📄 NURBSVolume.js
¶
📊 Analysis Summary¶
Metric | Count |
---|---|
🔧 Functions | 1 |
🧱 Classes | 1 |
📦 Imports | 1 |
📊 Variables & Constants | 7 |
📚 Table of Contents¶
🛠️ File Location:¶
📂 examples/jsm/curves/NURBSVolume.js
📦 Imports¶
Name | Source |
---|---|
Vector4 |
three |
Variables & Constants¶
Name | Type | Kind | Value | Exported |
---|---|---|---|---|
len1 |
number |
let/var | knots1.length - degree1 - 1 |
✗ |
len2 |
number |
let/var | knots2.length - degree2 - 1 |
✗ |
len3 |
number |
let/var | knots3.length - degree3 - 1 |
✗ |
point |
any |
let/var | controlPoints[ i ][ j ][ k ] |
✗ |
u |
number |
let/var | this.knots1[ 0 ] + t1 * ( this.knots1[ this.knots1.length - 1 ] - this.knots1... |
✗ |
v |
number |
let/var | this.knots2[ 0 ] + t2 * ( this.knots2[ this.knots2.length - 1 ] - this.knots2... |
✗ |
w |
number |
let/var | this.knots3[ 0 ] + t3 * ( this.knots3[ this.knots3.length - 1 ] - this.knots3... |
✗ |
Functions¶
NURBSVolume.getPoint(t1: number, t2: number, t3: number, target: Vector3): void
¶
JSDoc:
/**
* This method returns a vector in 3D space for the given interpolation factor. This vector lies within the NURBS volume.
*
* @param {number} t1 - The first interpolation factor representing the `u` position within the volume. Must be in the range `[0,1]`.
* @param {number} t2 - The second interpolation factor representing the `v` position within the volume. Must be in the range `[0,1]`.
* @param {number} t3 - The third interpolation factor representing the `w` position within the volume. Must be in the range `[0,1]`.
* @param {Vector3} target - The target vector the result is written to.
*/
Parameters:
t1
number
t2
number
t3
number
target
Vector3
Returns: void
Calls:
NURBSUtils.calcVolumePoint
Code
getPoint( t1, t2, t3, target ) {
const u = this.knots1[ 0 ] + t1 * ( this.knots1[ this.knots1.length - 1 ] - this.knots1[ 0 ] ); // linear mapping t1->u
const v = this.knots2[ 0 ] + t2 * ( this.knots2[ this.knots2.length - 1 ] - this.knots2[ 0 ] ); // linear mapping t2->v
const w = this.knots3[ 0 ] + t3 * ( this.knots3[ this.knots3.length - 1 ] - this.knots3[ 0 ] ); // linear mapping t3->w
NURBSUtils.calcVolumePoint( this.degree1, this.degree2, this.degree3, this.knots1, this.knots2, this.knots3, this.controlPoints, u, v, w, target );
}
Classes¶
NURBSVolume
¶
Class Code
class NURBSVolume {
/**
* Constructs a new NURBS surface.
*
* @param {number} degree1 - The first NURBS degree.
* @param {number} degree2 - The second NURBS degree.
* @param {number} degree3 - The third NURBS degree.
* @param {Array<number>} knots1 - The first knots as a flat array of numbers.
* @param {Array<number>} knots2 - The second knots as a flat array of numbers.
* @param {Array<number>} knots3 - The third knots as a flat array of numbers.
* @param {Array<Array<Array<Vector2|Vector3|Vector4>>>} controlPoints - An array^3 holding control points.
*/
constructor( degree1, degree2, degree3, knots1, knots2, knots3 /* arrays of reals */, controlPoints /* array^3 of Vector(2|3|4) */ ) {
this.degree1 = degree1;
this.degree2 = degree2;
this.degree3 = degree3;
this.knots1 = knots1;
this.knots2 = knots2;
this.knots3 = knots3;
this.controlPoints = [];
const len1 = knots1.length - degree1 - 1;
const len2 = knots2.length - degree2 - 1;
const len3 = knots3.length - degree3 - 1;
// ensure Vector4 for control points
for ( let i = 0; i < len1; ++ i ) {
this.controlPoints[ i ] = [];
for ( let j = 0; j < len2; ++ j ) {
this.controlPoints[ i ][ j ] = [];
for ( let k = 0; k < len3; ++ k ) {
const point = controlPoints[ i ][ j ][ k ];
this.controlPoints[ i ][ j ][ k ] = new Vector4( point.x, point.y, point.z, point.w );
}
}
}
}
/**
* This method returns a vector in 3D space for the given interpolation factor. This vector lies within the NURBS volume.
*
* @param {number} t1 - The first interpolation factor representing the `u` position within the volume. Must be in the range `[0,1]`.
* @param {number} t2 - The second interpolation factor representing the `v` position within the volume. Must be in the range `[0,1]`.
* @param {number} t3 - The third interpolation factor representing the `w` position within the volume. Must be in the range `[0,1]`.
* @param {Vector3} target - The target vector the result is written to.
*/
getPoint( t1, t2, t3, target ) {
const u = this.knots1[ 0 ] + t1 * ( this.knots1[ this.knots1.length - 1 ] - this.knots1[ 0 ] ); // linear mapping t1->u
const v = this.knots2[ 0 ] + t2 * ( this.knots2[ this.knots2.length - 1 ] - this.knots2[ 0 ] ); // linear mapping t2->v
const w = this.knots3[ 0 ] + t3 * ( this.knots3[ this.knots3.length - 1 ] - this.knots3[ 0 ] ); // linear mapping t3->w
NURBSUtils.calcVolumePoint( this.degree1, this.degree2, this.degree3, this.knots1, this.knots2, this.knots3, this.controlPoints, u, v, w, target );
}
}
Methods¶
getPoint(t1: number, t2: number, t3: number, target: Vector3): void
¶
Code
getPoint( t1, t2, t3, target ) {
const u = this.knots1[ 0 ] + t1 * ( this.knots1[ this.knots1.length - 1 ] - this.knots1[ 0 ] ); // linear mapping t1->u
const v = this.knots2[ 0 ] + t2 * ( this.knots2[ this.knots2.length - 1 ] - this.knots2[ 0 ] ); // linear mapping t2->v
const w = this.knots3[ 0 ] + t3 * ( this.knots3[ this.knots3.length - 1 ] - this.knots3[ 0 ] ); // linear mapping t3->w
NURBSUtils.calcVolumePoint( this.degree1, this.degree2, this.degree3, this.knots1, this.knots2, this.knots3, this.controlPoints, u, v, w, target );
}