📄 LightProbeGenerator.js
¶
📊 Analysis Summary¶
Metric | Count |
---|---|
🔧 Functions | 3 |
🧱 Classes | 1 |
📦 Imports | 11 |
📊 Variables & Constants | 38 |
📚 Table of Contents¶
🛠️ File Location:¶
📂 examples/jsm/lights/LightProbeGenerator.js
📦 Imports¶
Name | Source |
---|---|
Color |
three |
LightProbe |
three |
LinearSRGBColorSpace |
three |
SphericalHarmonics3 |
three |
Vector3 |
three |
SRGBColorSpace |
three |
NoColorSpace |
three |
HalfFloatType |
three |
DataUtils |
three |
WebGLCoordinateSystem |
three |
FloatType |
three |
Variables & Constants¶
Name | Type | Kind | Value | Exported |
---|---|---|---|---|
totalWeight |
number |
let/var | 0 |
✗ |
coord |
any |
let/var | new Vector3() |
✗ |
dir |
any |
let/var | new Vector3() |
✗ |
color |
any |
let/var | new Color() |
✗ |
shBasis |
number[] |
let/var | [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] |
✗ |
sh |
any |
let/var | new SphericalHarmonics3() |
✗ |
shCoefficients |
any |
let/var | sh.coefficients |
✗ |
image |
any |
let/var | cubeTexture.image[ faceIndex ] |
✗ |
width |
any |
let/var | image.width |
✗ |
height |
any |
let/var | image.height |
✗ |
data |
Uint8ClampedArray<ArrayBufferLike> |
let/var | imageData.data |
✗ |
imageWidth |
number |
let/var | imageData.width |
✗ |
pixelSize |
number |
let/var | 2 / imageWidth |
✗ |
pixelIndex |
number |
let/var | i / 4 |
✗ |
col |
number |
let/var | - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize |
✗ |
row |
number |
let/var | 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize |
✗ |
weight |
number |
let/var | 4 / ( Math.sqrt( lengthSq ) * lengthSq ) |
✗ |
norm |
number |
let/var | ( 4 * Math.PI ) / totalWeight |
✗ |
flip |
1 \| -1 |
let/var | renderer.coordinateSystem === WebGLCoordinateSystem ? - 1 : 1 |
✗ |
totalWeight |
number |
let/var | 0 |
✗ |
coord |
any |
let/var | new Vector3() |
✗ |
dir |
any |
let/var | new Vector3() |
✗ |
color |
any |
let/var | new Color() |
✗ |
shBasis |
number[] |
let/var | [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] |
✗ |
sh |
any |
let/var | new SphericalHarmonics3() |
✗ |
shCoefficients |
any |
let/var | sh.coefficients |
✗ |
dataType |
any |
let/var | cubeRenderTarget.texture.type |
✗ |
imageWidth |
any |
let/var | cubeRenderTarget.width |
✗ |
data |
any |
let/var | *not shown* |
✗ |
pixelSize |
number |
let/var | 2 / imageWidth |
✗ |
r |
any |
let/var | *not shown* |
✗ |
g |
any |
let/var | *not shown* |
✗ |
b |
any |
let/var | *not shown* |
✗ |
pixelIndex |
number |
let/var | i / 4 |
✗ |
col |
number |
let/var | ( 1 - ( pixelIndex % imageWidth + 0.5 ) * pixelSize ) * flip |
✗ |
row |
number |
let/var | 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize |
✗ |
weight |
number |
let/var | 4 / ( Math.sqrt( lengthSq ) * lengthSq ) |
✗ |
norm |
number |
let/var | ( 4 * Math.PI ) / totalWeight |
✗ |
Functions¶
LightProbeGenerator.fromCubeTexture(cubeTexture: CubeTexture): LightProbe
¶
JSDoc:
/**
* Creates a light probe from the given (radiance) environment map.
* The method expects that the environment map is represented as a cube texture.
*
* @param {CubeTexture} cubeTexture - The environment map.
* @return {LightProbe} The created light probe.
*/
Parameters:
cubeTexture
CubeTexture
Returns: LightProbe
Calls:
document.createElement
canvas.getContext
context.drawImage
context.getImageData
color.setRGB
convertColorToLinear
Math.floor
coord.set
coord.lengthSq
Math.sqrt
dir.copy( coord ).normalize
SphericalHarmonics3.getBasisAt
Internal Comments:
// https://www.ppsloan.org/publications/StupidSH36.pdf (x2)
// pixel color (x4)
// convert to linear color space (x3)
// pixel coordinate on unit cube (x2)
// weight assigned to this pixel (x2)
// direction vector to this pixel (x6)
// evaluate SH basis functions in direction dir (x4)
// accumulate
// normalize (x2)
Code
static fromCubeTexture( cubeTexture ) {
// https://www.ppsloan.org/publications/StupidSH36.pdf
let totalWeight = 0;
const coord = new Vector3();
const dir = new Vector3();
const color = new Color();
const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
const sh = new SphericalHarmonics3();
const shCoefficients = sh.coefficients;
for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {
const image = cubeTexture.image[ faceIndex ];
const width = image.width;
const height = image.height;
const canvas = document.createElement( 'canvas' );
canvas.width = width;
canvas.height = height;
const context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0, width, height );
const imageData = context.getImageData( 0, 0, width, height );
const data = imageData.data;
const imageWidth = imageData.width; // assumed to be square
const pixelSize = 2 / imageWidth;
for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed
// pixel color
color.setRGB( data[ i ] / 255, data[ i + 1 ] / 255, data[ i + 2 ] / 255 );
// convert to linear color space
convertColorToLinear( color, cubeTexture.colorSpace );
// pixel coordinate on unit cube
const pixelIndex = i / 4;
const col = - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize;
const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;
switch ( faceIndex ) {
case 0: coord.set( - 1, row, - col ); break;
case 1: coord.set( 1, row, col ); break;
case 2: coord.set( - col, 1, - row ); break;
case 3: coord.set( - col, - 1, row ); break;
case 4: coord.set( - col, row, 1 ); break;
case 5: coord.set( col, row, - 1 ); break;
}
// weight assigned to this pixel
const lengthSq = coord.lengthSq();
const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );
totalWeight += weight;
// direction vector to this pixel
dir.copy( coord ).normalize();
// evaluate SH basis functions in direction dir
SphericalHarmonics3.getBasisAt( dir, shBasis );
// accumulate
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;
shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;
shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;
}
}
}
// normalize
const norm = ( 4 * Math.PI ) / totalWeight;
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x *= norm;
shCoefficients[ j ].y *= norm;
shCoefficients[ j ].z *= norm;
}
return new LightProbe( sh );
}
LightProbeGenerator.fromCubeRenderTarget(renderer: any, cubeRenderTarget: any): Promise<LightProbe>
¶
JSDoc:
/**
* Creates a light probe from the given (radiance) environment map.
* The method expects that the environment map is represented as a cube render target.
*
* The cube render target must be in RGBA so `cubeRenderTarget.texture.format` must be
* set to {@link RGBAFormat}.
*
* @async
* @param {WebGPURenderer|WebGLRenderer} renderer - The renderer.
* @param {CubeRenderTarget|WebGLCubeRenderTarget} cubeRenderTarget - The environment map.
* @return {Promise<LightProbe>} A Promise that resolves with the created light probe.
*/
Parameters:
renderer
any
cubeRenderTarget
any
Returns: Promise<LightProbe>
Calls:
renderer.readRenderTargetPixelsAsync
DataUtils.fromHalfFloat
color.setRGB
convertColorToLinear
Math.floor
coord.set
coord.lengthSq
Math.sqrt
dir.copy( coord ).normalize
SphericalHarmonics3.getBasisAt
Internal Comments:
// The renderTarget must be set to RGBA in order to make readRenderTargetPixels works (x2)
// assuming UnsignedByteType (x3)
// pixel color (x4)
// convert to linear color space (x3)
// pixel coordinate on unit cube (x2)
// weight assigned to this pixel (x2)
// direction vector to this pixel (x6)
// evaluate SH basis functions in direction dir (x4)
// accumulate
// normalize (x2)
Code
static async fromCubeRenderTarget( renderer, cubeRenderTarget ) {
const flip = renderer.coordinateSystem === WebGLCoordinateSystem ? - 1 : 1;
// The renderTarget must be set to RGBA in order to make readRenderTargetPixels works
let totalWeight = 0;
const coord = new Vector3();
const dir = new Vector3();
const color = new Color();
const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
const sh = new SphericalHarmonics3();
const shCoefficients = sh.coefficients;
const dataType = cubeRenderTarget.texture.type;
const imageWidth = cubeRenderTarget.width; // assumed to be square
let data;
if ( renderer.isWebGLRenderer ) {
if ( dataType === FloatType ) {
data = new Float32Array( imageWidth * imageWidth * 4 );
} else if ( dataType === HalfFloatType ) {
data = new Uint16Array( imageWidth * imageWidth * 4 );
} else {
// assuming UnsignedByteType
data = new Uint8Array( imageWidth * imageWidth * 4 );
}
}
for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {
if ( renderer.isWebGLRenderer ) {
await renderer.readRenderTargetPixelsAsync( cubeRenderTarget, 0, 0, imageWidth, imageWidth, data, faceIndex );
} else {
data = await renderer.readRenderTargetPixelsAsync( cubeRenderTarget, 0, 0, imageWidth, imageWidth, 0, faceIndex );
}
const pixelSize = 2 / imageWidth;
for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed
let r, g, b;
if ( dataType === FloatType ) {
r = data[ i ];
g = data[ i + 1 ];
b = data[ i + 2 ];
} else if ( dataType === HalfFloatType ) {
r = DataUtils.fromHalfFloat( data[ i ] );
g = DataUtils.fromHalfFloat( data[ i + 1 ] );
b = DataUtils.fromHalfFloat( data[ i + 2 ] );
} else {
r = data[ i ] / 255;
g = data[ i + 1 ] / 255;
b = data[ i + 2 ] / 255;
}
// pixel color
color.setRGB( r, g, b );
// convert to linear color space
convertColorToLinear( color, cubeRenderTarget.texture.colorSpace );
// pixel coordinate on unit cube
const pixelIndex = i / 4;
const col = ( 1 - ( pixelIndex % imageWidth + 0.5 ) * pixelSize ) * flip;
const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;
switch ( faceIndex ) {
case 0: coord.set( - 1 * flip, row, col * flip ); break;
case 1: coord.set( 1 * flip, row, - col * flip ); break;
case 2: coord.set( col, 1, - row ); break;
case 3: coord.set( col, - 1, row ); break;
case 4: coord.set( col, row, 1 ); break;
case 5: coord.set( - col, row, - 1 ); break;
}
// weight assigned to this pixel
const lengthSq = coord.lengthSq();
const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );
totalWeight += weight;
// direction vector to this pixel
dir.copy( coord ).normalize();
// evaluate SH basis functions in direction dir
SphericalHarmonics3.getBasisAt( dir, shBasis );
// accumulate
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;
shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;
shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;
}
}
}
// normalize
const norm = ( 4 * Math.PI ) / totalWeight;
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x *= norm;
shCoefficients[ j ].y *= norm;
shCoefficients[ j ].z *= norm;
}
return new LightProbe( sh );
}
convertColorToLinear(color: any, colorSpace: any): any
¶
Parameters:
color
any
colorSpace
any
Returns: any
Calls:
color.convertSRGBToLinear
console.warn
Code
function convertColorToLinear( color, colorSpace ) {
switch ( colorSpace ) {
case SRGBColorSpace:
color.convertSRGBToLinear();
break;
case LinearSRGBColorSpace:
case NoColorSpace:
break;
default:
console.warn( 'WARNING: LightProbeGenerator convertColorToLinear() encountered an unsupported color space.' );
break;
}
return color;
}
Classes¶
LightProbeGenerator
¶
Class Code
class LightProbeGenerator {
/**
* Creates a light probe from the given (radiance) environment map.
* The method expects that the environment map is represented as a cube texture.
*
* @param {CubeTexture} cubeTexture - The environment map.
* @return {LightProbe} The created light probe.
*/
static fromCubeTexture( cubeTexture ) {
// https://www.ppsloan.org/publications/StupidSH36.pdf
let totalWeight = 0;
const coord = new Vector3();
const dir = new Vector3();
const color = new Color();
const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
const sh = new SphericalHarmonics3();
const shCoefficients = sh.coefficients;
for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {
const image = cubeTexture.image[ faceIndex ];
const width = image.width;
const height = image.height;
const canvas = document.createElement( 'canvas' );
canvas.width = width;
canvas.height = height;
const context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0, width, height );
const imageData = context.getImageData( 0, 0, width, height );
const data = imageData.data;
const imageWidth = imageData.width; // assumed to be square
const pixelSize = 2 / imageWidth;
for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed
// pixel color
color.setRGB( data[ i ] / 255, data[ i + 1 ] / 255, data[ i + 2 ] / 255 );
// convert to linear color space
convertColorToLinear( color, cubeTexture.colorSpace );
// pixel coordinate on unit cube
const pixelIndex = i / 4;
const col = - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize;
const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;
switch ( faceIndex ) {
case 0: coord.set( - 1, row, - col ); break;
case 1: coord.set( 1, row, col ); break;
case 2: coord.set( - col, 1, - row ); break;
case 3: coord.set( - col, - 1, row ); break;
case 4: coord.set( - col, row, 1 ); break;
case 5: coord.set( col, row, - 1 ); break;
}
// weight assigned to this pixel
const lengthSq = coord.lengthSq();
const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );
totalWeight += weight;
// direction vector to this pixel
dir.copy( coord ).normalize();
// evaluate SH basis functions in direction dir
SphericalHarmonics3.getBasisAt( dir, shBasis );
// accumulate
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;
shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;
shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;
}
}
}
// normalize
const norm = ( 4 * Math.PI ) / totalWeight;
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x *= norm;
shCoefficients[ j ].y *= norm;
shCoefficients[ j ].z *= norm;
}
return new LightProbe( sh );
}
/**
* Creates a light probe from the given (radiance) environment map.
* The method expects that the environment map is represented as a cube render target.
*
* The cube render target must be in RGBA so `cubeRenderTarget.texture.format` must be
* set to {@link RGBAFormat}.
*
* @async
* @param {WebGPURenderer|WebGLRenderer} renderer - The renderer.
* @param {CubeRenderTarget|WebGLCubeRenderTarget} cubeRenderTarget - The environment map.
* @return {Promise<LightProbe>} A Promise that resolves with the created light probe.
*/
static async fromCubeRenderTarget( renderer, cubeRenderTarget ) {
const flip = renderer.coordinateSystem === WebGLCoordinateSystem ? - 1 : 1;
// The renderTarget must be set to RGBA in order to make readRenderTargetPixels works
let totalWeight = 0;
const coord = new Vector3();
const dir = new Vector3();
const color = new Color();
const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
const sh = new SphericalHarmonics3();
const shCoefficients = sh.coefficients;
const dataType = cubeRenderTarget.texture.type;
const imageWidth = cubeRenderTarget.width; // assumed to be square
let data;
if ( renderer.isWebGLRenderer ) {
if ( dataType === FloatType ) {
data = new Float32Array( imageWidth * imageWidth * 4 );
} else if ( dataType === HalfFloatType ) {
data = new Uint16Array( imageWidth * imageWidth * 4 );
} else {
// assuming UnsignedByteType
data = new Uint8Array( imageWidth * imageWidth * 4 );
}
}
for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {
if ( renderer.isWebGLRenderer ) {
await renderer.readRenderTargetPixelsAsync( cubeRenderTarget, 0, 0, imageWidth, imageWidth, data, faceIndex );
} else {
data = await renderer.readRenderTargetPixelsAsync( cubeRenderTarget, 0, 0, imageWidth, imageWidth, 0, faceIndex );
}
const pixelSize = 2 / imageWidth;
for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed
let r, g, b;
if ( dataType === FloatType ) {
r = data[ i ];
g = data[ i + 1 ];
b = data[ i + 2 ];
} else if ( dataType === HalfFloatType ) {
r = DataUtils.fromHalfFloat( data[ i ] );
g = DataUtils.fromHalfFloat( data[ i + 1 ] );
b = DataUtils.fromHalfFloat( data[ i + 2 ] );
} else {
r = data[ i ] / 255;
g = data[ i + 1 ] / 255;
b = data[ i + 2 ] / 255;
}
// pixel color
color.setRGB( r, g, b );
// convert to linear color space
convertColorToLinear( color, cubeRenderTarget.texture.colorSpace );
// pixel coordinate on unit cube
const pixelIndex = i / 4;
const col = ( 1 - ( pixelIndex % imageWidth + 0.5 ) * pixelSize ) * flip;
const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;
switch ( faceIndex ) {
case 0: coord.set( - 1 * flip, row, col * flip ); break;
case 1: coord.set( 1 * flip, row, - col * flip ); break;
case 2: coord.set( col, 1, - row ); break;
case 3: coord.set( col, - 1, row ); break;
case 4: coord.set( col, row, 1 ); break;
case 5: coord.set( - col, row, - 1 ); break;
}
// weight assigned to this pixel
const lengthSq = coord.lengthSq();
const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );
totalWeight += weight;
// direction vector to this pixel
dir.copy( coord ).normalize();
// evaluate SH basis functions in direction dir
SphericalHarmonics3.getBasisAt( dir, shBasis );
// accumulate
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;
shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;
shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;
}
}
}
// normalize
const norm = ( 4 * Math.PI ) / totalWeight;
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x *= norm;
shCoefficients[ j ].y *= norm;
shCoefficients[ j ].z *= norm;
}
return new LightProbe( sh );
}
}
Methods¶
fromCubeTexture(cubeTexture: CubeTexture): LightProbe
¶
Code
static fromCubeTexture( cubeTexture ) {
// https://www.ppsloan.org/publications/StupidSH36.pdf
let totalWeight = 0;
const coord = new Vector3();
const dir = new Vector3();
const color = new Color();
const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
const sh = new SphericalHarmonics3();
const shCoefficients = sh.coefficients;
for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {
const image = cubeTexture.image[ faceIndex ];
const width = image.width;
const height = image.height;
const canvas = document.createElement( 'canvas' );
canvas.width = width;
canvas.height = height;
const context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0, width, height );
const imageData = context.getImageData( 0, 0, width, height );
const data = imageData.data;
const imageWidth = imageData.width; // assumed to be square
const pixelSize = 2 / imageWidth;
for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed
// pixel color
color.setRGB( data[ i ] / 255, data[ i + 1 ] / 255, data[ i + 2 ] / 255 );
// convert to linear color space
convertColorToLinear( color, cubeTexture.colorSpace );
// pixel coordinate on unit cube
const pixelIndex = i / 4;
const col = - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize;
const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;
switch ( faceIndex ) {
case 0: coord.set( - 1, row, - col ); break;
case 1: coord.set( 1, row, col ); break;
case 2: coord.set( - col, 1, - row ); break;
case 3: coord.set( - col, - 1, row ); break;
case 4: coord.set( - col, row, 1 ); break;
case 5: coord.set( col, row, - 1 ); break;
}
// weight assigned to this pixel
const lengthSq = coord.lengthSq();
const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );
totalWeight += weight;
// direction vector to this pixel
dir.copy( coord ).normalize();
// evaluate SH basis functions in direction dir
SphericalHarmonics3.getBasisAt( dir, shBasis );
// accumulate
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;
shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;
shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;
}
}
}
// normalize
const norm = ( 4 * Math.PI ) / totalWeight;
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x *= norm;
shCoefficients[ j ].y *= norm;
shCoefficients[ j ].z *= norm;
}
return new LightProbe( sh );
}
fromCubeRenderTarget(renderer: any, cubeRenderTarget: any): Promise<LightProbe>
¶
Code
static async fromCubeRenderTarget( renderer, cubeRenderTarget ) {
const flip = renderer.coordinateSystem === WebGLCoordinateSystem ? - 1 : 1;
// The renderTarget must be set to RGBA in order to make readRenderTargetPixels works
let totalWeight = 0;
const coord = new Vector3();
const dir = new Vector3();
const color = new Color();
const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
const sh = new SphericalHarmonics3();
const shCoefficients = sh.coefficients;
const dataType = cubeRenderTarget.texture.type;
const imageWidth = cubeRenderTarget.width; // assumed to be square
let data;
if ( renderer.isWebGLRenderer ) {
if ( dataType === FloatType ) {
data = new Float32Array( imageWidth * imageWidth * 4 );
} else if ( dataType === HalfFloatType ) {
data = new Uint16Array( imageWidth * imageWidth * 4 );
} else {
// assuming UnsignedByteType
data = new Uint8Array( imageWidth * imageWidth * 4 );
}
}
for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {
if ( renderer.isWebGLRenderer ) {
await renderer.readRenderTargetPixelsAsync( cubeRenderTarget, 0, 0, imageWidth, imageWidth, data, faceIndex );
} else {
data = await renderer.readRenderTargetPixelsAsync( cubeRenderTarget, 0, 0, imageWidth, imageWidth, 0, faceIndex );
}
const pixelSize = 2 / imageWidth;
for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed
let r, g, b;
if ( dataType === FloatType ) {
r = data[ i ];
g = data[ i + 1 ];
b = data[ i + 2 ];
} else if ( dataType === HalfFloatType ) {
r = DataUtils.fromHalfFloat( data[ i ] );
g = DataUtils.fromHalfFloat( data[ i + 1 ] );
b = DataUtils.fromHalfFloat( data[ i + 2 ] );
} else {
r = data[ i ] / 255;
g = data[ i + 1 ] / 255;
b = data[ i + 2 ] / 255;
}
// pixel color
color.setRGB( r, g, b );
// convert to linear color space
convertColorToLinear( color, cubeRenderTarget.texture.colorSpace );
// pixel coordinate on unit cube
const pixelIndex = i / 4;
const col = ( 1 - ( pixelIndex % imageWidth + 0.5 ) * pixelSize ) * flip;
const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;
switch ( faceIndex ) {
case 0: coord.set( - 1 * flip, row, col * flip ); break;
case 1: coord.set( 1 * flip, row, - col * flip ); break;
case 2: coord.set( col, 1, - row ); break;
case 3: coord.set( col, - 1, row ); break;
case 4: coord.set( col, row, 1 ); break;
case 5: coord.set( - col, row, - 1 ); break;
}
// weight assigned to this pixel
const lengthSq = coord.lengthSq();
const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );
totalWeight += weight;
// direction vector to this pixel
dir.copy( coord ).normalize();
// evaluate SH basis functions in direction dir
SphericalHarmonics3.getBasisAt( dir, shBasis );
// accumulate
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;
shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;
shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;
}
}
}
// normalize
const norm = ( 4 * Math.PI ) / totalWeight;
for ( let j = 0; j < 9; j ++ ) {
shCoefficients[ j ].x *= norm;
shCoefficients[ j ].y *= norm;
shCoefficients[ j ].z *= norm;
}
return new LightProbe( sh );
}