {Array<number>} W - The third knot vector.
 * @param {Array<Array<Array<Vector4>>>} P - The control points in homogeneous space.
 * @param {number} u - The first parametric point.
 * @param {number} v - The second parametric point.
 * @param {number} w - The third parametric point.
 * @param {Vector3} target - The target vector.
 */

Parameters:

  • p number
  • q number
  • r number
  • U number[]
  • V number[]
  • W number[]
  • P Vector4[][][]
  • u number
  • v number
  • w number
  • target Vector3

Returns: void

Calls:

  • findSpan
  • calcBasisFunctions
  • P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone
  • temp[ m ][ l ].add
  • point.multiplyScalar
  • Sw.add
  • temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar
  • Sw.divideScalar
  • target.set
Code
function calcVolumePoint( p, q, r, U, V, W, P, u, v, w, target ) {

    const uspan = findSpan( p, u, U );
    const vspan = findSpan( q, v, V );
    const wspan = findSpan( r, w, W );
    const Nu = calcBasisFunctions( uspan, u, p, U );
    const Nv = calcBasisFunctions( vspan, v, q, V );
    const Nw = calcBasisFunctions( wspan, w, r, W );
    const temp = [];

    for ( let m = 0; m <= r; ++ m ) {

        temp[ m ] = [];

        for ( let l = 0; l <= q; ++ l ) {

            temp[ m ][ l ] = new Vector4( 0, 0, 0, 0 );
            for ( let k = 0; k <= p; ++ k ) {

                const point = P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone();
                const w = point.w;
                point.x *= w;
                point.y *= w;
                point.z *= w;
                temp[ m ][ l ].add( point.multiplyScalar( Nu[ k ] ) );

            }

        }

    }

    const Sw = new Vector4( 0, 0, 0, 0 );
    for ( let m = 0; m <= r; ++ m ) {

        for ( let l = 0; l <= q; ++ l ) {

            Sw.add( temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar( Nv[ l ] ) );

        }

    }

    Sw.divideScalar( Sw.w );
    target.set( Sw.x, Sw.y, Sw.z );

}