📄 GLTFLoader.js
¶
📊 Analysis Summary¶
Metric | Count |
---|---|
🔧 Functions | 103 |
🧱 Classes | 26 |
📦 Imports | 66 |
📊 Variables & Constants | 426 |
⚡ Async/Await Patterns | 4 |
📚 Table of Contents¶
🛠️ File Location:¶
📂 examples/jsm/loaders/GLTFLoader.js
📦 Imports¶
Name | Source |
---|---|
AnimationClip |
three |
Bone |
three |
Box3 |
three |
BufferAttribute |
three |
BufferGeometry |
three |
ClampToEdgeWrapping |
three |
Color |
three |
ColorManagement |
three |
DirectionalLight |
three |
DoubleSide |
three |
FileLoader |
three |
FrontSide |
three |
Group |
three |
ImageBitmapLoader |
three |
InstancedMesh |
three |
InterleavedBuffer |
three |
InterleavedBufferAttribute |
three |
Interpolant |
three |
InterpolateDiscrete |
three |
InterpolateLinear |
three |
Line |
three |
LineBasicMaterial |
three |
LineLoop |
three |
LineSegments |
three |
LinearFilter |
three |
LinearMipmapLinearFilter |
three |
LinearMipmapNearestFilter |
three |
LinearSRGBColorSpace |
three |
Loader |
three |
LoaderUtils |
three |
Material |
three |
MathUtils |
three |
Matrix4 |
three |
Mesh |
three |
MeshBasicMaterial |
three |
MeshPhysicalMaterial |
three |
MeshStandardMaterial |
three |
MirroredRepeatWrapping |
three |
NearestFilter |
three |
NearestMipmapLinearFilter |
three |
NearestMipmapNearestFilter |
three |
NumberKeyframeTrack |
three |
Object3D |
three |
OrthographicCamera |
three |
PerspectiveCamera |
three |
PointLight |
three |
Points |
three |
PointsMaterial |
three |
PropertyBinding |
three |
Quaternion |
three |
QuaternionKeyframeTrack |
three |
RepeatWrapping |
three |
Skeleton |
three |
SkinnedMesh |
three |
Sphere |
three |
SpotLight |
three |
Texture |
three |
TextureLoader |
three |
TriangleFanDrawMode |
three |
TriangleStripDrawMode |
three |
Vector2 |
three |
Vector3 |
three |
VectorKeyframeTrack |
three |
SRGBColorSpace |
three |
InstancedBufferAttribute |
three |
toTrianglesDrawMode |
../utils/BufferGeometryUtils.js |
Variables & Constants¶
Name | Type | Kind | Value | Exported |
---|---|---|---|---|
scope |
this |
let/var | this |
✗ |
resourcePath |
any |
let/var | *not shown* |
✗ |
loader |
any |
let/var | new FileLoader( this.manager ) |
✗ |
json |
any |
let/var | *not shown* |
✗ |
extensions |
{} |
let/var | {} |
✗ |
plugins |
{} |
let/var | {} |
✗ |
textDecoder |
TextDecoder |
let/var | new TextDecoder() |
✗ |
parser |
GLTFParser |
let/var | new GLTFParser( json, { path: path \|\| this.resourcePath \|\| '', crossOrigi... |
✗ |
extensionName |
any |
let/var | json.extensionsUsed[ i ] |
✗ |
extensionsRequired |
any |
let/var | json.extensionsRequired \|\| [] |
✗ |
scope |
this |
let/var | this |
✗ |
objects |
{} |
let/var | {} |
✗ |
EXTENSIONS |
{ KHR_BINARY_GLTF: string; KHR_DRACO_... |
let/var | { KHR_BINARY_GLTF: 'KHR_binary_glTF', KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_... |
✗ |
parser |
any |
let/var | this.parser |
✗ |
nodeDefs |
any |
let/var | this.parser.json.nodes \|\| [] |
✗ |
nodeDef |
any |
let/var | nodeDefs[ nodeIndex ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
cacheKey |
string |
let/var | 'light:' + lightIndex |
✗ |
json |
any |
let/var | parser.json |
✗ |
extensions |
any |
let/var | ( json.extensions && json.extensions[ this.name ] ) \|\| {} |
✗ |
lightDefs |
any |
let/var | extensions.lights \|\| [] |
✗ |
lightDef |
any |
let/var | lightDefs[ lightIndex ] |
✗ |
lightNode |
any |
let/var | *not shown* |
✗ |
color |
any |
let/var | new Color( 0xffffff ) |
✗ |
range |
any |
let/var | lightDef.range !== undefined ? lightDef.range : 0 |
✗ |
self |
this |
let/var | this |
✗ |
parser |
any |
let/var | this.parser |
✗ |
json |
any |
let/var | parser.json |
✗ |
nodeDef |
any |
let/var | json.nodes[ nodeIndex ] |
✗ |
lightDef |
any |
let/var | ( nodeDef.extensions && nodeDef.extensions[ this.name ] ) \|\| {} |
✗ |
lightIndex |
any |
let/var | lightDef.light |
✗ |
pending |
any[] |
let/var | [] |
✗ |
metallicRoughness |
any |
let/var | materialDef.pbrMetallicRoughness |
✗ |
array |
any |
let/var | metallicRoughness.baseColorFactor |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
emissiveStrength |
any |
let/var | materialDef.extensions[ this.name ].emissiveStrength |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
pending |
any[] |
let/var | [] |
✗ |
extension |
any |
let/var | materialDef.extensions[ this.name ] |
✗ |
scale |
any |
let/var | extension.clearcoatNormalTexture.scale |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
extension |
any |
let/var | materialDef.extensions[ this.name ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
pending |
any[] |
let/var | [] |
✗ |
extension |
any |
let/var | materialDef.extensions[ this.name ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
pending |
any[] |
let/var | [] |
✗ |
extension |
any |
let/var | materialDef.extensions[ this.name ] |
✗ |
colorFactor |
any |
let/var | extension.sheenColorFactor |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
pending |
any[] |
let/var | [] |
✗ |
extension |
any |
let/var | materialDef.extensions[ this.name ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
pending |
any[] |
let/var | [] |
✗ |
extension |
any |
let/var | materialDef.extensions[ this.name ] |
✗ |
colorArray |
any |
let/var | extension.attenuationColor \|\| [ 1, 1, 1 ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
extension |
any |
let/var | materialDef.extensions[ this.name ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
pending |
any[] |
let/var | [] |
✗ |
extension |
any |
let/var | materialDef.extensions[ this.name ] |
✗ |
colorArray |
any |
let/var | extension.specularColorFactor \|\| [ 1, 1, 1 ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
pending |
any[] |
let/var | [] |
✗ |
extension |
any |
let/var | materialDef.extensions[ this.name ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
materialDef |
any |
let/var | parser.json.materials[ materialIndex ] |
✗ |
pending |
any[] |
let/var | [] |
✗ |
extension |
any |
let/var | materialDef.extensions[ this.name ] |
✗ |
parser |
any |
let/var | this.parser |
✗ |
json |
any |
let/var | parser.json |
✗ |
textureDef |
any |
let/var | json.textures[ textureIndex ] |
✗ |
extension |
any |
let/var | textureDef.extensions[ this.name ] |
✗ |
loader |
any |
let/var | parser.options.ktx2Loader |
✗ |
name |
string |
let/var | this.name |
✗ |
parser |
any |
let/var | this.parser |
✗ |
json |
any |
let/var | parser.json |
✗ |
textureDef |
any |
let/var | json.textures[ textureIndex ] |
✗ |
extension |
any |
let/var | textureDef.extensions[ name ] |
✗ |
source |
any |
let/var | json.images[ extension.source ] |
✗ |
loader |
any |
let/var | parser.textureLoader |
✗ |
name |
string |
let/var | this.name |
✗ |
parser |
any |
let/var | this.parser |
✗ |
json |
any |
let/var | parser.json |
✗ |
textureDef |
any |
let/var | json.textures[ textureIndex ] |
✗ |
extension |
any |
let/var | textureDef.extensions[ name ] |
✗ |
source |
any |
let/var | json.images[ extension.source ] |
✗ |
loader |
any |
let/var | parser.textureLoader |
✗ |
json |
any |
let/var | this.parser.json |
✗ |
bufferView |
any |
let/var | json.bufferViews[ index ] |
✗ |
extensionDef |
any |
let/var | bufferView.extensions[ this.name ] |
✗ |
decoder |
any |
let/var | this.parser.options.meshoptDecoder |
✗ |
byteOffset |
any |
let/var | extensionDef.byteOffset \|\| 0 |
✗ |
byteLength |
any |
let/var | extensionDef.byteLength \|\| 0 |
✗ |
count |
any |
let/var | extensionDef.count |
✗ |
stride |
any |
let/var | extensionDef.byteStride |
✗ |
source |
Uint8Array<any> |
let/var | new Uint8Array( res, byteOffset, byteLength ) |
✗ |
result |
ArrayBuffer |
let/var | new ArrayBuffer( count * stride ) |
✗ |
json |
any |
let/var | this.parser.json |
✗ |
nodeDef |
any |
let/var | json.nodes[ nodeIndex ] |
✗ |
meshDef |
any |
let/var | json.meshes[ nodeDef.mesh ] |
✗ |
extensionDef |
any |
let/var | nodeDef.extensions[ this.name ] |
✗ |
attributesDef |
any |
let/var | extensionDef.attributes |
✗ |
pending |
any[] |
let/var | [] |
✗ |
attributes |
{} |
let/var | {} |
✗ |
meshes |
any |
let/var | nodeObject.isGroup ? nodeObject.children : [ nodeObject ] |
✗ |
count |
any |
let/var | results[ 0 ].count |
✗ |
instancedMeshes |
any[] |
let/var | [] |
✗ |
m |
any |
let/var | new Matrix4() |
✗ |
p |
any |
let/var | new Vector3() |
✗ |
q |
any |
let/var | new Quaternion() |
✗ |
s |
any |
let/var | new Vector3( 1, 1, 1 ) |
✗ |
instancedMesh |
any |
let/var | new InstancedMesh( mesh.geometry, mesh.material, count ) |
✗ |
attr |
any |
let/var | attributes[ attributeName ] |
✗ |
BINARY_EXTENSION_HEADER_MAGIC |
"glTF" |
let/var | 'glTF' |
✗ |
BINARY_EXTENSION_HEADER_LENGTH |
12 |
let/var | 12 |
✗ |
BINARY_EXTENSION_CHUNK_TYPES |
{ JSON: number; BIN: number; } |
let/var | { JSON: 0x4E4F534A, BIN: 0x004E4942 } |
✗ |
headerView |
DataView<any> |
let/var | new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH ) |
✗ |
textDecoder |
TextDecoder |
let/var | new TextDecoder() |
✗ |
chunkContentsLength |
number |
let/var | this.header.length - BINARY_EXTENSION_HEADER_LENGTH |
✗ |
chunkView |
DataView<any> |
let/var | new DataView( data, BINARY_EXTENSION_HEADER_LENGTH ) |
✗ |
chunkIndex |
number |
let/var | 0 |
✗ |
contentArray |
Uint8Array<any> |
let/var | new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength ) |
✗ |
byteOffset |
number |
let/var | BINARY_EXTENSION_HEADER_LENGTH + chunkIndex |
✗ |
json |
any |
let/var | this.json |
✗ |
dracoLoader |
any |
let/var | this.dracoLoader |
✗ |
bufferViewIndex |
any |
let/var | primitive.extensions[ this.name ].bufferView |
✗ |
gltfAttributeMap |
any |
let/var | primitive.extensions[ this.name ].attributes |
✗ |
threeAttributeMap |
{} |
let/var | {} |
✗ |
attributeNormalizedMap |
{} |
let/var | {} |
✗ |
attributeTypeMap |
{} |
let/var | {} |
✗ |
threeAttributeName |
any |
let/var | ATTRIBUTES[ attributeName ] \|\| attributeName.toLowerCase() |
✗ |
threeAttributeName |
any |
let/var | ATTRIBUTES[ attributeName ] \|\| attributeName.toLowerCase() |
✗ |
accessorDef |
any |
let/var | json.accessors[ primitive.attributes[ attributeName ] ] |
✗ |
componentType |
any |
let/var | WEBGL_COMPONENT_TYPES[ accessorDef.componentType ] |
✗ |
attribute |
any |
let/var | geometry.attributes[ attributeName ] |
✗ |
normalized |
any |
let/var | attributeNormalizedMap[ attributeName ] |
✗ |
result |
any |
let/var | this.resultBuffer |
✗ |
values |
any |
let/var | this.sampleValues |
✗ |
valueSize |
any |
let/var | this.valueSize |
✗ |
offset |
any |
let/var | index * valueSize * 3 + valueSize |
✗ |
result |
any |
let/var | this.resultBuffer |
✗ |
values |
any |
let/var | this.sampleValues |
✗ |
stride |
any |
let/var | this.valueSize |
✗ |
stride2 |
number |
let/var | stride * 2 |
✗ |
stride3 |
number |
let/var | stride * 3 |
✗ |
td |
number |
let/var | t1 - t0 |
✗ |
p |
number |
let/var | ( t - t0 ) / td |
✗ |
pp |
number |
let/var | p * p |
✗ |
ppp |
number |
let/var | pp * p |
✗ |
offset1 |
number |
let/var | i1 * stride3 |
✗ |
offset0 |
number |
let/var | offset1 - stride3 |
✗ |
s2 |
number |
let/var | - 2 * ppp + 3 * pp |
✗ |
s3 |
number |
let/var | ppp - pp |
✗ |
s0 |
number |
let/var | 1 - s2 |
✗ |
s1 |
number |
let/var | s3 - pp + p |
✗ |
p0 |
any |
let/var | values[ offset0 + i + stride ] |
✗ |
m0 |
number |
let/var | values[ offset0 + i + stride2 ] * td |
✗ |
p1 |
any |
let/var | values[ offset1 + i + stride ] |
✗ |
m1 |
number |
let/var | values[ offset1 + i ] * td |
✗ |
_quaternion |
any |
let/var | new Quaternion() |
✗ |
WEBGL_CONSTANTS |
{ FLOAT: number; FLOAT_MAT3: number; ... |
let/var | { FLOAT: 5126, //FLOAT_MAT2: 35674, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLO... |
✗ |
WEBGL_COMPONENT_TYPES |
{ 5120: Int8ArrayConstructor; 5121: U... |
let/var | { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 512... |
✗ |
WEBGL_FILTERS |
{ 9728: any; 9729: any; 9984: any; 99... |
let/var | { 9728: NearestFilter, 9729: LinearFilter, 9984: NearestMipmapNearestFilter, ... |
✗ |
WEBGL_WRAPPINGS |
{ 33071: any; 33648: any; 10497: any; } |
let/var | { 33071: ClampToEdgeWrapping, 33648: MirroredRepeatWrapping, 10497: RepeatWra... |
✗ |
WEBGL_TYPE_SIZES |
{ SCALAR: number; VEC2: number; VEC3:... |
let/var | { 'SCALAR': 1, 'VEC2': 2, 'VEC3': 3, 'VEC4': 4, 'MAT2': 4, 'MAT3': 9, 'MAT4':... |
✗ |
ATTRIBUTES |
{ POSITION: string; NORMAL: string; T... |
let/var | { POSITION: 'position', NORMAL: 'normal', TANGENT: 'tangent', TEXCOORD_0: 'uv... |
✗ |
PATH_PROPERTIES |
{ scale: string; translation: string;... |
let/var | { scale: 'scale', translation: 'position', rotation: 'quaternion', weights: '... |
✗ |
INTERPOLATION |
{ CUBICSPLINE: any; LINEAR: any; STEP... |
let/var | { CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInte... |
✗ |
ALPHA_MODES |
{ OPAQUE: string; MASK: string; BLEND... |
let/var | { OPAQUE: 'OPAQUE', MASK: 'MASK', BLEND: 'BLEND' } |
✗ |
hasMorphPosition |
boolean |
let/var | false |
✗ |
hasMorphNormal |
boolean |
let/var | false |
✗ |
hasMorphColor |
boolean |
let/var | false |
✗ |
target |
GLTF.Target |
let/var | targets[ i ] |
✗ |
pendingPositionAccessors |
any[] |
let/var | [] |
✗ |
pendingNormalAccessors |
any[] |
let/var | [] |
✗ |
pendingColorAccessors |
any[] |
let/var | [] |
✗ |
target |
GLTF.Target |
let/var | targets[ i ] |
✗ |
pendingAccessor |
any |
let/var | target.POSITION !== undefined ? parser.getDependency( 'accessor', target.POSI... |
✗ |
pendingAccessor |
any |
let/var | target.NORMAL !== undefined ? parser.getDependency( 'accessor', target.NORMAL... |
✗ |
pendingAccessor |
any |
let/var | target.COLOR_0 !== undefined ? parser.getDependency( 'accessor', target.COLOR... |
✗ |
morphPositions |
any |
let/var | accessors[ 0 ] |
✗ |
morphNormals |
any |
let/var | accessors[ 1 ] |
✗ |
morphColors |
any |
let/var | accessors[ 2 ] |
✗ |
targetNames |
any |
let/var | meshDef.extras.targetNames |
✗ |
geometryKey |
any |
let/var | *not shown* |
✗ |
dracoExtension |
any |
let/var | primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH... |
✗ |
attributesKey |
string |
let/var | '' |
✗ |
_identityMatrix |
any |
let/var | new Matrix4() |
✗ |
isSafari |
boolean |
let/var | false |
✗ |
safariVersion |
number |
let/var | - 1 |
✗ |
isFirefox |
boolean |
let/var | false |
✗ |
firefoxVersion |
number |
let/var | - 1 |
✗ |
userAgent |
string |
let/var | navigator.userAgent |
✗ |
parser |
this |
let/var | this |
✗ |
json |
{} |
let/var | this.json |
✗ |
extensions |
{} |
let/var | this.extensions |
✗ |
result |
{ scene: any; scenes: any[]; animatio... |
let/var | { scene: dependencies[ 0 ][ json.scene \|\| 0 ], scenes: dependencies[ 0 ], a... |
✗ |
nodeDefs |
any |
let/var | this.json.nodes \|\| [] |
✗ |
skinDefs |
any |
let/var | this.json.skins \|\| [] |
✗ |
meshDefs |
any |
let/var | this.json.meshes \|\| [] |
✗ |
joints |
any |
let/var | skinDefs[ skinIndex ].joints |
✗ |
nodeDef |
any |
let/var | nodeDefs[ nodeIndex ] |
✗ |
pending |
any[] |
let/var | [] |
✗ |
cacheKey |
string |
let/var | type + ':' + index |
✗ |
parser |
this |
let/var | this |
✗ |
defs |
any |
let/var | this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] \|\| [] |
✗ |
bufferDef |
any |
let/var | this.json.buffers[ bufferIndex ] |
✗ |
loader |
any |
let/var | this.fileLoader |
✗ |
options |
{} |
let/var | this.options |
✗ |
bufferViewDef |
any |
let/var | this.json.bufferViews[ bufferViewIndex ] |
✗ |
byteLength |
any |
let/var | bufferViewDef.byteLength \|\| 0 |
✗ |
byteOffset |
any |
let/var | bufferViewDef.byteOffset \|\| 0 |
✗ |
parser |
this |
let/var | this |
✗ |
json |
{} |
let/var | this.json |
✗ |
accessorDef |
any |
let/var | this.json.accessors[ accessorIndex ] |
✗ |
itemSize |
any |
let/var | WEBGL_TYPE_SIZES[ accessorDef.type ] |
✗ |
TypedArray |
any |
let/var | WEBGL_COMPONENT_TYPES[ accessorDef.componentType ] |
✗ |
normalized |
boolean |
let/var | accessorDef.normalized === true |
✗ |
array |
any |
let/var | new TypedArray( accessorDef.count * itemSize ) |
✗ |
pendingBufferViews |
any[] |
let/var | [] |
✗ |
bufferView |
any |
let/var | bufferViews[ 0 ] |
✗ |
itemSize |
any |
let/var | WEBGL_TYPE_SIZES[ accessorDef.type ] |
✗ |
TypedArray |
any |
let/var | WEBGL_COMPONENT_TYPES[ accessorDef.componentType ] |
✗ |
elementBytes |
any |
let/var | TypedArray.BYTES_PER_ELEMENT |
✗ |
itemBytes |
number |
let/var | elementBytes * itemSize |
✗ |
byteOffset |
any |
let/var | accessorDef.byteOffset \|\| 0 |
✗ |
byteStride |
any |
let/var | accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferVi... |
✗ |
normalized |
boolean |
let/var | accessorDef.normalized === true |
✗ |
array |
any |
let/var | *not shown* |
✗ |
bufferAttribute |
any |
let/var | *not shown* |
✗ |
ibCacheKey |
string |
let/var | 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentTy... |
✗ |
itemSizeIndices |
number |
let/var | WEBGL_TYPE_SIZES.SCALAR |
✗ |
TypedArrayIndices |
any |
let/var | WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ] |
✗ |
byteOffsetIndices |
any |
let/var | accessorDef.sparse.indices.byteOffset \|\| 0 |
✗ |
byteOffsetValues |
any |
let/var | accessorDef.sparse.values.byteOffset \|\| 0 |
✗ |
sparseIndices |
any |
let/var | new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.spars... |
✗ |
sparseValues |
any |
let/var | new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count ... |
✗ |
index |
any |
let/var | sparseIndices[ i ] |
✗ |
json |
{} |
let/var | this.json |
✗ |
options |
{} |
let/var | this.options |
✗ |
textureDef |
any |
let/var | json.textures[ textureIndex ] |
✗ |
sourceIndex |
any |
let/var | textureDef.source |
✗ |
sourceDef |
any |
let/var | json.images[ sourceIndex ] |
✗ |
loader |
any |
let/var | this.textureLoader |
✗ |
parser |
this |
let/var | this |
✗ |
json |
{} |
let/var | this.json |
✗ |
textureDef |
any |
let/var | json.textures[ textureIndex ] |
✗ |
sourceDef |
any |
let/var | json.images[ sourceIndex ] |
✗ |
cacheKey |
string |
let/var | ( sourceDef.uri \|\| sourceDef.bufferView ) + ':' + textureDef.sampler |
✗ |
samplers |
any |
let/var | json.samplers \|\| {} |
✗ |
sampler |
any |
let/var | samplers[ textureDef.sampler ] \|\| {} |
✗ |
parser |
this |
let/var | this |
✗ |
json |
{} |
let/var | this.json |
✗ |
options |
{} |
let/var | this.options |
✗ |
sourceDef |
any |
let/var | json.images[ sourceIndex ] |
✗ |
URL |
{ new (url: string \| URL, base?: str... |
let/var | self.URL \|\| self.webkitURL |
✗ |
sourceURI |
any |
let/var | sourceDef.uri \|\| '' |
✗ |
isObjectURL |
boolean |
let/var | false |
✗ |
blob |
Blob |
let/var | new Blob( [ bufferView ], { type: sourceDef.mimeType } ) |
✗ |
onLoad |
(value: any) => void |
let/var | resolve |
✗ |
texture |
any |
let/var | new Texture( imageBitmap ) |
✗ |
parser |
this |
let/var | this |
✗ |
transform |
any |
let/var | mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_T... |
✗ |
geometry |
any |
let/var | mesh.geometry |
✗ |
material |
any |
let/var | mesh.material |
✗ |
useDerivativeTangents |
boolean |
let/var | geometry.attributes.tangent === undefined |
✗ |
useVertexColors |
boolean |
let/var | geometry.attributes.color !== undefined |
✗ |
useFlatShading |
boolean |
let/var | geometry.attributes.normal === undefined |
✗ |
cacheKey |
string |
let/var | 'PointsMaterial:' + material.uuid |
✗ |
cacheKey |
string |
let/var | 'LineBasicMaterial:' + material.uuid |
✗ |
cacheKey |
string |
let/var | 'ClonedMaterial:' + material.uuid + ':' |
✗ |
parser |
this |
let/var | this |
✗ |
json |
{} |
let/var | this.json |
✗ |
extensions |
{} |
let/var | this.extensions |
✗ |
materialDef |
any |
let/var | json.materials[ materialIndex ] |
✗ |
materialType |
any |
let/var | *not shown* |
✗ |
materialParams |
{ color: any; opacity: any; metalness... |
let/var | {} |
✗ |
materialExtensions |
any |
let/var | materialDef.extensions \|\| {} |
✗ |
pending |
any[] |
let/var | [] |
✗ |
kmuExtension |
any |
let/var | extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] |
✗ |
metallicRoughness |
any |
let/var | materialDef.pbrMetallicRoughness \|\| {} |
✗ |
array |
any |
let/var | metallicRoughness.baseColorFactor |
✗ |
alphaMode |
any |
let/var | materialDef.alphaMode \|\| ALPHA_MODES.OPAQUE |
✗ |
scale |
any |
let/var | materialDef.normalTexture.scale |
✗ |
emissiveFactor |
any |
let/var | materialDef.emissiveFactor |
✗ |
material |
any |
let/var | new materialType( materialParams ) |
✗ |
parser |
this |
let/var | this |
✗ |
extensions |
{} |
let/var | this.extensions |
✗ |
cache |
{} |
let/var | this.primitiveCache |
✗ |
pending |
any[] |
let/var | [] |
✗ |
primitive |
GLTF.Primitive |
let/var | primitives[ i ] |
✗ |
cached |
any |
let/var | cache[ cacheKey ] |
✗ |
geometryPromise |
any |
let/var | *not shown* |
✗ |
parser |
this |
let/var | this |
✗ |
json |
{} |
let/var | this.json |
✗ |
extensions |
{} |
let/var | this.extensions |
✗ |
meshDef |
any |
let/var | json.meshes[ meshIndex ] |
✗ |
primitives |
any |
let/var | meshDef.primitives |
✗ |
pending |
any[] |
let/var | [] |
✗ |
material |
any |
let/var | primitives[ i ].material === undefined ? createDefaultMaterial( this.cache ) ... |
✗ |
geometries |
any |
let/var | results[ results.length - 1 ] |
✗ |
meshes |
any[] |
let/var | [] |
✗ |
geometry |
any |
let/var | geometries[ i ] |
✗ |
primitive |
any |
let/var | primitives[ i ] |
✗ |
mesh |
any |
let/var | *not shown* |
✗ |
material |
any |
let/var | materials[ i ] |
✗ |
group |
any |
let/var | new Group() |
✗ |
camera |
any |
let/var | *not shown* |
✗ |
cameraDef |
any |
let/var | this.json.cameras[ cameraIndex ] |
✗ |
params |
any |
let/var | cameraDef[ cameraDef.type ] |
✗ |
skinDef |
any |
let/var | this.json.skins[ skinIndex ] |
✗ |
pending |
any[] |
let/var | [] |
✗ |
jointNodes |
any[] |
let/var | results |
✗ |
bones |
any[] |
let/var | [] |
✗ |
boneInverses |
any[] |
let/var | [] |
✗ |
jointNode |
any |
let/var | jointNodes[ i ] |
✗ |
mat |
any |
let/var | new Matrix4() |
✗ |
json |
{} |
let/var | this.json |
✗ |
parser |
this |
let/var | this |
✗ |
animationDef |
any |
let/var | json.animations[ animationIndex ] |
✗ |
animationName |
any |
let/var | animationDef.name ? animationDef.name : 'animation_' + animationIndex |
✗ |
pendingNodes |
any[] |
let/var | [] |
✗ |
pendingInputAccessors |
any[] |
let/var | [] |
✗ |
pendingOutputAccessors |
any[] |
let/var | [] |
✗ |
pendingSamplers |
any[] |
let/var | [] |
✗ |
pendingTargets |
any[] |
let/var | [] |
✗ |
channel |
any |
let/var | animationDef.channels[ i ] |
✗ |
sampler |
any |
let/var | animationDef.samplers[ channel.sampler ] |
✗ |
target |
any |
let/var | channel.target |
✗ |
name |
any |
let/var | target.node |
✗ |
input |
any |
let/var | animationDef.parameters !== undefined ? animationDef.parameters[ sampler.inpu... |
✗ |
output |
any |
let/var | animationDef.parameters !== undefined ? animationDef.parameters[ sampler.outp... |
✗ |
nodes |
any |
let/var | dependencies[ 0 ] |
✗ |
inputAccessors |
any |
let/var | dependencies[ 1 ] |
✗ |
outputAccessors |
any |
let/var | dependencies[ 2 ] |
✗ |
samplers |
any |
let/var | dependencies[ 3 ] |
✗ |
targets |
any |
let/var | dependencies[ 4 ] |
✗ |
tracks |
any[] |
let/var | [] |
✗ |
node |
any |
let/var | nodes[ i ] |
✗ |
inputAccessor |
any |
let/var | inputAccessors[ i ] |
✗ |
outputAccessor |
any |
let/var | outputAccessors[ i ] |
✗ |
sampler |
any |
let/var | samplers[ i ] |
✗ |
target |
any |
let/var | targets[ i ] |
✗ |
json |
{} |
let/var | this.json |
✗ |
parser |
this |
let/var | this |
✗ |
nodeDef |
any |
let/var | json.nodes[ nodeIndex ] |
✗ |
json |
{} |
let/var | this.json |
✗ |
parser |
this |
let/var | this |
✗ |
nodeDef |
any |
let/var | json.nodes[ nodeIndex ] |
✗ |
childPending |
any[] |
let/var | [] |
✗ |
childrenDef |
any |
let/var | nodeDef.children \|\| [] |
✗ |
skeletonPending |
Promise<any> |
let/var | nodeDef.skin === undefined ? Promise.resolve( null ) : parser.getDependency( ... |
✗ |
node |
any |
let/var | results[ 0 ] |
✗ |
children |
any |
let/var | results[ 1 ] |
✗ |
skeleton |
any |
let/var | results[ 2 ] |
✗ |
json |
{} |
let/var | this.json |
✗ |
extensions |
{} |
let/var | this.extensions |
✗ |
parser |
this |
let/var | this |
✗ |
nodeDef |
any |
let/var | json.nodes[ nodeIndex ] |
✗ |
nodeName |
string |
let/var | nodeDef.name ? parser.createUniqueName( nodeDef.name ) : '' |
✗ |
pending |
any[] |
let/var | [] |
✗ |
node |
any |
let/var | *not shown* |
✗ |
matrix |
any |
let/var | new Matrix4() |
✗ |
extensions |
{} |
let/var | this.extensions |
✗ |
sceneDef |
any |
let/var | this.json.scenes[ sceneIndex ] |
✗ |
parser |
this |
let/var | this |
✗ |
scene |
any |
let/var | new Group() |
✗ |
nodeIds |
any |
let/var | sceneDef.nodes \|\| [] |
✗ |
pending |
any[] |
let/var | [] |
✗ |
reducedAssociations |
Map<any, any> |
let/var | new Map() |
✗ |
tracks |
any[] |
let/var | [] |
✗ |
targetName |
any |
let/var | node.name ? node.name : node.uuid |
✗ |
targetNames |
any[] |
let/var | [] |
✗ |
TypedKeyframeTrack |
any |
let/var | *not shown* |
✗ |
interpolation |
any |
let/var | sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] ... |
✗ |
track |
any |
let/var | new TypedKeyframeTrack( targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path... |
✗ |
outputArray |
any |
let/var | accessor.array |
✗ |
scaled |
Float32Array<any> |
let/var | new Float32Array( outputArray.length ) |
✗ |
interpolantType |
typeof GLTFCubicSplineInterpolant |
let/var | ( this instanceof QuaternionKeyframeTrack ) ? GLTFCubicSplineQuaternionInterp... |
✗ |
attributes |
any |
let/var | primitiveDef.attributes |
✗ |
box |
any |
let/var | new Box3() |
✗ |
accessor |
any |
let/var | parser.json.accessors[ attributes.POSITION ] |
✗ |
min |
any |
let/var | accessor.min |
✗ |
max |
any |
let/var | accessor.max |
✗ |
targets |
any |
let/var | primitiveDef.targets |
✗ |
maxDisplacement |
any |
let/var | new Vector3() |
✗ |
vector |
any |
let/var | new Vector3() |
✗ |
target |
any |
let/var | targets[ i ] |
✗ |
accessor |
any |
let/var | parser.json.accessors[ target.POSITION ] |
✗ |
min |
any |
let/var | accessor.min |
✗ |
max |
any |
let/var | accessor.max |
✗ |
sphere |
any |
let/var | new Sphere() |
✗ |
attributes |
any |
let/var | primitiveDef.attributes |
✗ |
pending |
any[] |
let/var | [] |
✗ |
threeAttributeName |
any |
let/var | ATTRIBUTES[ gltfAttributeName ] \|\| gltfAttributeName.toLowerCase() |
✗ |
Async/Await Patterns¶
Type | Function | Await Expressions | Promise Chains |
---|---|---|---|
promise-chain | addMorphTargets |
none | Promise.resolve, Promise.all( [ |
Promise.all( pendingPositionAccessors ), | |||
Promise.all( pendingNormalAccessors ), | |||
Promise.all( pendingColorAccessors ) | |||
] ).then, Promise.all, Promise.all, Promise.all, Promise.all | |||
promise-chain | createDracoPrimitive |
none | extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] |
.decodePrimitive( primitive, parser ).then | |||
promise-chain | addPrimitiveAttributes |
none | parser.getDependency( 'accessor', accessorIndex ).then, parser.getDependency( 'accessor', primitiveDef.indices ).then, Promise.all( pending ).then, Promise.all |
promise-chain | assignAttributeAccessor |
none | parser.getDependency( 'accessor', accessorIndex ).then |
Functions¶
GLTFLoader.load(url: string, onLoad: any, onProgress: onProgressCallback, onError: onErrorCallback): void
¶
JSDoc:
/**
* Starts loading from the given URL and passes the loaded glTF asset
* to the `onLoad()` callback.
*
* @param {string} url - The path/URL of the file to be loaded. This can also be a data URI.
* @param {function(GLTFLoader~LoadObject)} onLoad - Executed when the loading process has been finished.
* @param {onProgressCallback} onProgress - Executed while the loading is in progress.
* @param {onErrorCallback} onError - Executed when errors occur.
*/
Parameters:
url
string
onLoad
any
onProgress
onProgressCallback
onError
onErrorCallback
Returns: void
Calls:
LoaderUtils.extractUrlBase
LoaderUtils.resolveURL
this.manager.itemStart
onError
console.error
scope.manager.itemError
scope.manager.itemEnd
loader.setPath
loader.setResponseType
loader.setRequestHeader
loader.setWithCredentials
loader.load
scope.parse
onLoad
_onError
Internal Comments:
// If a base path is set, resources will be relative paths from that plus the relative path of the gltf file (x2)
// Example path = 'https://my-cnd-server.com/', url = 'assets/models/model.gltf' (x2)
// resourcePath = 'https://my-cnd-server.com/assets/models/' (x2)
// referenced resource 'model.bin' will be loaded from 'https://my-cnd-server.com/assets/models/model.bin' (x2)
// referenced resource '../textures/texture.png' will be loaded from 'https://my-cnd-server.com/assets/textures/texture.png' (x2)
// Tells the LoadingManager to track an extra item, which resolves after (x5)
// the model is fully loaded. This means the count of items loaded will (x5)
// be incorrect, but ensures manager.onLoad() does not fire early. (x5)
Code
load( url, onLoad, onProgress, onError ) {
const scope = this;
let resourcePath;
if ( this.resourcePath !== '' ) {
resourcePath = this.resourcePath;
} else if ( this.path !== '' ) {
// If a base path is set, resources will be relative paths from that plus the relative path of the gltf file
// Example path = 'https://my-cnd-server.com/', url = 'assets/models/model.gltf'
// resourcePath = 'https://my-cnd-server.com/assets/models/'
// referenced resource 'model.bin' will be loaded from 'https://my-cnd-server.com/assets/models/model.bin'
// referenced resource '../textures/texture.png' will be loaded from 'https://my-cnd-server.com/assets/textures/texture.png'
const relativeUrl = LoaderUtils.extractUrlBase( url );
resourcePath = LoaderUtils.resolveURL( relativeUrl, this.path );
} else {
resourcePath = LoaderUtils.extractUrlBase( url );
}
// Tells the LoadingManager to track an extra item, which resolves after
// the model is fully loaded. This means the count of items loaded will
// be incorrect, but ensures manager.onLoad() does not fire early.
this.manager.itemStart( url );
const _onError = function ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
scope.manager.itemEnd( url );
};
const loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
loader.setRequestHeader( this.requestHeader );
loader.setWithCredentials( this.withCredentials );
loader.load( url, function ( data ) {
try {
scope.parse( data, resourcePath, function ( gltf ) {
onLoad( gltf );
scope.manager.itemEnd( url );
}, _onError );
} catch ( e ) {
_onError( e );
}
}, onProgress, _onError );
}
GLTFLoader.setDRACOLoader(dracoLoader: DRACOLoader): GLTFLoader
¶
JSDoc:
/**
* Sets the given Draco loader to this loader. Required for decoding assets
* compressed with the `KHR_draco_mesh_compression` extension.
*
* @param {DRACOLoader} dracoLoader - The Draco loader to set.
* @return {GLTFLoader} A reference to this loader.
*/
Parameters:
dracoLoader
DRACOLoader
Returns: GLTFLoader
GLTFLoader.setKTX2Loader(ktx2Loader: KTX2Loader): GLTFLoader
¶
JSDoc:
/**
* Sets the given KTX2 loader to this loader. Required for loading KTX2
* compressed textures.
*
* @param {KTX2Loader} ktx2Loader - The KTX2 loader to set.
* @return {GLTFLoader} A reference to this loader.
*/
Parameters:
ktx2Loader
KTX2Loader
Returns: GLTFLoader
GLTFLoader.setMeshoptDecoder(meshoptDecoder: any): GLTFLoader
¶
JSDoc:
/**
* Sets the given meshopt decoder. Required for decoding assets
* compressed with the `EXT_meshopt_compression` extension.
*
* @param {Object} meshoptDecoder - The meshopt decoder to set.
* @return {GLTFLoader} A reference to this loader.
*/
Parameters:
meshoptDecoder
any
Returns: GLTFLoader
GLTFLoader.register(callback: any): GLTFLoader
¶
JSDoc:
/**
* Registers a plugin callback. This API is internally used to implement the various
* glTF extensions but can also used by third-party code to add additional logic
* to the loader.
*
* @param {function(parser:GLTFParser)} callback - The callback function to register.
* @return {GLTFLoader} A reference to this loader.
*/
Parameters:
callback
any
Returns: GLTFLoader
Calls:
this.pluginCallbacks.indexOf
this.pluginCallbacks.push
Code
GLTFLoader.unregister(callback: Function): GLTFLoader
¶
JSDoc:
/**
* Unregisters a plugin callback.
*
* @param {Function} callback - The callback function to unregister.
* @return {GLTFLoader} A reference to this loader.
*/
Parameters:
callback
Function
Returns: GLTFLoader
Calls:
this.pluginCallbacks.indexOf
this.pluginCallbacks.splice
Code
GLTFLoader.parse(data: string | ArrayBuffer, path: string, onLoad: any, onError: onErrorCallback): void
¶
JSDoc:
/**
* Parses the given FBX data and returns the resulting group.
*
* @param {string|ArrayBuffer} data - The raw glTF data.
* @param {string} path - The URL base path.
* @param {function(GLTFLoader~LoadObject)} onLoad - Executed when the loading process has been finished.
* @param {onErrorCallback} onError - Executed when errors occur.
*/
Parameters:
data
string | ArrayBuffer
path
string
onLoad
any
onError
onErrorCallback
Returns: void
Calls:
JSON.parse
textDecoder.decode
onError
parser.fileLoader.setRequestHeader
complex_call_11206
console.error
extensionsRequired.indexOf
console.warn
parser.setExtensions
parser.setPlugins
parser.parse
Internal Comments:
// Workaround to avoid determining as unknown extension (x4)
// in addUnknownExtensionsToUserData(). (x4)
// Remove this workaround if we move all the existing (x4)
// extension handlers to plugin system (x4)
Code
parse( data, path, onLoad, onError ) {
let json;
const extensions = {};
const plugins = {};
const textDecoder = new TextDecoder();
if ( typeof data === 'string' ) {
json = JSON.parse( data );
} else if ( data instanceof ArrayBuffer ) {
const magic = textDecoder.decode( new Uint8Array( data, 0, 4 ) );
if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) {
try {
extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data );
} catch ( error ) {
if ( onError ) onError( error );
return;
}
json = JSON.parse( extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content );
} else {
json = JSON.parse( textDecoder.decode( data ) );
}
} else {
json = data;
}
if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) {
if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) );
return;
}
const parser = new GLTFParser( json, {
path: path || this.resourcePath || '',
crossOrigin: this.crossOrigin,
requestHeader: this.requestHeader,
manager: this.manager,
ktx2Loader: this.ktx2Loader,
meshoptDecoder: this.meshoptDecoder
} );
parser.fileLoader.setRequestHeader( this.requestHeader );
for ( let i = 0; i < this.pluginCallbacks.length; i ++ ) {
const plugin = this.pluginCallbacks[ i ]( parser );
if ( ! plugin.name ) console.error( 'THREE.GLTFLoader: Invalid plugin found: missing name' );
plugins[ plugin.name ] = plugin;
// Workaround to avoid determining as unknown extension
// in addUnknownExtensionsToUserData().
// Remove this workaround if we move all the existing
// extension handlers to plugin system
extensions[ plugin.name ] = true;
}
if ( json.extensionsUsed ) {
for ( let i = 0; i < json.extensionsUsed.length; ++ i ) {
const extensionName = json.extensionsUsed[ i ];
const extensionsRequired = json.extensionsRequired || [];
switch ( extensionName ) {
case EXTENSIONS.KHR_MATERIALS_UNLIT:
extensions[ extensionName ] = new GLTFMaterialsUnlitExtension();
break;
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader );
break;
case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
extensions[ extensionName ] = new GLTFTextureTransformExtension();
break;
case EXTENSIONS.KHR_MESH_QUANTIZATION:
extensions[ extensionName ] = new GLTFMeshQuantizationExtension();
break;
default:
if ( extensionsRequired.indexOf( extensionName ) >= 0 && plugins[ extensionName ] === undefined ) {
console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );
}
}
}
}
parser.setExtensions( extensions );
parser.setPlugins( plugins );
parser.parse( onLoad, onError );
}
GLTFLoader.parseAsync(data: string | ArrayBuffer, path: string): Promise<GLTFLoader>
¶
JSDoc:
/**
* Async version of {@link GLTFLoader#parse}.
*
* @async
* @param {string|ArrayBuffer} data - The raw glTF data.
* @param {string} path - The URL base path.
* @return {Promise<GLTFLoader~LoadObject>} A Promise that resolves with the loaded glTF when the parsing has been finished.
*/
Parameters:
data
string | ArrayBuffer
path
string
Returns: Promise<GLTFLoader>
Calls:
scope.parse
Code
_onError(e: any): void
¶
Parameters:
e
any
Returns: void
Calls:
onError
console.error
scope.manager.itemError
scope.manager.itemEnd
Code
GLTFRegistry(): { get: (key: any) => any; add: (key: any, object: any) => void; remove: (key: any) => void; removeAll: () => void; }
¶
Returns: { get: (key: any) => any; add: (key: any, object: any) => void; remove: (key: any) => void; removeAll: () => void; }
Code
get(key: any): any
¶
Parameters:
key
any
Returns: any
add(key: any, object: any): void
¶
Parameters:
key
any
object
any
Returns: void
remove(key: any): void
¶
Parameters:
key
any
Returns: void
removeAll(): void
¶
Returns: void
get(key: any): any
¶
Parameters:
key
any
Returns: any
add(key: any, object: any): void
¶
Parameters:
key
any
object
any
Returns: void
remove(key: any): void
¶
Parameters:
key
any
Returns: void
removeAll(): void
¶
Returns: void
GLTFLightsExtension._markDefs(): void
¶
Returns: void
Calls:
parser._addNodeRef
Code
_markDefs() {
const parser = this.parser;
const nodeDefs = this.parser.json.nodes || [];
for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
const nodeDef = nodeDefs[ nodeIndex ];
if ( nodeDef.extensions
&& nodeDef.extensions[ this.name ]
&& nodeDef.extensions[ this.name ].light !== undefined ) {
parser._addNodeRef( this.cache, nodeDef.extensions[ this.name ].light );
}
}
}
GLTFLightsExtension._loadLight(lightIndex: any): any
¶
Parameters:
lightIndex
any
Returns: any
Calls:
parser.cache.get
color.setRGB
lightNode.target.position.set
lightNode.add
lightNode.position.set
assignExtrasToUserData
parser.createUniqueName
Promise.resolve
parser.cache.add
Internal Comments:
// Handle spotlight properties. (x4)
// Some lights (e.g. spot) default to a position other than the origin. Reset the position (x5)
// here, because node-level parsing will only override position if explicitly specified. (x5)
Code
_loadLight( lightIndex ) {
const parser = this.parser;
const cacheKey = 'light:' + lightIndex;
let dependency = parser.cache.get( cacheKey );
if ( dependency ) return dependency;
const json = parser.json;
const extensions = ( json.extensions && json.extensions[ this.name ] ) || {};
const lightDefs = extensions.lights || [];
const lightDef = lightDefs[ lightIndex ];
let lightNode;
const color = new Color( 0xffffff );
if ( lightDef.color !== undefined ) color.setRGB( lightDef.color[ 0 ], lightDef.color[ 1 ], lightDef.color[ 2 ], LinearSRGBColorSpace );
const range = lightDef.range !== undefined ? lightDef.range : 0;
switch ( lightDef.type ) {
case 'directional':
lightNode = new DirectionalLight( color );
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
case 'point':
lightNode = new PointLight( color );
lightNode.distance = range;
break;
case 'spot':
lightNode = new SpotLight( color );
lightNode.distance = range;
// Handle spotlight properties.
lightDef.spot = lightDef.spot || {};
lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
lightNode.angle = lightDef.spot.outerConeAngle;
lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
default:
throw new Error( 'THREE.GLTFLoader: Unexpected light type: ' + lightDef.type );
}
// Some lights (e.g. spot) default to a position other than the origin. Reset the position
// here, because node-level parsing will only override position if explicitly specified.
lightNode.position.set( 0, 0, 0 );
assignExtrasToUserData( lightNode, lightDef );
if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity;
lightNode.name = parser.createUniqueName( lightDef.name || ( 'light_' + lightIndex ) );
dependency = Promise.resolve( lightNode );
parser.cache.add( cacheKey, dependency );
return dependency;
}
GLTFLightsExtension.getDependency(type: any, index: any): any
¶
Parameters:
type
any
index
any
Returns: any
Calls:
this._loadLight
Code
GLTFLightsExtension.createNodeAttachment(nodeIndex: any): any
¶
Parameters:
nodeIndex
any
Returns: any
Calls:
this._loadLight( lightIndex ).then
parser._getNodeRef
Code
createNodeAttachment( nodeIndex ) {
const self = this;
const parser = this.parser;
const json = parser.json;
const nodeDef = json.nodes[ nodeIndex ];
const lightDef = ( nodeDef.extensions && nodeDef.extensions[ this.name ] ) || {};
const lightIndex = lightDef.light;
if ( lightIndex === undefined ) return null;
return this._loadLight( lightIndex ).then( function ( light ) {
return parser._getNodeRef( self.cache, lightIndex, light );
} );
}
GLTFMaterialsUnlitExtension.getMaterialType(): any
¶
Returns: any
GLTFMaterialsUnlitExtension.extendParams(materialParams: any, materialDef: any, parser: any): Promise<any[]>
¶
Parameters:
materialParams
any
materialDef
any
parser
any
Returns: Promise<any[]>
Calls:
Array.isArray
materialParams.color.setRGB
pending.push
parser.assignTexture
Promise.all
Code
extendParams( materialParams, materialDef, parser ) {
const pending = [];
materialParams.color = new Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
const metallicRoughness = materialDef.pbrMetallicRoughness;
if ( metallicRoughness ) {
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
const array = metallicRoughness.baseColorFactor;
materialParams.color.setRGB( array[ 0 ], array[ 1 ], array[ 2 ], LinearSRGBColorSpace );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, SRGBColorSpace ) );
}
}
return Promise.all( pending );
}
GLTFMaterialsEmissiveStrengthExtension.extendMaterialParams(materialIndex: any, materialParams: any): Promise<void>
¶
Parameters:
materialIndex
any
materialParams
any
Returns: Promise<void>
Calls:
Promise.resolve
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const emissiveStrength = materialDef.extensions[ this.name ].emissiveStrength;
if ( emissiveStrength !== undefined ) {
materialParams.emissiveIntensity = emissiveStrength;
}
return Promise.resolve();
}
GLTFMaterialsClearcoatExtension.getMaterialType(materialIndex: any): any
¶
Parameters:
materialIndex
any
Returns: any
Code
GLTFMaterialsClearcoatExtension.extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Parameters:
materialIndex
any
materialParams
any
Returns: Promise<void> | Promise<any[]>
Calls:
Promise.resolve
pending.push
parser.assignTexture
Promise.all
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.clearcoatFactor !== undefined ) {
materialParams.clearcoat = extension.clearcoatFactor;
}
if ( extension.clearcoatTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) );
}
if ( extension.clearcoatRoughnessFactor !== undefined ) {
materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor;
}
if ( extension.clearcoatRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) );
}
if ( extension.clearcoatNormalTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) );
if ( extension.clearcoatNormalTexture.scale !== undefined ) {
const scale = extension.clearcoatNormalTexture.scale;
materialParams.clearcoatNormalScale = new Vector2( scale, scale );
}
}
return Promise.all( pending );
}
GLTFMaterialsDispersionExtension.getMaterialType(materialIndex: any): any
¶
Parameters:
materialIndex
any
Returns: any
Code
GLTFMaterialsDispersionExtension.extendMaterialParams(materialIndex: any, materialParams: any): Promise<void>
¶
Parameters:
materialIndex
any
materialParams
any
Returns: Promise<void>
Calls:
Promise.resolve
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const extension = materialDef.extensions[ this.name ];
materialParams.dispersion = extension.dispersion !== undefined ? extension.dispersion : 0;
return Promise.resolve();
}
GLTFMaterialsIridescenceExtension.getMaterialType(materialIndex: any): any
¶
Parameters:
materialIndex
any
Returns: any
Code
GLTFMaterialsIridescenceExtension.extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Parameters:
materialIndex
any
materialParams
any
Returns: Promise<void> | Promise<any[]>
Calls:
Promise.resolve
pending.push
parser.assignTexture
Promise.all
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.iridescenceFactor !== undefined ) {
materialParams.iridescence = extension.iridescenceFactor;
}
if ( extension.iridescenceTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'iridescenceMap', extension.iridescenceTexture ) );
}
if ( extension.iridescenceIor !== undefined ) {
materialParams.iridescenceIOR = extension.iridescenceIor;
}
if ( materialParams.iridescenceThicknessRange === undefined ) {
materialParams.iridescenceThicknessRange = [ 100, 400 ];
}
if ( extension.iridescenceThicknessMinimum !== undefined ) {
materialParams.iridescenceThicknessRange[ 0 ] = extension.iridescenceThicknessMinimum;
}
if ( extension.iridescenceThicknessMaximum !== undefined ) {
materialParams.iridescenceThicknessRange[ 1 ] = extension.iridescenceThicknessMaximum;
}
if ( extension.iridescenceThicknessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'iridescenceThicknessMap', extension.iridescenceThicknessTexture ) );
}
return Promise.all( pending );
}
GLTFMaterialsSheenExtension.getMaterialType(materialIndex: any): any
¶
Parameters:
materialIndex
any
Returns: any
Code
GLTFMaterialsSheenExtension.extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Parameters:
materialIndex
any
materialParams
any
Returns: Promise<void> | Promise<any[]>
Calls:
Promise.resolve
materialParams.sheenColor.setRGB
pending.push
parser.assignTexture
Promise.all
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
materialParams.sheenColor = new Color( 0, 0, 0 );
materialParams.sheenRoughness = 0;
materialParams.sheen = 1;
const extension = materialDef.extensions[ this.name ];
if ( extension.sheenColorFactor !== undefined ) {
const colorFactor = extension.sheenColorFactor;
materialParams.sheenColor.setRGB( colorFactor[ 0 ], colorFactor[ 1 ], colorFactor[ 2 ], LinearSRGBColorSpace );
}
if ( extension.sheenRoughnessFactor !== undefined ) {
materialParams.sheenRoughness = extension.sheenRoughnessFactor;
}
if ( extension.sheenColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'sheenColorMap', extension.sheenColorTexture, SRGBColorSpace ) );
}
if ( extension.sheenRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'sheenRoughnessMap', extension.sheenRoughnessTexture ) );
}
return Promise.all( pending );
}
GLTFMaterialsTransmissionExtension.getMaterialType(materialIndex: any): any
¶
Parameters:
materialIndex
any
Returns: any
Code
GLTFMaterialsTransmissionExtension.extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Parameters:
materialIndex
any
materialParams
any
Returns: Promise<void> | Promise<any[]>
Calls:
Promise.resolve
pending.push
parser.assignTexture
Promise.all
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.transmissionFactor !== undefined ) {
materialParams.transmission = extension.transmissionFactor;
}
if ( extension.transmissionTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'transmissionMap', extension.transmissionTexture ) );
}
return Promise.all( pending );
}
GLTFMaterialsVolumeExtension.getMaterialType(materialIndex: any): any
¶
Parameters:
materialIndex
any
Returns: any
Code
GLTFMaterialsVolumeExtension.extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Parameters:
materialIndex
any
materialParams
any
Returns: Promise<void> | Promise<any[]>
Calls:
Promise.resolve
pending.push
parser.assignTexture
new Color().setRGB
Promise.all
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
materialParams.thickness = extension.thicknessFactor !== undefined ? extension.thicknessFactor : 0;
if ( extension.thicknessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'thicknessMap', extension.thicknessTexture ) );
}
materialParams.attenuationDistance = extension.attenuationDistance || Infinity;
const colorArray = extension.attenuationColor || [ 1, 1, 1 ];
materialParams.attenuationColor = new Color().setRGB( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ], LinearSRGBColorSpace );
return Promise.all( pending );
}
GLTFMaterialsIorExtension.getMaterialType(materialIndex: any): any
¶
Parameters:
materialIndex
any
Returns: any
Code
GLTFMaterialsIorExtension.extendMaterialParams(materialIndex: any, materialParams: any): Promise<void>
¶
Parameters:
materialIndex
any
materialParams
any
Returns: Promise<void>
Calls:
Promise.resolve
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const extension = materialDef.extensions[ this.name ];
materialParams.ior = extension.ior !== undefined ? extension.ior : 1.5;
return Promise.resolve();
}
GLTFMaterialsSpecularExtension.getMaterialType(materialIndex: any): any
¶
Parameters:
materialIndex
any
Returns: any
Code
GLTFMaterialsSpecularExtension.extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Parameters:
materialIndex
any
materialParams
any
Returns: Promise<void> | Promise<any[]>
Calls:
Promise.resolve
pending.push
parser.assignTexture
new Color().setRGB
Promise.all
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
materialParams.specularIntensity = extension.specularFactor !== undefined ? extension.specularFactor : 1.0;
if ( extension.specularTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'specularIntensityMap', extension.specularTexture ) );
}
const colorArray = extension.specularColorFactor || [ 1, 1, 1 ];
materialParams.specularColor = new Color().setRGB( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ], LinearSRGBColorSpace );
if ( extension.specularColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'specularColorMap', extension.specularColorTexture, SRGBColorSpace ) );
}
return Promise.all( pending );
}
GLTFMaterialsBumpExtension.getMaterialType(materialIndex: any): any
¶
Parameters:
materialIndex
any
Returns: any
Code
GLTFMaterialsBumpExtension.extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Parameters:
materialIndex
any
materialParams
any
Returns: Promise<void> | Promise<any[]>
Calls:
Promise.resolve
pending.push
parser.assignTexture
Promise.all
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
materialParams.bumpScale = extension.bumpFactor !== undefined ? extension.bumpFactor : 1.0;
if ( extension.bumpTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'bumpMap', extension.bumpTexture ) );
}
return Promise.all( pending );
}
GLTFMaterialsAnisotropyExtension.getMaterialType(materialIndex: any): any
¶
Parameters:
materialIndex
any
Returns: any
Code
GLTFMaterialsAnisotropyExtension.extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Parameters:
materialIndex
any
materialParams
any
Returns: Promise<void> | Promise<any[]>
Calls:
Promise.resolve
pending.push
parser.assignTexture
Promise.all
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.anisotropyStrength !== undefined ) {
materialParams.anisotropy = extension.anisotropyStrength;
}
if ( extension.anisotropyRotation !== undefined ) {
materialParams.anisotropyRotation = extension.anisotropyRotation;
}
if ( extension.anisotropyTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'anisotropyMap', extension.anisotropyTexture ) );
}
return Promise.all( pending );
}
GLTFTextureBasisUExtension.loadTexture(textureIndex: any): any
¶
Parameters:
textureIndex
any
Returns: any
Calls:
json.extensionsRequired.indexOf
parser.loadTextureImage
Internal Comments:
Code
loadTexture( textureIndex ) {
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[ textureIndex ];
if ( ! textureDef.extensions || ! textureDef.extensions[ this.name ] ) {
return null;
}
const extension = textureDef.extensions[ this.name ];
const loader = parser.options.ktx2Loader;
if ( ! loader ) {
if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
throw new Error( 'THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures' );
} else {
// Assumes that the extension is optional and that a fallback texture is present
return null;
}
}
return parser.loadTextureImage( textureIndex, extension.source, loader );
}
GLTFTextureWebPExtension.loadTexture(textureIndex: any): any
¶
Parameters:
textureIndex
any
Returns: any
Calls:
parser.options.manager.getHandler
parser.loadTextureImage
Code
loadTexture( textureIndex ) {
const name = this.name;
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[ textureIndex ];
if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) {
return null;
}
const extension = textureDef.extensions[ name ];
const source = json.images[ extension.source ];
let loader = parser.textureLoader;
if ( source.uri ) {
const handler = parser.options.manager.getHandler( source.uri );
if ( handler !== null ) loader = handler;
}
return parser.loadTextureImage( textureIndex, extension.source, loader );
}
GLTFTextureAVIFExtension.loadTexture(textureIndex: any): any
¶
Parameters:
textureIndex
any
Returns: any
Calls:
parser.options.manager.getHandler
parser.loadTextureImage
Code
loadTexture( textureIndex ) {
const name = this.name;
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[ textureIndex ];
if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) {
return null;
}
const extension = textureDef.extensions[ name ];
const source = json.images[ extension.source ];
let loader = parser.textureLoader;
if ( source.uri ) {
const handler = parser.options.manager.getHandler( source.uri );
if ( handler !== null ) loader = handler;
}
return parser.loadTextureImage( textureIndex, extension.source, loader );
}
GLTFMeshoptCompression.loadBufferView(index: any): any
¶
Parameters:
index
any
Returns: any
Calls:
this.parser.getDependency
json.extensionsRequired.indexOf
buffer.then
decoder.decodeGltfBufferAsync( count, stride, source, extensionDef.mode, extensionDef.filter ).then
decoder.ready.then
decoder.decodeGltfBuffer
Internal Comments:
// Assumes that the extension is optional and that fallback buffer data is present
// Support for MeshoptDecoder 0.18 or earlier, without decodeGltfBufferAsync
Code
loadBufferView( index ) {
const json = this.parser.json;
const bufferView = json.bufferViews[ index ];
if ( bufferView.extensions && bufferView.extensions[ this.name ] ) {
const extensionDef = bufferView.extensions[ this.name ];
const buffer = this.parser.getDependency( 'buffer', extensionDef.buffer );
const decoder = this.parser.options.meshoptDecoder;
if ( ! decoder || ! decoder.supported ) {
if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
throw new Error( 'THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files' );
} else {
// Assumes that the extension is optional and that fallback buffer data is present
return null;
}
}
return buffer.then( function ( res ) {
const byteOffset = extensionDef.byteOffset || 0;
const byteLength = extensionDef.byteLength || 0;
const count = extensionDef.count;
const stride = extensionDef.byteStride;
const source = new Uint8Array( res, byteOffset, byteLength );
if ( decoder.decodeGltfBufferAsync ) {
return decoder.decodeGltfBufferAsync( count, stride, source, extensionDef.mode, extensionDef.filter ).then( function ( res ) {
return res.buffer;
} );
} else {
// Support for MeshoptDecoder 0.18 or earlier, without decodeGltfBufferAsync
return decoder.ready.then( function () {
const result = new ArrayBuffer( count * stride );
decoder.decodeGltfBuffer( new Uint8Array( result ), count, stride, source, extensionDef.mode, extensionDef.filter );
return result;
} );
}
} );
} else {
return null;
}
}
GLTFMeshGpuInstancing.createNodeMesh(nodeIndex: any): Promise<any>
¶
Parameters:
nodeIndex
any
Returns: Promise<any>
Calls:
pending.push
this.parser.getDependency( 'accessor', attributesDef[ key ] ).then
this.parser.createNodeMesh
Promise.all( pending ).then
results.pop
p.fromBufferAttribute
q.fromBufferAttribute
s.fromBufferAttribute
instancedMesh.setMatrixAt
m.compose
mesh.geometry.setAttribute
Object3D.prototype.copy.call
this.parser.assignFinalMaterial
instancedMeshes.push
nodeObject.clear
nodeObject.add
Internal Comments:
// No Points or Lines + Instancing support yet
// @TODO: Can we support InstancedMesh + SkinnedMesh? (x2)
// Temporal variables (x2)
// Add instance attributes to the geometry, excluding TRS.
// Just in case (x6)
Code
createNodeMesh( nodeIndex ) {
const json = this.parser.json;
const nodeDef = json.nodes[ nodeIndex ];
if ( ! nodeDef.extensions || ! nodeDef.extensions[ this.name ] ||
nodeDef.mesh === undefined ) {
return null;
}
const meshDef = json.meshes[ nodeDef.mesh ];
// No Points or Lines + Instancing support yet
for ( const primitive of meshDef.primitives ) {
if ( primitive.mode !== WEBGL_CONSTANTS.TRIANGLES &&
primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_STRIP &&
primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_FAN &&
primitive.mode !== undefined ) {
return null;
}
}
const extensionDef = nodeDef.extensions[ this.name ];
const attributesDef = extensionDef.attributes;
// @TODO: Can we support InstancedMesh + SkinnedMesh?
const pending = [];
const attributes = {};
for ( const key in attributesDef ) {
pending.push( this.parser.getDependency( 'accessor', attributesDef[ key ] ).then( accessor => {
attributes[ key ] = accessor;
return attributes[ key ];
} ) );
}
if ( pending.length < 1 ) {
return null;
}
pending.push( this.parser.createNodeMesh( nodeIndex ) );
return Promise.all( pending ).then( results => {
const nodeObject = results.pop();
const meshes = nodeObject.isGroup ? nodeObject.children : [ nodeObject ];
const count = results[ 0 ].count; // All attribute counts should be same
const instancedMeshes = [];
for ( const mesh of meshes ) {
// Temporal variables
const m = new Matrix4();
const p = new Vector3();
const q = new Quaternion();
const s = new Vector3( 1, 1, 1 );
const instancedMesh = new InstancedMesh( mesh.geometry, mesh.material, count );
for ( let i = 0; i < count; i ++ ) {
if ( attributes.TRANSLATION ) {
p.fromBufferAttribute( attributes.TRANSLATION, i );
}
if ( attributes.ROTATION ) {
q.fromBufferAttribute( attributes.ROTATION, i );
}
if ( attributes.SCALE ) {
s.fromBufferAttribute( attributes.SCALE, i );
}
instancedMesh.setMatrixAt( i, m.compose( p, q, s ) );
}
// Add instance attributes to the geometry, excluding TRS.
for ( const attributeName in attributes ) {
if ( attributeName === '_COLOR_0' ) {
const attr = attributes[ attributeName ];
instancedMesh.instanceColor = new InstancedBufferAttribute( attr.array, attr.itemSize, attr.normalized );
} else if ( attributeName !== 'TRANSLATION' &&
attributeName !== 'ROTATION' &&
attributeName !== 'SCALE' ) {
mesh.geometry.setAttribute( attributeName, attributes[ attributeName ] );
}
}
// Just in case
Object3D.prototype.copy.call( instancedMesh, mesh );
this.parser.assignFinalMaterial( instancedMesh );
instancedMeshes.push( instancedMesh );
}
if ( nodeObject.isGroup ) {
nodeObject.clear();
nodeObject.add( ... instancedMeshes );
return nodeObject;
}
return instancedMeshes[ 0 ];
} );
}
GLTFDracoMeshCompressionExtension.decodePrimitive(primitive: any, parser: any): any
¶
Parameters:
primitive
any
parser
any
Returns: any
Calls:
attributeName.toLowerCase
parser.getDependency( 'bufferView', bufferViewIndex ).then
dracoLoader.decodeDracoFile
resolve
Code
decodePrimitive( primitive, parser ) {
const json = this.json;
const dracoLoader = this.dracoLoader;
const bufferViewIndex = primitive.extensions[ this.name ].bufferView;
const gltfAttributeMap = primitive.extensions[ this.name ].attributes;
const threeAttributeMap = {};
const attributeNormalizedMap = {};
const attributeTypeMap = {};
for ( const attributeName in gltfAttributeMap ) {
const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ];
}
for ( const attributeName in primitive.attributes ) {
const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
if ( gltfAttributeMap[ attributeName ] !== undefined ) {
const accessorDef = json.accessors[ primitive.attributes[ attributeName ] ];
const componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
attributeTypeMap[ threeAttributeName ] = componentType.name;
attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true;
}
}
return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {
return new Promise( function ( resolve, reject ) {
dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {
for ( const attributeName in geometry.attributes ) {
const attribute = geometry.attributes[ attributeName ];
const normalized = attributeNormalizedMap[ attributeName ];
if ( normalized !== undefined ) attribute.normalized = normalized;
}
resolve( geometry );
}, threeAttributeMap, attributeTypeMap, LinearSRGBColorSpace, reject );
} );
} );
}
GLTFTextureTransformExtension.extendTexture(texture: any, transform: any): any
¶
Parameters:
texture
any
transform
any
Returns: any
Calls:
texture.clone
texture.offset.fromArray
texture.repeat.fromArray
Internal Comments:
Code
extendTexture( texture, transform ) {
if ( ( transform.texCoord === undefined || transform.texCoord === texture.channel )
&& transform.offset === undefined
&& transform.rotation === undefined
&& transform.scale === undefined ) {
// See https://github.com/mrdoob/three.js/issues/21819.
return texture;
}
texture = texture.clone();
if ( transform.texCoord !== undefined ) {
texture.channel = transform.texCoord;
}
if ( transform.offset !== undefined ) {
texture.offset.fromArray( transform.offset );
}
if ( transform.rotation !== undefined ) {
texture.rotation = transform.rotation;
}
if ( transform.scale !== undefined ) {
texture.repeat.fromArray( transform.scale );
}
texture.needsUpdate = true;
return texture;
}
GLTFCubicSplineInterpolant.copySampleValue_(index: any): any
¶
Parameters:
index
any
Returns: any
Internal Comments:
// Copies a sample value to the result buffer. See description of glTF (x2)
// CUBICSPLINE values layout in interpolate_() function below. (x2)
Code
copySampleValue_( index ) {
// Copies a sample value to the result buffer. See description of glTF
// CUBICSPLINE values layout in interpolate_() function below.
const result = this.resultBuffer,
values = this.sampleValues,
valueSize = this.valueSize,
offset = index * valueSize * 3 + valueSize;
for ( let i = 0; i !== valueSize; i ++ ) {
result[ i ] = values[ offset + i ];
}
return result;
}
GLTFCubicSplineInterpolant.interpolate_(i1: any, t0: any, t: any, t1: any): any
¶
Parameters:
i1
any
t0
any
t
any
t1
any
Returns: any
Internal Comments:
// Layout of keyframe output values for CUBICSPLINE animations:
// [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
Code
interpolate_( i1, t0, t, t1 ) {
const result = this.resultBuffer;
const values = this.sampleValues;
const stride = this.valueSize;
const stride2 = stride * 2;
const stride3 = stride * 3;
const td = t1 - t0;
const p = ( t - t0 ) / td;
const pp = p * p;
const ppp = pp * p;
const offset1 = i1 * stride3;
const offset0 = offset1 - stride3;
const s2 = - 2 * ppp + 3 * pp;
const s3 = ppp - pp;
const s0 = 1 - s2;
const s1 = s3 - pp + p;
// Layout of keyframe output values for CUBICSPLINE animations:
// [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
for ( let i = 0; i !== stride; i ++ ) {
const p0 = values[ offset0 + i + stride ]; // splineVertex_k
const m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k)
const p1 = values[ offset1 + i + stride ]; // splineVertex_k+1
const m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)
result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
}
return result;
}
GLTFCubicSplineQuaternionInterpolant.interpolate_(i1: any, t0: any, t: any, t1: any): any
¶
Parameters:
i1
any
t0
any
t
any
t1
any
Returns: any
Calls:
super.interpolate_
_quaternion.fromArray( result ).normalize().toArray
Code
createDefaultMaterial(cache: { [x: string]: Material; }): Material
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
*
* @private
* @param {Object<string, Material>} cache
* @return {Material}
*/
Parameters:
cache
{ [x: string]: Material; }
Returns: Material
Code
function createDefaultMaterial( cache ) {
if ( cache[ 'DefaultMaterial' ] === undefined ) {
cache[ 'DefaultMaterial' ] = new MeshStandardMaterial( {
color: 0xFFFFFF,
emissive: 0x000000,
metalness: 1,
roughness: 1,
transparent: false,
depthTest: true,
side: FrontSide
} );
}
return cache[ 'DefaultMaterial' ];
}
addUnknownExtensionsToUserData(knownExtensions: any, object: any, objectDef: any): void
¶
Parameters:
knownExtensions
any
object
any
objectDef
any
Returns: void
Internal Comments:
Code
function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) {
// Add unknown glTF extensions to an object's userData.
for ( const name in objectDef.extensions ) {
if ( knownExtensions[ name ] === undefined ) {
object.userData.gltfExtensions = object.userData.gltfExtensions || {};
object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ];
}
}
}
assignExtrasToUserData(object: any, gltfDef: GLTF.definition): void
¶
JSDoc:
/**
*
* @private
* @param {Object3D|Material|BufferGeometry|Object} object
* @param {GLTF.definition} gltfDef
*/
Parameters:
object
any
gltfDef
GLTF.definition
Returns: void
Calls:
Object.assign
console.warn
Code
addMorphTargets(geometry: BufferGeometry, targets: GLTF.Target[], parser: GLTFParser): Promise<BufferGeometry>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
*
* @private
* @param {BufferGeometry} geometry
* @param {Array<GLTF.Target>} targets
* @param {GLTFParser} parser
* @return {Promise<BufferGeometry>}
*/
Parameters:
geometry
BufferGeometry
targets
GLTF.Target[]
parser
GLTFParser
Returns: Promise<BufferGeometry>
Calls:
Promise.resolve
parser.getDependency
pendingPositionAccessors.push
pendingNormalAccessors.push
pendingColorAccessors.push
Promise.all( [ Promise.all( pendingPositionAccessors ), Promise.all( pendingNormalAccessors ), Promise.all( pendingColorAccessors ) ] ).then
Code
function addMorphTargets( geometry, targets, parser ) {
let hasMorphPosition = false;
let hasMorphNormal = false;
let hasMorphColor = false;
for ( let i = 0, il = targets.length; i < il; i ++ ) {
const target = targets[ i ];
if ( target.POSITION !== undefined ) hasMorphPosition = true;
if ( target.NORMAL !== undefined ) hasMorphNormal = true;
if ( target.COLOR_0 !== undefined ) hasMorphColor = true;
if ( hasMorphPosition && hasMorphNormal && hasMorphColor ) break;
}
if ( ! hasMorphPosition && ! hasMorphNormal && ! hasMorphColor ) return Promise.resolve( geometry );
const pendingPositionAccessors = [];
const pendingNormalAccessors = [];
const pendingColorAccessors = [];
for ( let i = 0, il = targets.length; i < il; i ++ ) {
const target = targets[ i ];
if ( hasMorphPosition ) {
const pendingAccessor = target.POSITION !== undefined
? parser.getDependency( 'accessor', target.POSITION )
: geometry.attributes.position;
pendingPositionAccessors.push( pendingAccessor );
}
if ( hasMorphNormal ) {
const pendingAccessor = target.NORMAL !== undefined
? parser.getDependency( 'accessor', target.NORMAL )
: geometry.attributes.normal;
pendingNormalAccessors.push( pendingAccessor );
}
if ( hasMorphColor ) {
const pendingAccessor = target.COLOR_0 !== undefined
? parser.getDependency( 'accessor', target.COLOR_0 )
: geometry.attributes.color;
pendingColorAccessors.push( pendingAccessor );
}
}
return Promise.all( [
Promise.all( pendingPositionAccessors ),
Promise.all( pendingNormalAccessors ),
Promise.all( pendingColorAccessors )
] ).then( function ( accessors ) {
const morphPositions = accessors[ 0 ];
const morphNormals = accessors[ 1 ];
const morphColors = accessors[ 2 ];
if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions;
if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals;
if ( hasMorphColor ) geometry.morphAttributes.color = morphColors;
geometry.morphTargetsRelative = true;
return geometry;
} );
}
updateMorphTargets(mesh: Mesh, meshDef: GLTF.Mesh): void
¶
JSDoc:
Parameters:
mesh
Mesh
meshDef
GLTF.Mesh
Returns: void
Calls:
mesh.updateMorphTargets
Array.isArray
console.warn
Internal Comments:
Code
function updateMorphTargets( mesh, meshDef ) {
mesh.updateMorphTargets();
if ( meshDef.weights !== undefined ) {
for ( let i = 0, il = meshDef.weights.length; i < il; i ++ ) {
mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ];
}
}
// .extras has user-defined data, so check that .extras.targetNames is an array.
if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) {
const targetNames = meshDef.extras.targetNames;
if ( mesh.morphTargetInfluences.length === targetNames.length ) {
mesh.morphTargetDictionary = {};
for ( let i = 0, il = targetNames.length; i < il; i ++ ) {
mesh.morphTargetDictionary[ targetNames[ i ] ] = i;
}
} else {
console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' );
}
}
}
createPrimitiveKey(primitiveDef: any): string
¶
Parameters:
primitiveDef
any
Returns: string
Calls:
createAttributesKey
Code
function createPrimitiveKey( primitiveDef ) {
let geometryKey;
const dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ];
if ( dracoExtension ) {
geometryKey = 'draco:' + dracoExtension.bufferView
+ ':' + dracoExtension.indices
+ ':' + createAttributesKey( dracoExtension.attributes );
} else {
geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode;
}
if ( primitiveDef.targets !== undefined ) {
for ( let i = 0, il = primitiveDef.targets.length; i < il; i ++ ) {
geometryKey += ':' + createAttributesKey( primitiveDef.targets[ i ] );
}
}
return geometryKey;
}
createAttributesKey(attributes: any): string
¶
Parameters:
attributes
any
Returns: string
Calls:
Object.keys( attributes ).sort
Code
getNormalizedComponentScale(constructor: any): number
¶
Parameters:
constructor
any
Returns: number
Internal Comments:
// Reference:
// https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization#encoding-quantized-data
Code
function getNormalizedComponentScale( constructor ) {
// Reference:
// https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization#encoding-quantized-data
switch ( constructor ) {
case Int8Array:
return 1 / 127;
case Uint8Array:
return 1 / 255;
case Int16Array:
return 1 / 32767;
case Uint16Array:
return 1 / 65535;
default:
throw new Error( 'THREE.GLTFLoader: Unsupported normalized accessor component type.' );
}
}
getImageURIMimeType(uri: any): "image/png" | "image/jpeg" | "image/webp" | "image/ktx2"
¶
Parameters:
uri
any
Returns: "image/png" | "image/jpeg" | "image/webp" | "image/ktx2"
Calls:
uri.search
Code
function getImageURIMimeType( uri ) {
if ( uri.search( /\.jpe?g($|\?)/i ) > 0 || uri.search( /^data\:image\/jpeg/ ) === 0 ) return 'image/jpeg';
if ( uri.search( /\.webp($|\?)/i ) > 0 || uri.search( /^data\:image\/webp/ ) === 0 ) return 'image/webp';
if ( uri.search( /\.ktx2($|\?)/i ) > 0 || uri.search( /^data\:image\/ktx2/ ) === 0 ) return 'image/ktx2';
return 'image/png';
}
GLTFParser.setExtensions(extensions: any): void
¶
Parameters:
extensions
any
Returns: void
GLTFParser.setPlugins(plugins: any): void
¶
Parameters:
plugins
any
Returns: void
GLTFParser.parse(onLoad: any, onError: any): void
¶
Parameters:
onLoad
any
onError
any
Returns: void
Calls:
this.cache.removeAll
this._invokeAll
ext._markDefs
- `Promise.all( this._invokeAll( function ( ext ) {
return ext.beforeRoot && ext.beforeRoot(); } ) ).then( function () { return Promise.all( [ parser.getDependencies( 'scene' ), parser.getDependencies( 'animation' ), parser.getDependencies( 'camera' ), ] ); } ).then( function ( dependencies ) { const result = { scene: dependencies[ 0 ][ json.scene || 0 ], scenes: dependencies[ 0 ], animations: dependencies[ 1 ], cameras: dependencies[ 2 ], asset: json.asset, parser: parser, userData: {} }; addUnknownExtensionsToUserData( extensions, result, json ); assignExtrasToUserData( result, json ); return Promise.all( parser._invokeAll( function ( ext ) { return ext.afterRoot && ext.afterRoot( result ); } ) ).then( function () { for ( const scene of result.scenes ) { scene.updateMatrixWorld(); } onLoad( result ); } ); } ).catch`
Internal Comments:
Code
parse( onLoad, onError ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
// Clear the loader cache
this.cache.removeAll();
this.nodeCache = {};
// Mark the special nodes/meshes in json for efficient parse
this._invokeAll( function ( ext ) {
return ext._markDefs && ext._markDefs();
} );
Promise.all( this._invokeAll( function ( ext ) {
return ext.beforeRoot && ext.beforeRoot();
} ) ).then( function () {
return Promise.all( [
parser.getDependencies( 'scene' ),
parser.getDependencies( 'animation' ),
parser.getDependencies( 'camera' ),
] );
} ).then( function ( dependencies ) {
const result = {
scene: dependencies[ 0 ][ json.scene || 0 ],
scenes: dependencies[ 0 ],
animations: dependencies[ 1 ],
cameras: dependencies[ 2 ],
asset: json.asset,
parser: parser,
userData: {}
};
addUnknownExtensionsToUserData( extensions, result, json );
assignExtrasToUserData( result, json );
return Promise.all( parser._invokeAll( function ( ext ) {
return ext.afterRoot && ext.afterRoot( result );
} ) ).then( function () {
for ( const scene of result.scenes ) {
scene.updateMatrixWorld();
}
onLoad( result );
} );
} ).catch( onError );
}
GLTFParser._markDefs(): void
¶
JSDoc:
Returns: void
Calls:
this._addNodeRef
Internal Comments:
// Nothing in the node definition indicates whether it is a Bone or an
// Object3D. Use the skins' joint references to mark bones.
// Iterate over all nodes, marking references to shared resources,
// as well as skeleton joints.
// Nothing in the mesh definition indicates whether it is
// a SkinnedMesh or Mesh. Use the node's mesh reference
// to mark SkinnedMesh if node has skin.
Code
_markDefs() {
const nodeDefs = this.json.nodes || [];
const skinDefs = this.json.skins || [];
const meshDefs = this.json.meshes || [];
// Nothing in the node definition indicates whether it is a Bone or an
// Object3D. Use the skins' joint references to mark bones.
for ( let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {
const joints = skinDefs[ skinIndex ].joints;
for ( let i = 0, il = joints.length; i < il; i ++ ) {
nodeDefs[ joints[ i ] ].isBone = true;
}
}
// Iterate over all nodes, marking references to shared resources,
// as well as skeleton joints.
for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
const nodeDef = nodeDefs[ nodeIndex ];
if ( nodeDef.mesh !== undefined ) {
this._addNodeRef( this.meshCache, nodeDef.mesh );
// Nothing in the mesh definition indicates whether it is
// a SkinnedMesh or Mesh. Use the node's mesh reference
// to mark SkinnedMesh if node has skin.
if ( nodeDef.skin !== undefined ) {
meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;
}
}
if ( nodeDef.camera !== undefined ) {
this._addNodeRef( this.cameraCache, nodeDef.camera );
}
}
}
GLTFParser._addNodeRef(cache: any, index: Object3D): void
¶
JSDoc:
/**
* Counts references to shared node / Object3D resources. These resources
* can be reused, or "instantiated", at multiple nodes in the scene
* hierarchy. Mesh, Camera, and Light instances are instantiated and must
* be marked. Non-scenegraph resources (like Materials, Geometries, and
* Textures) can be reused directly and are not marked here.
*
* Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
*
* @private
* @param {Object} cache
* @param {Object3D} index
*/
Parameters:
cache
any
index
Object3D
Returns: void
Code
GLTFParser._getNodeRef(cache: any, index: number, object: any): any
¶
JSDoc:
/**
* Returns a reference to a shared resource, cloning it if necessary.
*
* @private
* @param {Object} cache
* @param {number} index
* @param {Object} object
* @return {Object}
*/
Parameters:
cache
any
index
number
object
any
Returns: any
Calls:
object.clone
this.associations.get
this.associations.set
original.children.entries
updateMappings
Internal Comments:
// Propagates mappings to the cloned object, prevents mappings on the (x2)
// original object from being lost. (x2)
Code
_getNodeRef( cache, index, object ) {
if ( cache.refs[ index ] <= 1 ) return object;
const ref = object.clone();
// Propagates mappings to the cloned object, prevents mappings on the
// original object from being lost.
const updateMappings = ( original, clone ) => {
const mappings = this.associations.get( original );
if ( mappings != null ) {
this.associations.set( clone, mappings );
}
for ( const [ i, child ] of original.children.entries() ) {
updateMappings( child, clone.children[ i ] );
}
};
updateMappings( object, ref );
ref.name += '_instance_' + ( cache.uses[ index ] ++ );
return ref;
}
GLTFParser._invokeOne(func: any): any
¶
Parameters:
func
any
Returns: any
Calls:
Object.values
extensions.push
func
Code
GLTFParser._invokeAll(func: any): any[]
¶
Parameters:
func
any
Returns: any[]
Calls:
Object.values
extensions.unshift
func
pending.push
Code
GLTFParser.getDependency(type: string, index: number): Promise<any>
¶
JSDoc:
/**
* Requests the specified dependency asynchronously, with caching.
*
* @private
* @param {string} type
* @param {number} index
* @return {Promise<Object3D|Material|THREE.Texture|AnimationClip|ArrayBuffer|Object>}
*/
Parameters:
type
string
index
number
Returns: Promise<any>
Calls:
this.cache.get
this.loadScene
this._invokeOne
ext.loadNode
ext.loadMesh
this.loadAccessor
ext.loadBufferView
this.loadBuffer
ext.loadMaterial
ext.loadTexture
this.loadSkin
ext.loadAnimation
this.loadCamera
ext.getDependency
this.cache.add
Code
getDependency( type, index ) {
const cacheKey = type + ':' + index;
let dependency = this.cache.get( cacheKey );
if ( ! dependency ) {
switch ( type ) {
case 'scene':
dependency = this.loadScene( index );
break;
case 'node':
dependency = this._invokeOne( function ( ext ) {
return ext.loadNode && ext.loadNode( index );
} );
break;
case 'mesh':
dependency = this._invokeOne( function ( ext ) {
return ext.loadMesh && ext.loadMesh( index );
} );
break;
case 'accessor':
dependency = this.loadAccessor( index );
break;
case 'bufferView':
dependency = this._invokeOne( function ( ext ) {
return ext.loadBufferView && ext.loadBufferView( index );
} );
break;
case 'buffer':
dependency = this.loadBuffer( index );
break;
case 'material':
dependency = this._invokeOne( function ( ext ) {
return ext.loadMaterial && ext.loadMaterial( index );
} );
break;
case 'texture':
dependency = this._invokeOne( function ( ext ) {
return ext.loadTexture && ext.loadTexture( index );
} );
break;
case 'skin':
dependency = this.loadSkin( index );
break;
case 'animation':
dependency = this._invokeOne( function ( ext ) {
return ext.loadAnimation && ext.loadAnimation( index );
} );
break;
case 'camera':
dependency = this.loadCamera( index );
break;
default:
dependency = this._invokeOne( function ( ext ) {
return ext != this && ext.getDependency && ext.getDependency( type, index );
} );
if ( ! dependency ) {
throw new Error( 'Unknown type: ' + type );
}
break;
}
this.cache.add( cacheKey, dependency );
}
return dependency;
}
GLTFParser.getDependencies(type: string): Promise<any[]>
¶
JSDoc:
/**
* Requests all dependencies of the specified type asynchronously, with caching.
*
* @private
* @param {string} type
* @return {Promise<Array<Object>>}
*/
Parameters:
type
string
Returns: Promise<any[]>
Calls:
this.cache.get
Promise.all
defs.map
parser.getDependency
this.cache.add
Code
getDependencies( type ) {
let dependencies = this.cache.get( type );
if ( ! dependencies ) {
const parser = this;
const defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];
dependencies = Promise.all( defs.map( function ( def, index ) {
return parser.getDependency( type, index );
} ) );
this.cache.add( type, dependencies );
}
return dependencies;
}
GLTFParser.loadBuffer(bufferIndex: number): Promise<ArrayBuffer>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
*
* @private
* @param {number} bufferIndex
* @return {Promise<ArrayBuffer>}
*/
Parameters:
bufferIndex
number
Returns: Promise<ArrayBuffer>
Calls:
Promise.resolve
loader.load
LoaderUtils.resolveURL
reject
Internal Comments:
Code
loadBuffer( bufferIndex ) {
const bufferDef = this.json.buffers[ bufferIndex ];
const loader = this.fileLoader;
if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {
throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );
}
// If present, GLB container is required to be the first buffer.
if ( bufferDef.uri === undefined && bufferIndex === 0 ) {
return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );
}
const options = this.options;
return new Promise( function ( resolve, reject ) {
loader.load( LoaderUtils.resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {
reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );
} );
} );
}
GLTFParser.loadBufferView(bufferViewIndex: number): Promise<ArrayBuffer>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
*
* @private
* @param {number} bufferViewIndex
* @return {Promise<ArrayBuffer>}
*/
Parameters:
bufferViewIndex
number
Returns: Promise<ArrayBuffer>
Calls:
this.getDependency( 'buffer', bufferViewDef.buffer ).then
buffer.slice
Code
loadBufferView( bufferViewIndex ) {
const bufferViewDef = this.json.bufferViews[ bufferViewIndex ];
return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {
const byteLength = bufferViewDef.byteLength || 0;
const byteOffset = bufferViewDef.byteOffset || 0;
return buffer.slice( byteOffset, byteOffset + byteLength );
} );
}
GLTFParser.loadAccessor(accessorIndex: number): Promise<any>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
*
* @private
* @param {number} accessorIndex
* @return {Promise<BufferAttribute|InterleavedBufferAttribute>}
*/
Parameters:
accessorIndex
number
Returns: Promise<any>
Calls:
Promise.resolve
pendingBufferViews.push
this.getDependency
Promise.all( pendingBufferViews ).then
Math.floor
parser.cache.get
parser.cache.add
bufferAttribute.array.slice
bufferAttribute.setX
bufferAttribute.setY
bufferAttribute.setZ
bufferAttribute.setW
Internal Comments:
// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12. (x2)
// The buffer is not interleaved if the stride is the item size in bytes.
// Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer (x2)
// This makes sure that IBA.count reflects accessor.count properly (x2)
// Integer parameters to IB/IBA are in array elements, not bytes. (x3)
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes. (x3)
// Ignore normalized since we copy from sparse (x4)
Code
loadAccessor( accessorIndex ) {
const parser = this;
const json = this.json;
const accessorDef = this.json.accessors[ accessorIndex ];
if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {
const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
const normalized = accessorDef.normalized === true;
const array = new TypedArray( accessorDef.count * itemSize );
return Promise.resolve( new BufferAttribute( array, itemSize, normalized ) );
}
const pendingBufferViews = [];
if ( accessorDef.bufferView !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );
} else {
pendingBufferViews.push( null );
}
if ( accessorDef.sparse !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) );
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );
}
return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {
const bufferView = bufferViews[ 0 ];
const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
const elementBytes = TypedArray.BYTES_PER_ELEMENT;
const itemBytes = elementBytes * itemSize;
const byteOffset = accessorDef.byteOffset || 0;
const byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined;
const normalized = accessorDef.normalized === true;
let array, bufferAttribute;
// The buffer is not interleaved if the stride is the item size in bytes.
if ( byteStride && byteStride !== itemBytes ) {
// Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer
// This makes sure that IBA.count reflects accessor.count properly
const ibSlice = Math.floor( byteOffset / byteStride );
const ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count;
let ib = parser.cache.get( ibCacheKey );
if ( ! ib ) {
array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes );
// Integer parameters to IB/IBA are in array elements, not bytes.
ib = new InterleavedBuffer( array, byteStride / elementBytes );
parser.cache.add( ibCacheKey, ib );
}
bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized );
} else {
if ( bufferView === null ) {
array = new TypedArray( accessorDef.count * itemSize );
} else {
array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );
}
bufferAttribute = new BufferAttribute( array, itemSize, normalized );
}
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
if ( accessorDef.sparse !== undefined ) {
const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
const TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];
const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
const sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices );
const sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );
if ( bufferView !== null ) {
// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized );
}
// Ignore normalized since we copy from sparse
bufferAttribute.normalized = false;
for ( let i = 0, il = sparseIndices.length; i < il; i ++ ) {
const index = sparseIndices[ i ];
bufferAttribute.setX( index, sparseValues[ i * itemSize ] );
if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] );
if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] );
if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] );
if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' );
}
bufferAttribute.normalized = normalized;
}
return bufferAttribute;
} );
}
GLTFParser.loadTexture(textureIndex: number): Promise<any>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
*
* @private
* @param {number} textureIndex
* @return {Promise<THREE.Texture|null>}
*/
Parameters:
textureIndex
number
Returns: Promise<any>
Calls:
options.manager.getHandler
this.loadTextureImage
Code
loadTexture( textureIndex ) {
const json = this.json;
const options = this.options;
const textureDef = json.textures[ textureIndex ];
const sourceIndex = textureDef.source;
const sourceDef = json.images[ sourceIndex ];
let loader = this.textureLoader;
if ( sourceDef.uri ) {
const handler = options.manager.getHandler( sourceDef.uri );
if ( handler !== null ) loader = handler;
}
return this.loadTextureImage( textureIndex, sourceIndex, loader );
}
GLTFParser.loadTextureImage(textureIndex: any, sourceIndex: any, loader: any): any
¶
Parameters:
textureIndex
any
sourceIndex
any
loader
any
Returns: any
Calls:
- `this.loadImageSource( sourceIndex, loader ).then( function ( texture ) {
texture.flipY = false; texture.name = textureDef.name || sourceDef.name || ''; if ( texture.name === '' && typeof sourceDef.uri === 'string' && sourceDef.uri.startsWith( 'data:image/' ) === false ) { texture.name = sourceDef.uri; } const samplers = json.samplers || {}; const sampler = samplers[ textureDef.sampler ] || {}; texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter; texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter; texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping; texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping; texture.generateMipmaps = ! texture.isCompressedTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; parser.associations.set( texture, { textures: textureIndex } ); return texture; } ).catch`
Internal Comments:
Code
loadTextureImage( textureIndex, sourceIndex, loader ) {
const parser = this;
const json = this.json;
const textureDef = json.textures[ textureIndex ];
const sourceDef = json.images[ sourceIndex ];
const cacheKey = ( sourceDef.uri || sourceDef.bufferView ) + ':' + textureDef.sampler;
if ( this.textureCache[ cacheKey ] ) {
// See https://github.com/mrdoob/three.js/issues/21559.
return this.textureCache[ cacheKey ];
}
const promise = this.loadImageSource( sourceIndex, loader ).then( function ( texture ) {
texture.flipY = false;
texture.name = textureDef.name || sourceDef.name || '';
if ( texture.name === '' && typeof sourceDef.uri === 'string' && sourceDef.uri.startsWith( 'data:image/' ) === false ) {
texture.name = sourceDef.uri;
}
const samplers = json.samplers || {};
const sampler = samplers[ textureDef.sampler ] || {};
texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter;
texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter;
texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping;
texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping;
texture.generateMipmaps = ! texture.isCompressedTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
parser.associations.set( texture, { textures: textureIndex } );
return texture;
} ).catch( function () {
return null;
} );
this.textureCache[ cacheKey ] = promise;
return promise;
}
GLTFParser.loadImageSource(sourceIndex: any, loader: any): any
¶
Parameters:
sourceIndex
any
loader
any
Returns: any
Calls:
this.sourceCache[ sourceIndex ].then
texture.clone
parser.getDependency( 'bufferView', sourceDef.bufferView ).then
URL.createObjectURL
- `Promise.resolve( sourceURI ).then( function ( sourceURI ) {
return new Promise( function ( resolve, reject ) { let onLoad = resolve; if ( loader.isImageBitmapLoader === true ) { onLoad = function ( imageBitmap ) { const texture = new Texture( imageBitmap ); texture.needsUpdate = true; resolve( texture ); }; } loader.load( LoaderUtils.resolveURL( sourceURI, options.path ), onLoad, undefined, reject ); } ); } ).then( function ( texture ) { // Clean up resources and configure Texture. if ( isObjectURL === true ) { URL.revokeObjectURL( sourceURI ); } assignExtrasToUserData( texture, sourceDef ); texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType( sourceDef.uri ); return texture; } ).catch`
console.error
Internal Comments:
// Load binary image data from bufferView, if provided. (x3)
// Clean up resources and configure Texture.
Code
loadImageSource( sourceIndex, loader ) {
const parser = this;
const json = this.json;
const options = this.options;
if ( this.sourceCache[ sourceIndex ] !== undefined ) {
return this.sourceCache[ sourceIndex ].then( ( texture ) => texture.clone() );
}
const sourceDef = json.images[ sourceIndex ];
const URL = self.URL || self.webkitURL;
let sourceURI = sourceDef.uri || '';
let isObjectURL = false;
if ( sourceDef.bufferView !== undefined ) {
// Load binary image data from bufferView, if provided.
sourceURI = parser.getDependency( 'bufferView', sourceDef.bufferView ).then( function ( bufferView ) {
isObjectURL = true;
const blob = new Blob( [ bufferView ], { type: sourceDef.mimeType } );
sourceURI = URL.createObjectURL( blob );
return sourceURI;
} );
} else if ( sourceDef.uri === undefined ) {
throw new Error( 'THREE.GLTFLoader: Image ' + sourceIndex + ' is missing URI and bufferView' );
}
const promise = Promise.resolve( sourceURI ).then( function ( sourceURI ) {
return new Promise( function ( resolve, reject ) {
let onLoad = resolve;
if ( loader.isImageBitmapLoader === true ) {
onLoad = function ( imageBitmap ) {
const texture = new Texture( imageBitmap );
texture.needsUpdate = true;
resolve( texture );
};
}
loader.load( LoaderUtils.resolveURL( sourceURI, options.path ), onLoad, undefined, reject );
} );
} ).then( function ( texture ) {
// Clean up resources and configure Texture.
if ( isObjectURL === true ) {
URL.revokeObjectURL( sourceURI );
}
assignExtrasToUserData( texture, sourceDef );
texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType( sourceDef.uri );
return texture;
} ).catch( function ( error ) {
console.error( 'THREE.GLTFLoader: Couldn\'t load texture', sourceURI );
throw error;
} );
this.sourceCache[ sourceIndex ] = promise;
return promise;
}
GLTFParser.assignTexture(materialParams: any, mapName: string, mapDef: any, colorSpace: string): Promise<Texture>
¶
JSDoc:
/**
* Asynchronously assigns a texture to the given material parameters.
*
* @private
* @param {Object} materialParams
* @param {string} mapName
* @param {Object} mapDef
* @param {string} [colorSpace]
* @return {Promise<Texture>}
*/
Parameters:
materialParams
any
mapName
string
mapDef
any
colorSpace
string
Returns: Promise<Texture>
Calls:
this.getDependency( 'texture', mapDef.index ).then
texture.clone
parser.associations.get
parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture
parser.associations.set
Code
assignTexture( materialParams, mapName, mapDef, colorSpace ) {
const parser = this;
return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) {
if ( ! texture ) return null;
if ( mapDef.texCoord !== undefined && mapDef.texCoord > 0 ) {
texture = texture.clone();
texture.channel = mapDef.texCoord;
}
if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) {
const transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined;
if ( transform ) {
const gltfReference = parser.associations.get( texture );
texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform );
parser.associations.set( texture, gltfReference );
}
}
if ( colorSpace !== undefined ) {
texture.colorSpace = colorSpace;
}
materialParams[ mapName ] = texture;
return texture;
} );
}
GLTFParser.assignFinalMaterial(mesh: Object3D): void
¶
JSDoc:
/**
* Assigns final material to a Mesh, Line, or Points instance. The instance
* already has a material (generated from the glTF material options alone)
* but reuse of the same glTF material may require multiple threejs materials
* to accommodate different primitive types, defines, etc. New materials will
* be created if necessary, and reused from a cache.
*
* @private
* @param {Object3D} mesh Mesh, Line, or Points instance.
*/
Parameters:
mesh
Object3D
Returns: void
Calls:
this.cache.get
Material.prototype.copy.call
pointsMaterial.color.copy
this.cache.add
lineMaterial.color.copy
material.clone
this.associations.set
this.associations.get
Internal Comments:
// Clone the material if it will be modified
// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
Code
assignFinalMaterial( mesh ) {
const geometry = mesh.geometry;
let material = mesh.material;
const useDerivativeTangents = geometry.attributes.tangent === undefined;
const useVertexColors = geometry.attributes.color !== undefined;
const useFlatShading = geometry.attributes.normal === undefined;
if ( mesh.isPoints ) {
const cacheKey = 'PointsMaterial:' + material.uuid;
let pointsMaterial = this.cache.get( cacheKey );
if ( ! pointsMaterial ) {
pointsMaterial = new PointsMaterial();
Material.prototype.copy.call( pointsMaterial, material );
pointsMaterial.color.copy( material.color );
pointsMaterial.map = material.map;
pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px
this.cache.add( cacheKey, pointsMaterial );
}
material = pointsMaterial;
} else if ( mesh.isLine ) {
const cacheKey = 'LineBasicMaterial:' + material.uuid;
let lineMaterial = this.cache.get( cacheKey );
if ( ! lineMaterial ) {
lineMaterial = new LineBasicMaterial();
Material.prototype.copy.call( lineMaterial, material );
lineMaterial.color.copy( material.color );
lineMaterial.map = material.map;
this.cache.add( cacheKey, lineMaterial );
}
material = lineMaterial;
}
// Clone the material if it will be modified
if ( useDerivativeTangents || useVertexColors || useFlatShading ) {
let cacheKey = 'ClonedMaterial:' + material.uuid + ':';
if ( useDerivativeTangents ) cacheKey += 'derivative-tangents:';
if ( useVertexColors ) cacheKey += 'vertex-colors:';
if ( useFlatShading ) cacheKey += 'flat-shading:';
let cachedMaterial = this.cache.get( cacheKey );
if ( ! cachedMaterial ) {
cachedMaterial = material.clone();
if ( useVertexColors ) cachedMaterial.vertexColors = true;
if ( useFlatShading ) cachedMaterial.flatShading = true;
if ( useDerivativeTangents ) {
// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
if ( cachedMaterial.normalScale ) cachedMaterial.normalScale.y *= - 1;
if ( cachedMaterial.clearcoatNormalScale ) cachedMaterial.clearcoatNormalScale.y *= - 1;
}
this.cache.add( cacheKey, cachedMaterial );
this.associations.set( cachedMaterial, this.associations.get( material ) );
}
material = cachedMaterial;
}
mesh.material = material;
}
GLTFParser.getMaterialType(): any
¶
Returns: any
GLTFParser.loadMaterial(materialIndex: number): Promise<Material>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
*
* @private
* @param {number} materialIndex
* @return {Promise<Material>}
*/
Parameters:
materialIndex
number
Returns: Promise<Material>
Calls:
kmuExtension.getMaterialType
pending.push
kmuExtension.extendParams
Array.isArray
materialParams.color.setRGB
parser.assignTexture
this._invokeOne
ext.getMaterialType
Promise.all
this._invokeAll
ext.extendMaterialParams
materialParams.normalScale.set
new Color().setRGB
Promise.all( pending ).then
assignExtrasToUserData
parser.associations.set
addUnknownExtensionsToUserData
Internal Comments:
// Specification: (x2)
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material (x2)
// See: https://github.com/mrdoob/three.js/issues/17706 (x4)
Code
loadMaterial( materialIndex ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
const materialDef = json.materials[ materialIndex ];
let materialType;
const materialParams = {};
const materialExtensions = materialDef.extensions || {};
const pending = [];
if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) {
const kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ];
materialType = kmuExtension.getMaterialType();
pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) );
} else {
// Specification:
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material
const metallicRoughness = materialDef.pbrMetallicRoughness || {};
materialParams.color = new Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
const array = metallicRoughness.baseColorFactor;
materialParams.color.setRGB( array[ 0 ], array[ 1 ], array[ 2 ], LinearSRGBColorSpace );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, SRGBColorSpace ) );
}
materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;
if ( metallicRoughness.metallicRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) );
pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) );
}
materialType = this._invokeOne( function ( ext ) {
return ext.getMaterialType && ext.getMaterialType( materialIndex );
} );
pending.push( Promise.all( this._invokeAll( function ( ext ) {
return ext.extendMaterialParams && ext.extendMaterialParams( materialIndex, materialParams );
} ) ) );
}
if ( materialDef.doubleSided === true ) {
materialParams.side = DoubleSide;
}
const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;
if ( alphaMode === ALPHA_MODES.BLEND ) {
materialParams.transparent = true;
// See: https://github.com/mrdoob/three.js/issues/17706
materialParams.depthWrite = false;
} else {
materialParams.transparent = false;
if ( alphaMode === ALPHA_MODES.MASK ) {
materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;
}
}
if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) );
materialParams.normalScale = new Vector2( 1, 1 );
if ( materialDef.normalTexture.scale !== undefined ) {
const scale = materialDef.normalTexture.scale;
materialParams.normalScale.set( scale, scale );
}
}
if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) );
if ( materialDef.occlusionTexture.strength !== undefined ) {
materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;
}
}
if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) {
const emissiveFactor = materialDef.emissiveFactor;
materialParams.emissive = new Color().setRGB( emissiveFactor[ 0 ], emissiveFactor[ 1 ], emissiveFactor[ 2 ], LinearSRGBColorSpace );
}
if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture, SRGBColorSpace ) );
}
return Promise.all( pending ).then( function () {
const material = new materialType( materialParams );
if ( materialDef.name ) material.name = materialDef.name;
assignExtrasToUserData( material, materialDef );
parser.associations.set( material, { materials: materialIndex } );
if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef );
return material;
} );
}
GLTFParser.createUniqueName(originalName: string): string
¶
JSDoc:
/**
* When Object3D instances are targeted by animation, they need unique names.
*
* @private
* @param {string} originalName
* @return {string}
*/
Parameters:
originalName
string
Returns: string
Calls:
PropertyBinding.sanitizeNodeName
Code
createUniqueName( originalName ) {
const sanitizedName = PropertyBinding.sanitizeNodeName( originalName || '' );
if ( sanitizedName in this.nodeNamesUsed ) {
return sanitizedName + '_' + ( ++ this.nodeNamesUsed[ sanitizedName ] );
} else {
this.nodeNamesUsed[ sanitizedName ] = 0;
return sanitizedName;
}
}
GLTFParser.loadGeometries(primitives: GLTF.Primitive[]): Promise<BufferGeometry[]>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
*
* Creates BufferGeometries from primitives.
*
* @private
* @param {Array<GLTF.Primitive>} primitives
* @return {Promise<Array<BufferGeometry>>}
*/
Parameters:
primitives
GLTF.Primitive[]
Returns: Promise<BufferGeometry[]>
Calls:
extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] .decodePrimitive( primitive, parser ) .then
addPrimitiveAttributes
createPrimitiveKey
pending.push
createDracoPrimitive
Promise.all
Internal Comments:
// See if we've already created this geometry (x2)
// Use the cached geometry if it exists (x4)
// Use DRACO geometry if available (x3)
// Otherwise create a new geometry (x3)
// Cache this geometry (x4)
Code
loadGeometries( primitives ) {
const parser = this;
const extensions = this.extensions;
const cache = this.primitiveCache;
function createDracoPrimitive( primitive ) {
return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]
.decodePrimitive( primitive, parser )
.then( function ( geometry ) {
return addPrimitiveAttributes( geometry, primitive, parser );
} );
}
const pending = [];
for ( let i = 0, il = primitives.length; i < il; i ++ ) {
const primitive = primitives[ i ];
const cacheKey = createPrimitiveKey( primitive );
// See if we've already created this geometry
const cached = cache[ cacheKey ];
if ( cached ) {
// Use the cached geometry if it exists
pending.push( cached.promise );
} else {
let geometryPromise;
if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) {
// Use DRACO geometry if available
geometryPromise = createDracoPrimitive( primitive );
} else {
// Otherwise create a new geometry
geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser );
}
// Cache this geometry
cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise };
pending.push( geometryPromise );
}
}
return Promise.all( pending );
}
GLTFParser.loadMesh(meshIndex: number): Promise<any>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
*
* @private
* @param {number} meshIndex
* @return {Promise<Group|Mesh|SkinnedMesh|Line|Points>}
*/
Parameters:
meshIndex
number
Returns: Promise<any>
Calls:
createDefaultMaterial
this.getDependency
pending.push
parser.loadGeometries
Promise.all( pending ).then
results.slice
mesh.normalizeSkinWeights
toTrianglesDrawMode (from ../utils/BufferGeometryUtils.js)
Object.keys
updateMorphTargets
parser.createUniqueName
assignExtrasToUserData
addUnknownExtensionsToUserData
parser.assignFinalMaterial
meshes.push
parser.associations.set
group.add
Internal Comments:
// 1. create Mesh (x2)
// .isSkinnedMesh isn't in glTF spec. See ._markDefs() (x3)
// normalize skin weights to fix malformed assets (see #15319) (x4)
Code
loadMesh( meshIndex ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
const meshDef = json.meshes[ meshIndex ];
const primitives = meshDef.primitives;
const pending = [];
for ( let i = 0, il = primitives.length; i < il; i ++ ) {
const material = primitives[ i ].material === undefined
? createDefaultMaterial( this.cache )
: this.getDependency( 'material', primitives[ i ].material );
pending.push( material );
}
pending.push( parser.loadGeometries( primitives ) );
return Promise.all( pending ).then( function ( results ) {
const materials = results.slice( 0, results.length - 1 );
const geometries = results[ results.length - 1 ];
const meshes = [];
for ( let i = 0, il = geometries.length; i < il; i ++ ) {
const geometry = geometries[ i ];
const primitive = primitives[ i ];
// 1. create Mesh
let mesh;
const material = materials[ i ];
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
primitive.mode === undefined ) {
// .isSkinnedMesh isn't in glTF spec. See ._markDefs()
mesh = meshDef.isSkinnedMesh === true
? new SkinnedMesh( geometry, material )
: new Mesh( geometry, material );
if ( mesh.isSkinnedMesh === true ) {
// normalize skin weights to fix malformed assets (see #15319)
mesh.normalizeSkinWeights();
}
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) {
mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode );
} else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) {
mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode );
}
} else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) {
mesh = new LineSegments( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) {
mesh = new Line( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) {
mesh = new LineLoop( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) {
mesh = new Points( geometry, material );
} else {
throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode );
}
if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) {
updateMorphTargets( mesh, meshDef );
}
mesh.name = parser.createUniqueName( meshDef.name || ( 'mesh_' + meshIndex ) );
assignExtrasToUserData( mesh, meshDef );
if ( primitive.extensions ) addUnknownExtensionsToUserData( extensions, mesh, primitive );
parser.assignFinalMaterial( mesh );
meshes.push( mesh );
}
for ( let i = 0, il = meshes.length; i < il; i ++ ) {
parser.associations.set( meshes[ i ], {
meshes: meshIndex,
primitives: i
} );
}
if ( meshes.length === 1 ) {
if ( meshDef.extensions ) addUnknownExtensionsToUserData( extensions, meshes[ 0 ], meshDef );
return meshes[ 0 ];
}
const group = new Group();
if ( meshDef.extensions ) addUnknownExtensionsToUserData( extensions, group, meshDef );
parser.associations.set( group, { meshes: meshIndex } );
for ( let i = 0, il = meshes.length; i < il; i ++ ) {
group.add( meshes[ i ] );
}
return group;
} );
}
GLTFParser.loadCamera(cameraIndex: number): Promise<THREE.Camera>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
*
* @private
* @param {number} cameraIndex
* @return {Promise<THREE.Camera>}
*/
Parameters:
cameraIndex
number
Returns: Promise<THREE.Camera>
Calls:
console.warn
MathUtils.radToDeg
this.createUniqueName
assignExtrasToUserData
Promise.resolve
Code
loadCamera( cameraIndex ) {
let camera;
const cameraDef = this.json.cameras[ cameraIndex ];
const params = cameraDef[ cameraDef.type ];
if ( ! params ) {
console.warn( 'THREE.GLTFLoader: Missing camera parameters.' );
return;
}
if ( cameraDef.type === 'perspective' ) {
camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 );
} else if ( cameraDef.type === 'orthographic' ) {
camera = new OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar );
}
if ( cameraDef.name ) camera.name = this.createUniqueName( cameraDef.name );
assignExtrasToUserData( camera, cameraDef );
return Promise.resolve( camera );
}
GLTFParser.loadSkin(skinIndex: number): Promise<Skeleton>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
*
* @private
* @param {number} skinIndex
* @return {Promise<Skeleton>}
*/
Parameters:
skinIndex
number
Returns: Promise<Skeleton>
Calls:
pending.push
this._loadNodeShallow
this.getDependency
Promise.all( pending ).then
results.pop
bones.push
mat.fromArray
boneInverses.push
console.warn
Internal Comments:
Code
loadSkin( skinIndex ) {
const skinDef = this.json.skins[ skinIndex ];
const pending = [];
for ( let i = 0, il = skinDef.joints.length; i < il; i ++ ) {
pending.push( this._loadNodeShallow( skinDef.joints[ i ] ) );
}
if ( skinDef.inverseBindMatrices !== undefined ) {
pending.push( this.getDependency( 'accessor', skinDef.inverseBindMatrices ) );
} else {
pending.push( null );
}
return Promise.all( pending ).then( function ( results ) {
const inverseBindMatrices = results.pop();
const jointNodes = results;
// Note that bones (joint nodes) may or may not be in the
// scene graph at this time.
const bones = [];
const boneInverses = [];
for ( let i = 0, il = jointNodes.length; i < il; i ++ ) {
const jointNode = jointNodes[ i ];
if ( jointNode ) {
bones.push( jointNode );
const mat = new Matrix4();
if ( inverseBindMatrices !== null ) {
mat.fromArray( inverseBindMatrices.array, i * 16 );
}
boneInverses.push( mat );
} else {
console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinDef.joints[ i ] );
}
}
return new Skeleton( bones, boneInverses );
} );
}
GLTFParser.loadAnimation(animationIndex: number): Promise<AnimationClip>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
*
* @private
* @param {number} animationIndex
* @return {Promise<AnimationClip>}
*/
Parameters:
animationIndex
number
Returns: Promise<AnimationClip>
Calls:
pendingNodes.push
this.getDependency
pendingInputAccessors.push
pendingOutputAccessors.push
pendingSamplers.push
pendingTargets.push
- `Promise.all( [
Promise.all( pendingNodes ), Promise.all( pendingInputAccessors ), Promise.all( pendingOutputAccessors ), Promise.all( pendingSamplers ), Promise.all( pendingTargets ) ] ).then`
node.updateMatrix
parser._createAnimationTracks
tracks.push
Code
loadAnimation( animationIndex ) {
const json = this.json;
const parser = this;
const animationDef = json.animations[ animationIndex ];
const animationName = animationDef.name ? animationDef.name : 'animation_' + animationIndex;
const pendingNodes = [];
const pendingInputAccessors = [];
const pendingOutputAccessors = [];
const pendingSamplers = [];
const pendingTargets = [];
for ( let i = 0, il = animationDef.channels.length; i < il; i ++ ) {
const channel = animationDef.channels[ i ];
const sampler = animationDef.samplers[ channel.sampler ];
const target = channel.target;
const name = target.node;
const input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input;
const output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output;
if ( target.node === undefined ) continue;
pendingNodes.push( this.getDependency( 'node', name ) );
pendingInputAccessors.push( this.getDependency( 'accessor', input ) );
pendingOutputAccessors.push( this.getDependency( 'accessor', output ) );
pendingSamplers.push( sampler );
pendingTargets.push( target );
}
return Promise.all( [
Promise.all( pendingNodes ),
Promise.all( pendingInputAccessors ),
Promise.all( pendingOutputAccessors ),
Promise.all( pendingSamplers ),
Promise.all( pendingTargets )
] ).then( function ( dependencies ) {
const nodes = dependencies[ 0 ];
const inputAccessors = dependencies[ 1 ];
const outputAccessors = dependencies[ 2 ];
const samplers = dependencies[ 3 ];
const targets = dependencies[ 4 ];
const tracks = [];
for ( let i = 0, il = nodes.length; i < il; i ++ ) {
const node = nodes[ i ];
const inputAccessor = inputAccessors[ i ];
const outputAccessor = outputAccessors[ i ];
const sampler = samplers[ i ];
const target = targets[ i ];
if ( node === undefined ) continue;
if ( node.updateMatrix ) {
node.updateMatrix();
}
const createdTracks = parser._createAnimationTracks( node, inputAccessor, outputAccessor, sampler, target );
if ( createdTracks ) {
for ( let k = 0; k < createdTracks.length; k ++ ) {
tracks.push( createdTracks[ k ] );
}
}
}
return new AnimationClip( animationName, undefined, tracks );
} );
}
GLTFParser.createNodeMesh(nodeIndex: any): Promise<any>
¶
Parameters:
nodeIndex
any
Returns: Promise<any>
Calls:
parser.getDependency( 'mesh', nodeDef.mesh ).then
parser._getNodeRef
node.traverse
Internal Comments:
Code
createNodeMesh( nodeIndex ) {
const json = this.json;
const parser = this;
const nodeDef = json.nodes[ nodeIndex ];
if ( nodeDef.mesh === undefined ) return null;
return parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) {
const node = parser._getNodeRef( parser.meshCache, nodeDef.mesh, mesh );
// if weights are provided on the node, override weights on the mesh.
if ( nodeDef.weights !== undefined ) {
node.traverse( function ( o ) {
if ( ! o.isMesh ) return;
for ( let i = 0, il = nodeDef.weights.length; i < il; i ++ ) {
o.morphTargetInfluences[ i ] = nodeDef.weights[ i ];
}
} );
}
return node;
} );
}
GLTFParser.loadNode(nodeIndex: number): Promise<Object3D>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
*
* @private
* @param {number} nodeIndex
* @return {Promise<Object3D>}
*/
Parameters:
nodeIndex
number
Returns: Promise<Object3D>
Calls:
parser._loadNodeShallow
childPending.push
parser.getDependency
Promise.resolve
Promise.all( [ nodePending, Promise.all( childPending ), skeletonPending ] ).then
node.traverse
mesh.bind
node.add
Internal Comments:
// This full traverse should be fine because (x4)
// child glTF nodes have not been added to this node yet. (x4)
Code
loadNode( nodeIndex ) {
const json = this.json;
const parser = this;
const nodeDef = json.nodes[ nodeIndex ];
const nodePending = parser._loadNodeShallow( nodeIndex );
const childPending = [];
const childrenDef = nodeDef.children || [];
for ( let i = 0, il = childrenDef.length; i < il; i ++ ) {
childPending.push( parser.getDependency( 'node', childrenDef[ i ] ) );
}
const skeletonPending = nodeDef.skin === undefined
? Promise.resolve( null )
: parser.getDependency( 'skin', nodeDef.skin );
return Promise.all( [
nodePending,
Promise.all( childPending ),
skeletonPending
] ).then( function ( results ) {
const node = results[ 0 ];
const children = results[ 1 ];
const skeleton = results[ 2 ];
if ( skeleton !== null ) {
// This full traverse should be fine because
// child glTF nodes have not been added to this node yet.
node.traverse( function ( mesh ) {
if ( ! mesh.isSkinnedMesh ) return;
mesh.bind( skeleton, _identityMatrix );
} );
}
for ( let i = 0, il = children.length; i < il; i ++ ) {
node.add( children[ i ] );
}
return node;
} );
}
GLTFParser._loadNodeShallow(nodeIndex: any): any
¶
Parameters:
nodeIndex
any
Returns: any
Calls:
parser.createUniqueName
parser._invokeOne
ext.createNodeMesh
pending.push
parser.getDependency( 'camera', nodeDef.camera ).then
parser._getNodeRef
- `parser._invokeAll( function ( ext ) {
return ext.createNodeAttachment && ext.createNodeAttachment( nodeIndex ); } ).forEach`
Promise.all( pending ).then
node.add
assignExtrasToUserData
addUnknownExtensionsToUserData
matrix.fromArray
node.applyMatrix4
node.position.fromArray
node.quaternion.fromArray
node.scale.fromArray
parser.associations.has
parser.associations.set
parser.associations.get
Internal Comments:
// This method is called from .loadNode() and .loadSkin().
// Cache a node to avoid duplication.
// reserve node's name before its dependencies, so the root has the intended name. (x2)
// .isBone isn't in glTF spec. See ._markDefs
Code
_loadNodeShallow( nodeIndex ) {
const json = this.json;
const extensions = this.extensions;
const parser = this;
// This method is called from .loadNode() and .loadSkin().
// Cache a node to avoid duplication.
if ( this.nodeCache[ nodeIndex ] !== undefined ) {
return this.nodeCache[ nodeIndex ];
}
const nodeDef = json.nodes[ nodeIndex ];
// reserve node's name before its dependencies, so the root has the intended name.
const nodeName = nodeDef.name ? parser.createUniqueName( nodeDef.name ) : '';
const pending = [];
const meshPromise = parser._invokeOne( function ( ext ) {
return ext.createNodeMesh && ext.createNodeMesh( nodeIndex );
} );
if ( meshPromise ) {
pending.push( meshPromise );
}
if ( nodeDef.camera !== undefined ) {
pending.push( parser.getDependency( 'camera', nodeDef.camera ).then( function ( camera ) {
return parser._getNodeRef( parser.cameraCache, nodeDef.camera, camera );
} ) );
}
parser._invokeAll( function ( ext ) {
return ext.createNodeAttachment && ext.createNodeAttachment( nodeIndex );
} ).forEach( function ( promise ) {
pending.push( promise );
} );
this.nodeCache[ nodeIndex ] = Promise.all( pending ).then( function ( objects ) {
let node;
// .isBone isn't in glTF spec. See ._markDefs
if ( nodeDef.isBone === true ) {
node = new Bone();
} else if ( objects.length > 1 ) {
node = new Group();
} else if ( objects.length === 1 ) {
node = objects[ 0 ];
} else {
node = new Object3D();
}
if ( node !== objects[ 0 ] ) {
for ( let i = 0, il = objects.length; i < il; i ++ ) {
node.add( objects[ i ] );
}
}
if ( nodeDef.name ) {
node.userData.name = nodeDef.name;
node.name = nodeName;
}
assignExtrasToUserData( node, nodeDef );
if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef );
if ( nodeDef.matrix !== undefined ) {
const matrix = new Matrix4();
matrix.fromArray( nodeDef.matrix );
node.applyMatrix4( matrix );
} else {
if ( nodeDef.translation !== undefined ) {
node.position.fromArray( nodeDef.translation );
}
if ( nodeDef.rotation !== undefined ) {
node.quaternion.fromArray( nodeDef.rotation );
}
if ( nodeDef.scale !== undefined ) {
node.scale.fromArray( nodeDef.scale );
}
}
if ( ! parser.associations.has( node ) ) {
parser.associations.set( node, {} );
} else if ( nodeDef.mesh !== undefined && parser.meshCache.refs[ nodeDef.mesh ] > 1 ) {
const mapping = parser.associations.get( node );
parser.associations.set( node, { ...mapping } );
}
parser.associations.get( node ).nodes = nodeIndex;
return node;
} );
return this.nodeCache[ nodeIndex ];
}
GLTFParser.loadScene(sceneIndex: number): Promise<Group>
¶
JSDoc:
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
*
* @private
* @param {number} sceneIndex
* @return {Promise<Group>}
*/
Parameters:
sceneIndex
number
Returns: Promise<Group>
Calls:
parser.createUniqueName
assignExtrasToUserData
addUnknownExtensionsToUserData
pending.push
parser.getDependency
Promise.all( pending ).then
scene.add
reducedAssociations.set
node.traverse
parser.associations.get
reduceAssociations
Internal Comments:
// Loader returns Group, not Scene. (x2)
// See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172 (x2)
// Removes dangling associations, associations that reference a node that (x2)
// didn't make it into the scene. (x2)
Code
loadScene( sceneIndex ) {
const extensions = this.extensions;
const sceneDef = this.json.scenes[ sceneIndex ];
const parser = this;
// Loader returns Group, not Scene.
// See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172
const scene = new Group();
if ( sceneDef.name ) scene.name = parser.createUniqueName( sceneDef.name );
assignExtrasToUserData( scene, sceneDef );
if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef );
const nodeIds = sceneDef.nodes || [];
const pending = [];
for ( let i = 0, il = nodeIds.length; i < il; i ++ ) {
pending.push( parser.getDependency( 'node', nodeIds[ i ] ) );
}
return Promise.all( pending ).then( function ( nodes ) {
for ( let i = 0, il = nodes.length; i < il; i ++ ) {
scene.add( nodes[ i ] );
}
// Removes dangling associations, associations that reference a node that
// didn't make it into the scene.
const reduceAssociations = ( node ) => {
const reducedAssociations = new Map();
for ( const [ key, value ] of parser.associations ) {
if ( key instanceof Material || key instanceof Texture ) {
reducedAssociations.set( key, value );
}
}
node.traverse( ( node ) => {
const mappings = parser.associations.get( node );
if ( mappings != null ) {
reducedAssociations.set( node, mappings );
}
} );
return reducedAssociations;
};
parser.associations = reduceAssociations( scene );
return scene;
} );
}
GLTFParser._createAnimationTracks(node: any, inputAccessor: any, outputAccessor: any, sampler: any, target: any): any[]
¶
Parameters:
node
any
inputAccessor
any
outputAccessor
any
sampler
any
target
any
Returns: any[]
Calls:
node.traverse
targetNames.push
this._getArrayFromAccessor
this._createCubicSplineTrackInterpolant
tracks.push
Internal Comments:
Code
_createAnimationTracks( node, inputAccessor, outputAccessor, sampler, target ) {
const tracks = [];
const targetName = node.name ? node.name : node.uuid;
const targetNames = [];
if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) {
node.traverse( function ( object ) {
if ( object.morphTargetInfluences ) {
targetNames.push( object.name ? object.name : object.uuid );
}
} );
} else {
targetNames.push( targetName );
}
let TypedKeyframeTrack;
switch ( PATH_PROPERTIES[ target.path ] ) {
case PATH_PROPERTIES.weights:
TypedKeyframeTrack = NumberKeyframeTrack;
break;
case PATH_PROPERTIES.rotation:
TypedKeyframeTrack = QuaternionKeyframeTrack;
break;
case PATH_PROPERTIES.translation:
case PATH_PROPERTIES.scale:
TypedKeyframeTrack = VectorKeyframeTrack;
break;
default:
switch ( outputAccessor.itemSize ) {
case 1:
TypedKeyframeTrack = NumberKeyframeTrack;
break;
case 2:
case 3:
default:
TypedKeyframeTrack = VectorKeyframeTrack;
break;
}
break;
}
const interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear;
const outputArray = this._getArrayFromAccessor( outputAccessor );
for ( let j = 0, jl = targetNames.length; j < jl; j ++ ) {
const track = new TypedKeyframeTrack(
targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ],
inputAccessor.array,
outputArray,
interpolation
);
// Override interpolation with custom factory method.
if ( sampler.interpolation === 'CUBICSPLINE' ) {
this._createCubicSplineTrackInterpolant( track );
}
tracks.push( track );
}
return tracks;
}
GLTFParser._getArrayFromAccessor(accessor: any): any
¶
Parameters:
accessor
any
Returns: any
Calls:
getNormalizedComponentScale
Code
_getArrayFromAccessor( accessor ) {
let outputArray = accessor.array;
if ( accessor.normalized ) {
const scale = getNormalizedComponentScale( outputArray.constructor );
const scaled = new Float32Array( outputArray.length );
for ( let j = 0, jl = outputArray.length; j < jl; j ++ ) {
scaled[ j ] = outputArray[ j ] * scale;
}
outputArray = scaled;
}
return outputArray;
}
GLTFParser._createCubicSplineTrackInterpolant(track: any): void
¶
Parameters:
track
any
Returns: void
Calls:
this.getValueSize
Internal Comments:
// A CUBICSPLINE keyframe in glTF has three output values for each input value, (x2)
// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize() (x2)
// must be divided by three to get the interpolant's sampleSize argument. (x2)
// Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants. (x5)
Code
_createCubicSplineTrackInterpolant( track ) {
track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) {
// A CUBICSPLINE keyframe in glTF has three output values for each input value,
// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
// must be divided by three to get the interpolant's sampleSize argument.
const interpolantType = ( this instanceof QuaternionKeyframeTrack ) ? GLTFCubicSplineQuaternionInterpolant : GLTFCubicSplineInterpolant;
return new interpolantType( this.times, this.values, this.getValueSize() / 3, result );
};
// Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants.
track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;
}
updateMappings(original: any, clone: any): void
¶
Parameters:
original
any
clone
any
Returns: void
Calls:
this.associations.get
this.associations.set
original.children.entries
updateMappings
Code
createDracoPrimitive(primitive: any): any
¶
Parameters:
primitive
any
Returns: any
Calls:
extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] .decodePrimitive( primitive, parser ) .then
addPrimitiveAttributes
Code
reduceAssociations(node: any): Map<any, any>
¶
Parameters:
node
any
Returns: Map<any, any>
Calls:
reducedAssociations.set
node.traverse
parser.associations.get
Code
( node ) => {
const reducedAssociations = new Map();
for ( const [ key, value ] of parser.associations ) {
if ( key instanceof Material || key instanceof Texture ) {
reducedAssociations.set( key, value );
}
}
node.traverse( ( node ) => {
const mappings = parser.associations.get( node );
if ( mappings != null ) {
reducedAssociations.set( node, mappings );
}
} );
return reducedAssociations;
}
computeBounds(geometry: BufferGeometry, primitiveDef: GLTF.Primitive, parser: GLTFParser): void
¶
JSDoc:
/**
*
* @private
* @param {BufferGeometry} geometry
* @param {GLTF.Primitive} primitiveDef
* @param {GLTFParser} parser
*/
Parameters:
geometry
BufferGeometry
primitiveDef
GLTF.Primitive
parser
GLTFParser
Returns: void
Calls:
box.set
getNormalizedComponentScale
box.min.multiplyScalar
box.max.multiplyScalar
console.warn
vector.setX
Math.max
Math.abs
vector.setY
vector.setZ
vector.multiplyScalar
maxDisplacement.max
box.expandByVector
box.getCenter
box.min.distanceTo
Internal Comments:
// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement. (x2)
// we need to get max of absolute components because target weight is [-1,1] (x4)
// Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative (x4)
// to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets (x4)
// are used to implement key-frame animations and as such only two are active at a time - this results in very large (x4)
// boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size. (x4)
// As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets. (x4)
Code
function computeBounds( geometry, primitiveDef, parser ) {
const attributes = primitiveDef.attributes;
const box = new Box3();
if ( attributes.POSITION !== undefined ) {
const accessor = parser.json.accessors[ attributes.POSITION ];
const min = accessor.min;
const max = accessor.max;
// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.
if ( min !== undefined && max !== undefined ) {
box.set(
new Vector3( min[ 0 ], min[ 1 ], min[ 2 ] ),
new Vector3( max[ 0 ], max[ 1 ], max[ 2 ] )
);
if ( accessor.normalized ) {
const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] );
box.min.multiplyScalar( boxScale );
box.max.multiplyScalar( boxScale );
}
} else {
console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );
return;
}
} else {
return;
}
const targets = primitiveDef.targets;
if ( targets !== undefined ) {
const maxDisplacement = new Vector3();
const vector = new Vector3();
for ( let i = 0, il = targets.length; i < il; i ++ ) {
const target = targets[ i ];
if ( target.POSITION !== undefined ) {
const accessor = parser.json.accessors[ target.POSITION ];
const min = accessor.min;
const max = accessor.max;
// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.
if ( min !== undefined && max !== undefined ) {
// we need to get max of absolute components because target weight is [-1,1]
vector.setX( Math.max( Math.abs( min[ 0 ] ), Math.abs( max[ 0 ] ) ) );
vector.setY( Math.max( Math.abs( min[ 1 ] ), Math.abs( max[ 1 ] ) ) );
vector.setZ( Math.max( Math.abs( min[ 2 ] ), Math.abs( max[ 2 ] ) ) );
if ( accessor.normalized ) {
const boxScale = getNormalizedComponentScale( WEBGL_COMPONENT_TYPES[ accessor.componentType ] );
vector.multiplyScalar( boxScale );
}
// Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative
// to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets
// are used to implement key-frame animations and as such only two are active at a time - this results in very large
// boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size.
maxDisplacement.max( vector );
} else {
console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );
}
}
}
// As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets.
box.expandByVector( maxDisplacement );
}
geometry.boundingBox = box;
const sphere = new Sphere();
box.getCenter( sphere.center );
sphere.radius = box.min.distanceTo( box.max ) / 2;
geometry.boundingSphere = sphere;
}
addPrimitiveAttributes(geometry: BufferGeometry, primitiveDef: GLTF.Primitive, parser: GLTFParser): Promise<BufferGeometry>
¶
JSDoc:
/**
*
* @private
* @param {BufferGeometry} geometry
* @param {GLTF.Primitive} primitiveDef
* @param {GLTFParser} parser
* @return {Promise<BufferGeometry>}
*/
Parameters:
geometry
BufferGeometry
primitiveDef
GLTF.Primitive
parser
GLTFParser
Returns: Promise<BufferGeometry>
Calls:
parser.getDependency( 'accessor', accessorIndex ) .then
geometry.setAttribute
gltfAttributeName.toLowerCase
pending.push
assignAttributeAccessor
parser.getDependency( 'accessor', primitiveDef.indices ).then
geometry.setIndex
console.warn
assignExtrasToUserData
computeBounds
Promise.all( pending ).then
addMorphTargets
Internal Comments:
Code
function addPrimitiveAttributes( geometry, primitiveDef, parser ) {
const attributes = primitiveDef.attributes;
const pending = [];
function assignAttributeAccessor( accessorIndex, attributeName ) {
return parser.getDependency( 'accessor', accessorIndex )
.then( function ( accessor ) {
geometry.setAttribute( attributeName, accessor );
} );
}
for ( const gltfAttributeName in attributes ) {
const threeAttributeName = ATTRIBUTES[ gltfAttributeName ] || gltfAttributeName.toLowerCase();
// Skip attributes already provided by e.g. Draco extension.
if ( threeAttributeName in geometry.attributes ) continue;
pending.push( assignAttributeAccessor( attributes[ gltfAttributeName ], threeAttributeName ) );
}
if ( primitiveDef.indices !== undefined && ! geometry.index ) {
const accessor = parser.getDependency( 'accessor', primitiveDef.indices ).then( function ( accessor ) {
geometry.setIndex( accessor );
} );
pending.push( accessor );
}
if ( ColorManagement.workingColorSpace !== LinearSRGBColorSpace && 'COLOR_0' in attributes ) {
console.warn( `THREE.GLTFLoader: Converting vertex colors from "srgb-linear" to "${ColorManagement.workingColorSpace}" not supported.` );
}
assignExtrasToUserData( geometry, primitiveDef );
computeBounds( geometry, primitiveDef, parser );
return Promise.all( pending ).then( function () {
return primitiveDef.targets !== undefined
? addMorphTargets( geometry, primitiveDef.targets, parser )
: geometry;
} );
}
assignAttributeAccessor(accessorIndex: any, attributeName: any): Promise<void>
¶
Parameters:
accessorIndex
any
attributeName
any
Returns: Promise<void>
Calls:
parser.getDependency( 'accessor', accessorIndex ) .then
geometry.setAttribute
Code
Classes¶
GLTFLoader
¶
Class Code
class GLTFLoader extends Loader {
/**
* Constructs a new glTF loader.
*
* @param {LoadingManager} [manager] - The loading manager.
*/
constructor( manager ) {
super( manager );
this.dracoLoader = null;
this.ktx2Loader = null;
this.meshoptDecoder = null;
this.pluginCallbacks = [];
this.register( function ( parser ) {
return new GLTFMaterialsClearcoatExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsDispersionExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFTextureBasisUExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFTextureWebPExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFTextureAVIFExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsSheenExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsTransmissionExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsVolumeExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsIorExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsEmissiveStrengthExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsSpecularExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsIridescenceExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsAnisotropyExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMaterialsBumpExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFLightsExtension( parser );
} );
this.register( function ( parser ) {
return new GLTFMeshoptCompression( parser );
} );
this.register( function ( parser ) {
return new GLTFMeshGpuInstancing( parser );
} );
}
/**
* Starts loading from the given URL and passes the loaded glTF asset
* to the `onLoad()` callback.
*
* @param {string} url - The path/URL of the file to be loaded. This can also be a data URI.
* @param {function(GLTFLoader~LoadObject)} onLoad - Executed when the loading process has been finished.
* @param {onProgressCallback} onProgress - Executed while the loading is in progress.
* @param {onErrorCallback} onError - Executed when errors occur.
*/
load( url, onLoad, onProgress, onError ) {
const scope = this;
let resourcePath;
if ( this.resourcePath !== '' ) {
resourcePath = this.resourcePath;
} else if ( this.path !== '' ) {
// If a base path is set, resources will be relative paths from that plus the relative path of the gltf file
// Example path = 'https://my-cnd-server.com/', url = 'assets/models/model.gltf'
// resourcePath = 'https://my-cnd-server.com/assets/models/'
// referenced resource 'model.bin' will be loaded from 'https://my-cnd-server.com/assets/models/model.bin'
// referenced resource '../textures/texture.png' will be loaded from 'https://my-cnd-server.com/assets/textures/texture.png'
const relativeUrl = LoaderUtils.extractUrlBase( url );
resourcePath = LoaderUtils.resolveURL( relativeUrl, this.path );
} else {
resourcePath = LoaderUtils.extractUrlBase( url );
}
// Tells the LoadingManager to track an extra item, which resolves after
// the model is fully loaded. This means the count of items loaded will
// be incorrect, but ensures manager.onLoad() does not fire early.
this.manager.itemStart( url );
const _onError = function ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
scope.manager.itemEnd( url );
};
const loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
loader.setRequestHeader( this.requestHeader );
loader.setWithCredentials( this.withCredentials );
loader.load( url, function ( data ) {
try {
scope.parse( data, resourcePath, function ( gltf ) {
onLoad( gltf );
scope.manager.itemEnd( url );
}, _onError );
} catch ( e ) {
_onError( e );
}
}, onProgress, _onError );
}
/**
* Sets the given Draco loader to this loader. Required for decoding assets
* compressed with the `KHR_draco_mesh_compression` extension.
*
* @param {DRACOLoader} dracoLoader - The Draco loader to set.
* @return {GLTFLoader} A reference to this loader.
*/
setDRACOLoader( dracoLoader ) {
this.dracoLoader = dracoLoader;
return this;
}
/**
* Sets the given KTX2 loader to this loader. Required for loading KTX2
* compressed textures.
*
* @param {KTX2Loader} ktx2Loader - The KTX2 loader to set.
* @return {GLTFLoader} A reference to this loader.
*/
setKTX2Loader( ktx2Loader ) {
this.ktx2Loader = ktx2Loader;
return this;
}
/**
* Sets the given meshopt decoder. Required for decoding assets
* compressed with the `EXT_meshopt_compression` extension.
*
* @param {Object} meshoptDecoder - The meshopt decoder to set.
* @return {GLTFLoader} A reference to this loader.
*/
setMeshoptDecoder( meshoptDecoder ) {
this.meshoptDecoder = meshoptDecoder;
return this;
}
/**
* Registers a plugin callback. This API is internally used to implement the various
* glTF extensions but can also used by third-party code to add additional logic
* to the loader.
*
* @param {function(parser:GLTFParser)} callback - The callback function to register.
* @return {GLTFLoader} A reference to this loader.
*/
register( callback ) {
if ( this.pluginCallbacks.indexOf( callback ) === - 1 ) {
this.pluginCallbacks.push( callback );
}
return this;
}
/**
* Unregisters a plugin callback.
*
* @param {Function} callback - The callback function to unregister.
* @return {GLTFLoader} A reference to this loader.
*/
unregister( callback ) {
if ( this.pluginCallbacks.indexOf( callback ) !== - 1 ) {
this.pluginCallbacks.splice( this.pluginCallbacks.indexOf( callback ), 1 );
}
return this;
}
/**
* Parses the given FBX data and returns the resulting group.
*
* @param {string|ArrayBuffer} data - The raw glTF data.
* @param {string} path - The URL base path.
* @param {function(GLTFLoader~LoadObject)} onLoad - Executed when the loading process has been finished.
* @param {onErrorCallback} onError - Executed when errors occur.
*/
parse( data, path, onLoad, onError ) {
let json;
const extensions = {};
const plugins = {};
const textDecoder = new TextDecoder();
if ( typeof data === 'string' ) {
json = JSON.parse( data );
} else if ( data instanceof ArrayBuffer ) {
const magic = textDecoder.decode( new Uint8Array( data, 0, 4 ) );
if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) {
try {
extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data );
} catch ( error ) {
if ( onError ) onError( error );
return;
}
json = JSON.parse( extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content );
} else {
json = JSON.parse( textDecoder.decode( data ) );
}
} else {
json = data;
}
if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) {
if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) );
return;
}
const parser = new GLTFParser( json, {
path: path || this.resourcePath || '',
crossOrigin: this.crossOrigin,
requestHeader: this.requestHeader,
manager: this.manager,
ktx2Loader: this.ktx2Loader,
meshoptDecoder: this.meshoptDecoder
} );
parser.fileLoader.setRequestHeader( this.requestHeader );
for ( let i = 0; i < this.pluginCallbacks.length; i ++ ) {
const plugin = this.pluginCallbacks[ i ]( parser );
if ( ! plugin.name ) console.error( 'THREE.GLTFLoader: Invalid plugin found: missing name' );
plugins[ plugin.name ] = plugin;
// Workaround to avoid determining as unknown extension
// in addUnknownExtensionsToUserData().
// Remove this workaround if we move all the existing
// extension handlers to plugin system
extensions[ plugin.name ] = true;
}
if ( json.extensionsUsed ) {
for ( let i = 0; i < json.extensionsUsed.length; ++ i ) {
const extensionName = json.extensionsUsed[ i ];
const extensionsRequired = json.extensionsRequired || [];
switch ( extensionName ) {
case EXTENSIONS.KHR_MATERIALS_UNLIT:
extensions[ extensionName ] = new GLTFMaterialsUnlitExtension();
break;
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader );
break;
case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
extensions[ extensionName ] = new GLTFTextureTransformExtension();
break;
case EXTENSIONS.KHR_MESH_QUANTIZATION:
extensions[ extensionName ] = new GLTFMeshQuantizationExtension();
break;
default:
if ( extensionsRequired.indexOf( extensionName ) >= 0 && plugins[ extensionName ] === undefined ) {
console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );
}
}
}
}
parser.setExtensions( extensions );
parser.setPlugins( plugins );
parser.parse( onLoad, onError );
}
/**
* Async version of {@link GLTFLoader#parse}.
*
* @async
* @param {string|ArrayBuffer} data - The raw glTF data.
* @param {string} path - The URL base path.
* @return {Promise<GLTFLoader~LoadObject>} A Promise that resolves with the loaded glTF when the parsing has been finished.
*/
parseAsync( data, path ) {
const scope = this;
return new Promise( function ( resolve, reject ) {
scope.parse( data, path, resolve, reject );
} );
}
}
Methods¶
load(url: string, onLoad: any, onProgress: onProgressCallback, onError: onErrorCallback): void
¶
Code
load( url, onLoad, onProgress, onError ) {
const scope = this;
let resourcePath;
if ( this.resourcePath !== '' ) {
resourcePath = this.resourcePath;
} else if ( this.path !== '' ) {
// If a base path is set, resources will be relative paths from that plus the relative path of the gltf file
// Example path = 'https://my-cnd-server.com/', url = 'assets/models/model.gltf'
// resourcePath = 'https://my-cnd-server.com/assets/models/'
// referenced resource 'model.bin' will be loaded from 'https://my-cnd-server.com/assets/models/model.bin'
// referenced resource '../textures/texture.png' will be loaded from 'https://my-cnd-server.com/assets/textures/texture.png'
const relativeUrl = LoaderUtils.extractUrlBase( url );
resourcePath = LoaderUtils.resolveURL( relativeUrl, this.path );
} else {
resourcePath = LoaderUtils.extractUrlBase( url );
}
// Tells the LoadingManager to track an extra item, which resolves after
// the model is fully loaded. This means the count of items loaded will
// be incorrect, but ensures manager.onLoad() does not fire early.
this.manager.itemStart( url );
const _onError = function ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
scope.manager.itemEnd( url );
};
const loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
loader.setRequestHeader( this.requestHeader );
loader.setWithCredentials( this.withCredentials );
loader.load( url, function ( data ) {
try {
scope.parse( data, resourcePath, function ( gltf ) {
onLoad( gltf );
scope.manager.itemEnd( url );
}, _onError );
} catch ( e ) {
_onError( e );
}
}, onProgress, _onError );
}
setDRACOLoader(dracoLoader: DRACOLoader): GLTFLoader
¶
setKTX2Loader(ktx2Loader: KTX2Loader): GLTFLoader
¶
setMeshoptDecoder(meshoptDecoder: any): GLTFLoader
¶
register(callback: any): GLTFLoader
¶
Code
unregister(callback: Function): GLTFLoader
¶
Code
parse(data: string | ArrayBuffer, path: string, onLoad: any, onError: onErrorCallback): void
¶
Code
parse( data, path, onLoad, onError ) {
let json;
const extensions = {};
const plugins = {};
const textDecoder = new TextDecoder();
if ( typeof data === 'string' ) {
json = JSON.parse( data );
} else if ( data instanceof ArrayBuffer ) {
const magic = textDecoder.decode( new Uint8Array( data, 0, 4 ) );
if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) {
try {
extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data );
} catch ( error ) {
if ( onError ) onError( error );
return;
}
json = JSON.parse( extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content );
} else {
json = JSON.parse( textDecoder.decode( data ) );
}
} else {
json = data;
}
if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) {
if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) );
return;
}
const parser = new GLTFParser( json, {
path: path || this.resourcePath || '',
crossOrigin: this.crossOrigin,
requestHeader: this.requestHeader,
manager: this.manager,
ktx2Loader: this.ktx2Loader,
meshoptDecoder: this.meshoptDecoder
} );
parser.fileLoader.setRequestHeader( this.requestHeader );
for ( let i = 0; i < this.pluginCallbacks.length; i ++ ) {
const plugin = this.pluginCallbacks[ i ]( parser );
if ( ! plugin.name ) console.error( 'THREE.GLTFLoader: Invalid plugin found: missing name' );
plugins[ plugin.name ] = plugin;
// Workaround to avoid determining as unknown extension
// in addUnknownExtensionsToUserData().
// Remove this workaround if we move all the existing
// extension handlers to plugin system
extensions[ plugin.name ] = true;
}
if ( json.extensionsUsed ) {
for ( let i = 0; i < json.extensionsUsed.length; ++ i ) {
const extensionName = json.extensionsUsed[ i ];
const extensionsRequired = json.extensionsRequired || [];
switch ( extensionName ) {
case EXTENSIONS.KHR_MATERIALS_UNLIT:
extensions[ extensionName ] = new GLTFMaterialsUnlitExtension();
break;
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader );
break;
case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
extensions[ extensionName ] = new GLTFTextureTransformExtension();
break;
case EXTENSIONS.KHR_MESH_QUANTIZATION:
extensions[ extensionName ] = new GLTFMeshQuantizationExtension();
break;
default:
if ( extensionsRequired.indexOf( extensionName ) >= 0 && plugins[ extensionName ] === undefined ) {
console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );
}
}
}
}
parser.setExtensions( extensions );
parser.setPlugins( plugins );
parser.parse( onLoad, onError );
}
parseAsync(data: string | ArrayBuffer, path: string): Promise<GLTFLoader>
¶
Code
GLTFLightsExtension
¶
Class Code
class GLTFLightsExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;
// Object3D instance caches
this.cache = { refs: {}, uses: {} };
}
_markDefs() {
const parser = this.parser;
const nodeDefs = this.parser.json.nodes || [];
for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
const nodeDef = nodeDefs[ nodeIndex ];
if ( nodeDef.extensions
&& nodeDef.extensions[ this.name ]
&& nodeDef.extensions[ this.name ].light !== undefined ) {
parser._addNodeRef( this.cache, nodeDef.extensions[ this.name ].light );
}
}
}
_loadLight( lightIndex ) {
const parser = this.parser;
const cacheKey = 'light:' + lightIndex;
let dependency = parser.cache.get( cacheKey );
if ( dependency ) return dependency;
const json = parser.json;
const extensions = ( json.extensions && json.extensions[ this.name ] ) || {};
const lightDefs = extensions.lights || [];
const lightDef = lightDefs[ lightIndex ];
let lightNode;
const color = new Color( 0xffffff );
if ( lightDef.color !== undefined ) color.setRGB( lightDef.color[ 0 ], lightDef.color[ 1 ], lightDef.color[ 2 ], LinearSRGBColorSpace );
const range = lightDef.range !== undefined ? lightDef.range : 0;
switch ( lightDef.type ) {
case 'directional':
lightNode = new DirectionalLight( color );
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
case 'point':
lightNode = new PointLight( color );
lightNode.distance = range;
break;
case 'spot':
lightNode = new SpotLight( color );
lightNode.distance = range;
// Handle spotlight properties.
lightDef.spot = lightDef.spot || {};
lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
lightNode.angle = lightDef.spot.outerConeAngle;
lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
default:
throw new Error( 'THREE.GLTFLoader: Unexpected light type: ' + lightDef.type );
}
// Some lights (e.g. spot) default to a position other than the origin. Reset the position
// here, because node-level parsing will only override position if explicitly specified.
lightNode.position.set( 0, 0, 0 );
assignExtrasToUserData( lightNode, lightDef );
if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity;
lightNode.name = parser.createUniqueName( lightDef.name || ( 'light_' + lightIndex ) );
dependency = Promise.resolve( lightNode );
parser.cache.add( cacheKey, dependency );
return dependency;
}
getDependency( type, index ) {
if ( type !== 'light' ) return;
return this._loadLight( index );
}
createNodeAttachment( nodeIndex ) {
const self = this;
const parser = this.parser;
const json = parser.json;
const nodeDef = json.nodes[ nodeIndex ];
const lightDef = ( nodeDef.extensions && nodeDef.extensions[ this.name ] ) || {};
const lightIndex = lightDef.light;
if ( lightIndex === undefined ) return null;
return this._loadLight( lightIndex ).then( function ( light ) {
return parser._getNodeRef( self.cache, lightIndex, light );
} );
}
}
Methods¶
_markDefs(): void
¶
Code
_markDefs() {
const parser = this.parser;
const nodeDefs = this.parser.json.nodes || [];
for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
const nodeDef = nodeDefs[ nodeIndex ];
if ( nodeDef.extensions
&& nodeDef.extensions[ this.name ]
&& nodeDef.extensions[ this.name ].light !== undefined ) {
parser._addNodeRef( this.cache, nodeDef.extensions[ this.name ].light );
}
}
}
_loadLight(lightIndex: any): any
¶
Code
_loadLight( lightIndex ) {
const parser = this.parser;
const cacheKey = 'light:' + lightIndex;
let dependency = parser.cache.get( cacheKey );
if ( dependency ) return dependency;
const json = parser.json;
const extensions = ( json.extensions && json.extensions[ this.name ] ) || {};
const lightDefs = extensions.lights || [];
const lightDef = lightDefs[ lightIndex ];
let lightNode;
const color = new Color( 0xffffff );
if ( lightDef.color !== undefined ) color.setRGB( lightDef.color[ 0 ], lightDef.color[ 1 ], lightDef.color[ 2 ], LinearSRGBColorSpace );
const range = lightDef.range !== undefined ? lightDef.range : 0;
switch ( lightDef.type ) {
case 'directional':
lightNode = new DirectionalLight( color );
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
case 'point':
lightNode = new PointLight( color );
lightNode.distance = range;
break;
case 'spot':
lightNode = new SpotLight( color );
lightNode.distance = range;
// Handle spotlight properties.
lightDef.spot = lightDef.spot || {};
lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
lightNode.angle = lightDef.spot.outerConeAngle;
lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
lightNode.target.position.set( 0, 0, - 1 );
lightNode.add( lightNode.target );
break;
default:
throw new Error( 'THREE.GLTFLoader: Unexpected light type: ' + lightDef.type );
}
// Some lights (e.g. spot) default to a position other than the origin. Reset the position
// here, because node-level parsing will only override position if explicitly specified.
lightNode.position.set( 0, 0, 0 );
assignExtrasToUserData( lightNode, lightDef );
if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity;
lightNode.name = parser.createUniqueName( lightDef.name || ( 'light_' + lightIndex ) );
dependency = Promise.resolve( lightNode );
parser.cache.add( cacheKey, dependency );
return dependency;
}
getDependency(type: any, index: any): any
¶
Code
createNodeAttachment(nodeIndex: any): any
¶
Code
createNodeAttachment( nodeIndex ) {
const self = this;
const parser = this.parser;
const json = parser.json;
const nodeDef = json.nodes[ nodeIndex ];
const lightDef = ( nodeDef.extensions && nodeDef.extensions[ this.name ] ) || {};
const lightIndex = lightDef.light;
if ( lightIndex === undefined ) return null;
return this._loadLight( lightIndex ).then( function ( light ) {
return parser._getNodeRef( self.cache, lightIndex, light );
} );
}
GLTFMaterialsUnlitExtension
¶
Class Code
class GLTFMaterialsUnlitExtension {
constructor() {
this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;
}
getMaterialType() {
return MeshBasicMaterial;
}
extendParams( materialParams, materialDef, parser ) {
const pending = [];
materialParams.color = new Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
const metallicRoughness = materialDef.pbrMetallicRoughness;
if ( metallicRoughness ) {
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
const array = metallicRoughness.baseColorFactor;
materialParams.color.setRGB( array[ 0 ], array[ 1 ], array[ 2 ], LinearSRGBColorSpace );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, SRGBColorSpace ) );
}
}
return Promise.all( pending );
}
}
Methods¶
getMaterialType(): any
¶
extendParams(materialParams: any, materialDef: any, parser: any): Promise<any[]>
¶
Code
extendParams( materialParams, materialDef, parser ) {
const pending = [];
materialParams.color = new Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
const metallicRoughness = materialDef.pbrMetallicRoughness;
if ( metallicRoughness ) {
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
const array = metallicRoughness.baseColorFactor;
materialParams.color.setRGB( array[ 0 ], array[ 1 ], array[ 2 ], LinearSRGBColorSpace );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, SRGBColorSpace ) );
}
}
return Promise.all( pending );
}
GLTFMaterialsEmissiveStrengthExtension
¶
Class Code
class GLTFMaterialsEmissiveStrengthExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_EMISSIVE_STRENGTH;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const emissiveStrength = materialDef.extensions[ this.name ].emissiveStrength;
if ( emissiveStrength !== undefined ) {
materialParams.emissiveIntensity = emissiveStrength;
}
return Promise.resolve();
}
}
Methods¶
extendMaterialParams(materialIndex: any, materialParams: any): Promise<void>
¶
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const emissiveStrength = materialDef.extensions[ this.name ].emissiveStrength;
if ( emissiveStrength !== undefined ) {
materialParams.emissiveIntensity = emissiveStrength;
}
return Promise.resolve();
}
GLTFMaterialsClearcoatExtension
¶
Class Code
class GLTFMaterialsClearcoatExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.clearcoatFactor !== undefined ) {
materialParams.clearcoat = extension.clearcoatFactor;
}
if ( extension.clearcoatTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) );
}
if ( extension.clearcoatRoughnessFactor !== undefined ) {
materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor;
}
if ( extension.clearcoatRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) );
}
if ( extension.clearcoatNormalTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) );
if ( extension.clearcoatNormalTexture.scale !== undefined ) {
const scale = extension.clearcoatNormalTexture.scale;
materialParams.clearcoatNormalScale = new Vector2( scale, scale );
}
}
return Promise.all( pending );
}
}
Methods¶
getMaterialType(materialIndex: any): any
¶
Code
extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.clearcoatFactor !== undefined ) {
materialParams.clearcoat = extension.clearcoatFactor;
}
if ( extension.clearcoatTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) );
}
if ( extension.clearcoatRoughnessFactor !== undefined ) {
materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor;
}
if ( extension.clearcoatRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) );
}
if ( extension.clearcoatNormalTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) );
if ( extension.clearcoatNormalTexture.scale !== undefined ) {
const scale = extension.clearcoatNormalTexture.scale;
materialParams.clearcoatNormalScale = new Vector2( scale, scale );
}
}
return Promise.all( pending );
}
GLTFMaterialsDispersionExtension
¶
Class Code
class GLTFMaterialsDispersionExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_DISPERSION;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const extension = materialDef.extensions[ this.name ];
materialParams.dispersion = extension.dispersion !== undefined ? extension.dispersion : 0;
return Promise.resolve();
}
}
Methods¶
getMaterialType(materialIndex: any): any
¶
Code
extendMaterialParams(materialIndex: any, materialParams: any): Promise<void>
¶
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const extension = materialDef.extensions[ this.name ];
materialParams.dispersion = extension.dispersion !== undefined ? extension.dispersion : 0;
return Promise.resolve();
}
GLTFMaterialsIridescenceExtension
¶
Class Code
class GLTFMaterialsIridescenceExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_IRIDESCENCE;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.iridescenceFactor !== undefined ) {
materialParams.iridescence = extension.iridescenceFactor;
}
if ( extension.iridescenceTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'iridescenceMap', extension.iridescenceTexture ) );
}
if ( extension.iridescenceIor !== undefined ) {
materialParams.iridescenceIOR = extension.iridescenceIor;
}
if ( materialParams.iridescenceThicknessRange === undefined ) {
materialParams.iridescenceThicknessRange = [ 100, 400 ];
}
if ( extension.iridescenceThicknessMinimum !== undefined ) {
materialParams.iridescenceThicknessRange[ 0 ] = extension.iridescenceThicknessMinimum;
}
if ( extension.iridescenceThicknessMaximum !== undefined ) {
materialParams.iridescenceThicknessRange[ 1 ] = extension.iridescenceThicknessMaximum;
}
if ( extension.iridescenceThicknessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'iridescenceThicknessMap', extension.iridescenceThicknessTexture ) );
}
return Promise.all( pending );
}
}
Methods¶
getMaterialType(materialIndex: any): any
¶
Code
extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.iridescenceFactor !== undefined ) {
materialParams.iridescence = extension.iridescenceFactor;
}
if ( extension.iridescenceTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'iridescenceMap', extension.iridescenceTexture ) );
}
if ( extension.iridescenceIor !== undefined ) {
materialParams.iridescenceIOR = extension.iridescenceIor;
}
if ( materialParams.iridescenceThicknessRange === undefined ) {
materialParams.iridescenceThicknessRange = [ 100, 400 ];
}
if ( extension.iridescenceThicknessMinimum !== undefined ) {
materialParams.iridescenceThicknessRange[ 0 ] = extension.iridescenceThicknessMinimum;
}
if ( extension.iridescenceThicknessMaximum !== undefined ) {
materialParams.iridescenceThicknessRange[ 1 ] = extension.iridescenceThicknessMaximum;
}
if ( extension.iridescenceThicknessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'iridescenceThicknessMap', extension.iridescenceThicknessTexture ) );
}
return Promise.all( pending );
}
GLTFMaterialsSheenExtension
¶
Class Code
class GLTFMaterialsSheenExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_SHEEN;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
materialParams.sheenColor = new Color( 0, 0, 0 );
materialParams.sheenRoughness = 0;
materialParams.sheen = 1;
const extension = materialDef.extensions[ this.name ];
if ( extension.sheenColorFactor !== undefined ) {
const colorFactor = extension.sheenColorFactor;
materialParams.sheenColor.setRGB( colorFactor[ 0 ], colorFactor[ 1 ], colorFactor[ 2 ], LinearSRGBColorSpace );
}
if ( extension.sheenRoughnessFactor !== undefined ) {
materialParams.sheenRoughness = extension.sheenRoughnessFactor;
}
if ( extension.sheenColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'sheenColorMap', extension.sheenColorTexture, SRGBColorSpace ) );
}
if ( extension.sheenRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'sheenRoughnessMap', extension.sheenRoughnessTexture ) );
}
return Promise.all( pending );
}
}
Methods¶
getMaterialType(materialIndex: any): any
¶
Code
extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
materialParams.sheenColor = new Color( 0, 0, 0 );
materialParams.sheenRoughness = 0;
materialParams.sheen = 1;
const extension = materialDef.extensions[ this.name ];
if ( extension.sheenColorFactor !== undefined ) {
const colorFactor = extension.sheenColorFactor;
materialParams.sheenColor.setRGB( colorFactor[ 0 ], colorFactor[ 1 ], colorFactor[ 2 ], LinearSRGBColorSpace );
}
if ( extension.sheenRoughnessFactor !== undefined ) {
materialParams.sheenRoughness = extension.sheenRoughnessFactor;
}
if ( extension.sheenColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'sheenColorMap', extension.sheenColorTexture, SRGBColorSpace ) );
}
if ( extension.sheenRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'sheenRoughnessMap', extension.sheenRoughnessTexture ) );
}
return Promise.all( pending );
}
GLTFMaterialsTransmissionExtension
¶
Class Code
class GLTFMaterialsTransmissionExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.transmissionFactor !== undefined ) {
materialParams.transmission = extension.transmissionFactor;
}
if ( extension.transmissionTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'transmissionMap', extension.transmissionTexture ) );
}
return Promise.all( pending );
}
}
Methods¶
getMaterialType(materialIndex: any): any
¶
Code
extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.transmissionFactor !== undefined ) {
materialParams.transmission = extension.transmissionFactor;
}
if ( extension.transmissionTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'transmissionMap', extension.transmissionTexture ) );
}
return Promise.all( pending );
}
GLTFMaterialsVolumeExtension
¶
Class Code
class GLTFMaterialsVolumeExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_VOLUME;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
materialParams.thickness = extension.thicknessFactor !== undefined ? extension.thicknessFactor : 0;
if ( extension.thicknessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'thicknessMap', extension.thicknessTexture ) );
}
materialParams.attenuationDistance = extension.attenuationDistance || Infinity;
const colorArray = extension.attenuationColor || [ 1, 1, 1 ];
materialParams.attenuationColor = new Color().setRGB( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ], LinearSRGBColorSpace );
return Promise.all( pending );
}
}
Methods¶
getMaterialType(materialIndex: any): any
¶
Code
extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
materialParams.thickness = extension.thicknessFactor !== undefined ? extension.thicknessFactor : 0;
if ( extension.thicknessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'thicknessMap', extension.thicknessTexture ) );
}
materialParams.attenuationDistance = extension.attenuationDistance || Infinity;
const colorArray = extension.attenuationColor || [ 1, 1, 1 ];
materialParams.attenuationColor = new Color().setRGB( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ], LinearSRGBColorSpace );
return Promise.all( pending );
}
GLTFMaterialsIorExtension
¶
Class Code
class GLTFMaterialsIorExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_IOR;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const extension = materialDef.extensions[ this.name ];
materialParams.ior = extension.ior !== undefined ? extension.ior : 1.5;
return Promise.resolve();
}
}
Methods¶
getMaterialType(materialIndex: any): any
¶
Code
extendMaterialParams(materialIndex: any, materialParams: any): Promise<void>
¶
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const extension = materialDef.extensions[ this.name ];
materialParams.ior = extension.ior !== undefined ? extension.ior : 1.5;
return Promise.resolve();
}
GLTFMaterialsSpecularExtension
¶
Class Code
class GLTFMaterialsSpecularExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_SPECULAR;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
materialParams.specularIntensity = extension.specularFactor !== undefined ? extension.specularFactor : 1.0;
if ( extension.specularTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'specularIntensityMap', extension.specularTexture ) );
}
const colorArray = extension.specularColorFactor || [ 1, 1, 1 ];
materialParams.specularColor = new Color().setRGB( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ], LinearSRGBColorSpace );
if ( extension.specularColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'specularColorMap', extension.specularColorTexture, SRGBColorSpace ) );
}
return Promise.all( pending );
}
}
Methods¶
getMaterialType(materialIndex: any): any
¶
Code
extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
materialParams.specularIntensity = extension.specularFactor !== undefined ? extension.specularFactor : 1.0;
if ( extension.specularTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'specularIntensityMap', extension.specularTexture ) );
}
const colorArray = extension.specularColorFactor || [ 1, 1, 1 ];
materialParams.specularColor = new Color().setRGB( colorArray[ 0 ], colorArray[ 1 ], colorArray[ 2 ], LinearSRGBColorSpace );
if ( extension.specularColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'specularColorMap', extension.specularColorTexture, SRGBColorSpace ) );
}
return Promise.all( pending );
}
GLTFMaterialsBumpExtension
¶
Class Code
class GLTFMaterialsBumpExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.EXT_MATERIALS_BUMP;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
materialParams.bumpScale = extension.bumpFactor !== undefined ? extension.bumpFactor : 1.0;
if ( extension.bumpTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'bumpMap', extension.bumpTexture ) );
}
return Promise.all( pending );
}
}
Methods¶
getMaterialType(materialIndex: any): any
¶
Code
extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
materialParams.bumpScale = extension.bumpFactor !== undefined ? extension.bumpFactor : 1.0;
if ( extension.bumpTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'bumpMap', extension.bumpTexture ) );
}
return Promise.all( pending );
}
GLTFMaterialsAnisotropyExtension
¶
Class Code
class GLTFMaterialsAnisotropyExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_ANISOTROPY;
}
getMaterialType( materialIndex ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.anisotropyStrength !== undefined ) {
materialParams.anisotropy = extension.anisotropyStrength;
}
if ( extension.anisotropyRotation !== undefined ) {
materialParams.anisotropyRotation = extension.anisotropyRotation;
}
if ( extension.anisotropyTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'anisotropyMap', extension.anisotropyTexture ) );
}
return Promise.all( pending );
}
}
Methods¶
getMaterialType(materialIndex: any): any
¶
Code
extendMaterialParams(materialIndex: any, materialParams: any): Promise<void> | Promise<any[]>
¶
Code
extendMaterialParams( materialIndex, materialParams ) {
const parser = this.parser;
const materialDef = parser.json.materials[ materialIndex ];
if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[ this.name ];
if ( extension.anisotropyStrength !== undefined ) {
materialParams.anisotropy = extension.anisotropyStrength;
}
if ( extension.anisotropyRotation !== undefined ) {
materialParams.anisotropyRotation = extension.anisotropyRotation;
}
if ( extension.anisotropyTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'anisotropyMap', extension.anisotropyTexture ) );
}
return Promise.all( pending );
}
GLTFTextureBasisUExtension
¶
Class Code
class GLTFTextureBasisUExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.KHR_TEXTURE_BASISU;
}
loadTexture( textureIndex ) {
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[ textureIndex ];
if ( ! textureDef.extensions || ! textureDef.extensions[ this.name ] ) {
return null;
}
const extension = textureDef.extensions[ this.name ];
const loader = parser.options.ktx2Loader;
if ( ! loader ) {
if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
throw new Error( 'THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures' );
} else {
// Assumes that the extension is optional and that a fallback texture is present
return null;
}
}
return parser.loadTextureImage( textureIndex, extension.source, loader );
}
}
Methods¶
loadTexture(textureIndex: any): any
¶
Code
loadTexture( textureIndex ) {
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[ textureIndex ];
if ( ! textureDef.extensions || ! textureDef.extensions[ this.name ] ) {
return null;
}
const extension = textureDef.extensions[ this.name ];
const loader = parser.options.ktx2Loader;
if ( ! loader ) {
if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
throw new Error( 'THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures' );
} else {
// Assumes that the extension is optional and that a fallback texture is present
return null;
}
}
return parser.loadTextureImage( textureIndex, extension.source, loader );
}
GLTFTextureWebPExtension
¶
Class Code
class GLTFTextureWebPExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.EXT_TEXTURE_WEBP;
}
loadTexture( textureIndex ) {
const name = this.name;
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[ textureIndex ];
if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) {
return null;
}
const extension = textureDef.extensions[ name ];
const source = json.images[ extension.source ];
let loader = parser.textureLoader;
if ( source.uri ) {
const handler = parser.options.manager.getHandler( source.uri );
if ( handler !== null ) loader = handler;
}
return parser.loadTextureImage( textureIndex, extension.source, loader );
}
}
Methods¶
loadTexture(textureIndex: any): any
¶
Code
loadTexture( textureIndex ) {
const name = this.name;
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[ textureIndex ];
if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) {
return null;
}
const extension = textureDef.extensions[ name ];
const source = json.images[ extension.source ];
let loader = parser.textureLoader;
if ( source.uri ) {
const handler = parser.options.manager.getHandler( source.uri );
if ( handler !== null ) loader = handler;
}
return parser.loadTextureImage( textureIndex, extension.source, loader );
}
GLTFTextureAVIFExtension
¶
Class Code
class GLTFTextureAVIFExtension {
constructor( parser ) {
this.parser = parser;
this.name = EXTENSIONS.EXT_TEXTURE_AVIF;
}
loadTexture( textureIndex ) {
const name = this.name;
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[ textureIndex ];
if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) {
return null;
}
const extension = textureDef.extensions[ name ];
const source = json.images[ extension.source ];
let loader = parser.textureLoader;
if ( source.uri ) {
const handler = parser.options.manager.getHandler( source.uri );
if ( handler !== null ) loader = handler;
}
return parser.loadTextureImage( textureIndex, extension.source, loader );
}
}
Methods¶
loadTexture(textureIndex: any): any
¶
Code
loadTexture( textureIndex ) {
const name = this.name;
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[ textureIndex ];
if ( ! textureDef.extensions || ! textureDef.extensions[ name ] ) {
return null;
}
const extension = textureDef.extensions[ name ];
const source = json.images[ extension.source ];
let loader = parser.textureLoader;
if ( source.uri ) {
const handler = parser.options.manager.getHandler( source.uri );
if ( handler !== null ) loader = handler;
}
return parser.loadTextureImage( textureIndex, extension.source, loader );
}
GLTFMeshoptCompression
¶
Class Code
class GLTFMeshoptCompression {
constructor( parser ) {
this.name = EXTENSIONS.EXT_MESHOPT_COMPRESSION;
this.parser = parser;
}
loadBufferView( index ) {
const json = this.parser.json;
const bufferView = json.bufferViews[ index ];
if ( bufferView.extensions && bufferView.extensions[ this.name ] ) {
const extensionDef = bufferView.extensions[ this.name ];
const buffer = this.parser.getDependency( 'buffer', extensionDef.buffer );
const decoder = this.parser.options.meshoptDecoder;
if ( ! decoder || ! decoder.supported ) {
if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
throw new Error( 'THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files' );
} else {
// Assumes that the extension is optional and that fallback buffer data is present
return null;
}
}
return buffer.then( function ( res ) {
const byteOffset = extensionDef.byteOffset || 0;
const byteLength = extensionDef.byteLength || 0;
const count = extensionDef.count;
const stride = extensionDef.byteStride;
const source = new Uint8Array( res, byteOffset, byteLength );
if ( decoder.decodeGltfBufferAsync ) {
return decoder.decodeGltfBufferAsync( count, stride, source, extensionDef.mode, extensionDef.filter ).then( function ( res ) {
return res.buffer;
} );
} else {
// Support for MeshoptDecoder 0.18 or earlier, without decodeGltfBufferAsync
return decoder.ready.then( function () {
const result = new ArrayBuffer( count * stride );
decoder.decodeGltfBuffer( new Uint8Array( result ), count, stride, source, extensionDef.mode, extensionDef.filter );
return result;
} );
}
} );
} else {
return null;
}
}
}
Methods¶
loadBufferView(index: any): any
¶
Code
loadBufferView( index ) {
const json = this.parser.json;
const bufferView = json.bufferViews[ index ];
if ( bufferView.extensions && bufferView.extensions[ this.name ] ) {
const extensionDef = bufferView.extensions[ this.name ];
const buffer = this.parser.getDependency( 'buffer', extensionDef.buffer );
const decoder = this.parser.options.meshoptDecoder;
if ( ! decoder || ! decoder.supported ) {
if ( json.extensionsRequired && json.extensionsRequired.indexOf( this.name ) >= 0 ) {
throw new Error( 'THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files' );
} else {
// Assumes that the extension is optional and that fallback buffer data is present
return null;
}
}
return buffer.then( function ( res ) {
const byteOffset = extensionDef.byteOffset || 0;
const byteLength = extensionDef.byteLength || 0;
const count = extensionDef.count;
const stride = extensionDef.byteStride;
const source = new Uint8Array( res, byteOffset, byteLength );
if ( decoder.decodeGltfBufferAsync ) {
return decoder.decodeGltfBufferAsync( count, stride, source, extensionDef.mode, extensionDef.filter ).then( function ( res ) {
return res.buffer;
} );
} else {
// Support for MeshoptDecoder 0.18 or earlier, without decodeGltfBufferAsync
return decoder.ready.then( function () {
const result = new ArrayBuffer( count * stride );
decoder.decodeGltfBuffer( new Uint8Array( result ), count, stride, source, extensionDef.mode, extensionDef.filter );
return result;
} );
}
} );
} else {
return null;
}
}
GLTFMeshGpuInstancing
¶
Class Code
class GLTFMeshGpuInstancing {
constructor( parser ) {
this.name = EXTENSIONS.EXT_MESH_GPU_INSTANCING;
this.parser = parser;
}
createNodeMesh( nodeIndex ) {
const json = this.parser.json;
const nodeDef = json.nodes[ nodeIndex ];
if ( ! nodeDef.extensions || ! nodeDef.extensions[ this.name ] ||
nodeDef.mesh === undefined ) {
return null;
}
const meshDef = json.meshes[ nodeDef.mesh ];
// No Points or Lines + Instancing support yet
for ( const primitive of meshDef.primitives ) {
if ( primitive.mode !== WEBGL_CONSTANTS.TRIANGLES &&
primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_STRIP &&
primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_FAN &&
primitive.mode !== undefined ) {
return null;
}
}
const extensionDef = nodeDef.extensions[ this.name ];
const attributesDef = extensionDef.attributes;
// @TODO: Can we support InstancedMesh + SkinnedMesh?
const pending = [];
const attributes = {};
for ( const key in attributesDef ) {
pending.push( this.parser.getDependency( 'accessor', attributesDef[ key ] ).then( accessor => {
attributes[ key ] = accessor;
return attributes[ key ];
} ) );
}
if ( pending.length < 1 ) {
return null;
}
pending.push( this.parser.createNodeMesh( nodeIndex ) );
return Promise.all( pending ).then( results => {
const nodeObject = results.pop();
const meshes = nodeObject.isGroup ? nodeObject.children : [ nodeObject ];
const count = results[ 0 ].count; // All attribute counts should be same
const instancedMeshes = [];
for ( const mesh of meshes ) {
// Temporal variables
const m = new Matrix4();
const p = new Vector3();
const q = new Quaternion();
const s = new Vector3( 1, 1, 1 );
const instancedMesh = new InstancedMesh( mesh.geometry, mesh.material, count );
for ( let i = 0; i < count; i ++ ) {
if ( attributes.TRANSLATION ) {
p.fromBufferAttribute( attributes.TRANSLATION, i );
}
if ( attributes.ROTATION ) {
q.fromBufferAttribute( attributes.ROTATION, i );
}
if ( attributes.SCALE ) {
s.fromBufferAttribute( attributes.SCALE, i );
}
instancedMesh.setMatrixAt( i, m.compose( p, q, s ) );
}
// Add instance attributes to the geometry, excluding TRS.
for ( const attributeName in attributes ) {
if ( attributeName === '_COLOR_0' ) {
const attr = attributes[ attributeName ];
instancedMesh.instanceColor = new InstancedBufferAttribute( attr.array, attr.itemSize, attr.normalized );
} else if ( attributeName !== 'TRANSLATION' &&
attributeName !== 'ROTATION' &&
attributeName !== 'SCALE' ) {
mesh.geometry.setAttribute( attributeName, attributes[ attributeName ] );
}
}
// Just in case
Object3D.prototype.copy.call( instancedMesh, mesh );
this.parser.assignFinalMaterial( instancedMesh );
instancedMeshes.push( instancedMesh );
}
if ( nodeObject.isGroup ) {
nodeObject.clear();
nodeObject.add( ... instancedMeshes );
return nodeObject;
}
return instancedMeshes[ 0 ];
} );
}
}
Methods¶
createNodeMesh(nodeIndex: any): Promise<any>
¶
Code
createNodeMesh( nodeIndex ) {
const json = this.parser.json;
const nodeDef = json.nodes[ nodeIndex ];
if ( ! nodeDef.extensions || ! nodeDef.extensions[ this.name ] ||
nodeDef.mesh === undefined ) {
return null;
}
const meshDef = json.meshes[ nodeDef.mesh ];
// No Points or Lines + Instancing support yet
for ( const primitive of meshDef.primitives ) {
if ( primitive.mode !== WEBGL_CONSTANTS.TRIANGLES &&
primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_STRIP &&
primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_FAN &&
primitive.mode !== undefined ) {
return null;
}
}
const extensionDef = nodeDef.extensions[ this.name ];
const attributesDef = extensionDef.attributes;
// @TODO: Can we support InstancedMesh + SkinnedMesh?
const pending = [];
const attributes = {};
for ( const key in attributesDef ) {
pending.push( this.parser.getDependency( 'accessor', attributesDef[ key ] ).then( accessor => {
attributes[ key ] = accessor;
return attributes[ key ];
} ) );
}
if ( pending.length < 1 ) {
return null;
}
pending.push( this.parser.createNodeMesh( nodeIndex ) );
return Promise.all( pending ).then( results => {
const nodeObject = results.pop();
const meshes = nodeObject.isGroup ? nodeObject.children : [ nodeObject ];
const count = results[ 0 ].count; // All attribute counts should be same
const instancedMeshes = [];
for ( const mesh of meshes ) {
// Temporal variables
const m = new Matrix4();
const p = new Vector3();
const q = new Quaternion();
const s = new Vector3( 1, 1, 1 );
const instancedMesh = new InstancedMesh( mesh.geometry, mesh.material, count );
for ( let i = 0; i < count; i ++ ) {
if ( attributes.TRANSLATION ) {
p.fromBufferAttribute( attributes.TRANSLATION, i );
}
if ( attributes.ROTATION ) {
q.fromBufferAttribute( attributes.ROTATION, i );
}
if ( attributes.SCALE ) {
s.fromBufferAttribute( attributes.SCALE, i );
}
instancedMesh.setMatrixAt( i, m.compose( p, q, s ) );
}
// Add instance attributes to the geometry, excluding TRS.
for ( const attributeName in attributes ) {
if ( attributeName === '_COLOR_0' ) {
const attr = attributes[ attributeName ];
instancedMesh.instanceColor = new InstancedBufferAttribute( attr.array, attr.itemSize, attr.normalized );
} else if ( attributeName !== 'TRANSLATION' &&
attributeName !== 'ROTATION' &&
attributeName !== 'SCALE' ) {
mesh.geometry.setAttribute( attributeName, attributes[ attributeName ] );
}
}
// Just in case
Object3D.prototype.copy.call( instancedMesh, mesh );
this.parser.assignFinalMaterial( instancedMesh );
instancedMeshes.push( instancedMesh );
}
if ( nodeObject.isGroup ) {
nodeObject.clear();
nodeObject.add( ... instancedMeshes );
return nodeObject;
}
return instancedMeshes[ 0 ];
} );
}
GLTFBinaryExtension
¶
Class Code
class GLTFBinaryExtension {
constructor( data ) {
this.name = EXTENSIONS.KHR_BINARY_GLTF;
this.content = null;
this.body = null;
const headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH );
const textDecoder = new TextDecoder();
this.header = {
magic: textDecoder.decode( new Uint8Array( data.slice( 0, 4 ) ) ),
version: headerView.getUint32( 4, true ),
length: headerView.getUint32( 8, true )
};
if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) {
throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' );
} else if ( this.header.version < 2.0 ) {
throw new Error( 'THREE.GLTFLoader: Legacy binary file detected.' );
}
const chunkContentsLength = this.header.length - BINARY_EXTENSION_HEADER_LENGTH;
const chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH );
let chunkIndex = 0;
while ( chunkIndex < chunkContentsLength ) {
const chunkLength = chunkView.getUint32( chunkIndex, true );
chunkIndex += 4;
const chunkType = chunkView.getUint32( chunkIndex, true );
chunkIndex += 4;
if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) {
const contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength );
this.content = textDecoder.decode( contentArray );
} else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) {
const byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
this.body = data.slice( byteOffset, byteOffset + chunkLength );
}
// Clients must ignore chunks with unknown types.
chunkIndex += chunkLength;
}
if ( this.content === null ) {
throw new Error( 'THREE.GLTFLoader: JSON content not found.' );
}
}
}
GLTFDracoMeshCompressionExtension
¶
Class Code
class GLTFDracoMeshCompressionExtension {
constructor( json, dracoLoader ) {
if ( ! dracoLoader ) {
throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' );
}
this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
this.json = json;
this.dracoLoader = dracoLoader;
this.dracoLoader.preload();
}
decodePrimitive( primitive, parser ) {
const json = this.json;
const dracoLoader = this.dracoLoader;
const bufferViewIndex = primitive.extensions[ this.name ].bufferView;
const gltfAttributeMap = primitive.extensions[ this.name ].attributes;
const threeAttributeMap = {};
const attributeNormalizedMap = {};
const attributeTypeMap = {};
for ( const attributeName in gltfAttributeMap ) {
const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ];
}
for ( const attributeName in primitive.attributes ) {
const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
if ( gltfAttributeMap[ attributeName ] !== undefined ) {
const accessorDef = json.accessors[ primitive.attributes[ attributeName ] ];
const componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
attributeTypeMap[ threeAttributeName ] = componentType.name;
attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true;
}
}
return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {
return new Promise( function ( resolve, reject ) {
dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {
for ( const attributeName in geometry.attributes ) {
const attribute = geometry.attributes[ attributeName ];
const normalized = attributeNormalizedMap[ attributeName ];
if ( normalized !== undefined ) attribute.normalized = normalized;
}
resolve( geometry );
}, threeAttributeMap, attributeTypeMap, LinearSRGBColorSpace, reject );
} );
} );
}
}
Methods¶
decodePrimitive(primitive: any, parser: any): any
¶
Code
decodePrimitive( primitive, parser ) {
const json = this.json;
const dracoLoader = this.dracoLoader;
const bufferViewIndex = primitive.extensions[ this.name ].bufferView;
const gltfAttributeMap = primitive.extensions[ this.name ].attributes;
const threeAttributeMap = {};
const attributeNormalizedMap = {};
const attributeTypeMap = {};
for ( const attributeName in gltfAttributeMap ) {
const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ];
}
for ( const attributeName in primitive.attributes ) {
const threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();
if ( gltfAttributeMap[ attributeName ] !== undefined ) {
const accessorDef = json.accessors[ primitive.attributes[ attributeName ] ];
const componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
attributeTypeMap[ threeAttributeName ] = componentType.name;
attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true;
}
}
return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {
return new Promise( function ( resolve, reject ) {
dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {
for ( const attributeName in geometry.attributes ) {
const attribute = geometry.attributes[ attributeName ];
const normalized = attributeNormalizedMap[ attributeName ];
if ( normalized !== undefined ) attribute.normalized = normalized;
}
resolve( geometry );
}, threeAttributeMap, attributeTypeMap, LinearSRGBColorSpace, reject );
} );
} );
}
GLTFTextureTransformExtension
¶
Class Code
class GLTFTextureTransformExtension {
constructor() {
this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;
}
extendTexture( texture, transform ) {
if ( ( transform.texCoord === undefined || transform.texCoord === texture.channel )
&& transform.offset === undefined
&& transform.rotation === undefined
&& transform.scale === undefined ) {
// See https://github.com/mrdoob/three.js/issues/21819.
return texture;
}
texture = texture.clone();
if ( transform.texCoord !== undefined ) {
texture.channel = transform.texCoord;
}
if ( transform.offset !== undefined ) {
texture.offset.fromArray( transform.offset );
}
if ( transform.rotation !== undefined ) {
texture.rotation = transform.rotation;
}
if ( transform.scale !== undefined ) {
texture.repeat.fromArray( transform.scale );
}
texture.needsUpdate = true;
return texture;
}
}
Methods¶
extendTexture(texture: any, transform: any): any
¶
Code
extendTexture( texture, transform ) {
if ( ( transform.texCoord === undefined || transform.texCoord === texture.channel )
&& transform.offset === undefined
&& transform.rotation === undefined
&& transform.scale === undefined ) {
// See https://github.com/mrdoob/three.js/issues/21819.
return texture;
}
texture = texture.clone();
if ( transform.texCoord !== undefined ) {
texture.channel = transform.texCoord;
}
if ( transform.offset !== undefined ) {
texture.offset.fromArray( transform.offset );
}
if ( transform.rotation !== undefined ) {
texture.rotation = transform.rotation;
}
if ( transform.scale !== undefined ) {
texture.repeat.fromArray( transform.scale );
}
texture.needsUpdate = true;
return texture;
}
GLTFMeshQuantizationExtension
¶
Class Code
GLTFCubicSplineInterpolant
¶
Class Code
class GLTFCubicSplineInterpolant extends Interpolant {
constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
super( parameterPositions, sampleValues, sampleSize, resultBuffer );
}
copySampleValue_( index ) {
// Copies a sample value to the result buffer. See description of glTF
// CUBICSPLINE values layout in interpolate_() function below.
const result = this.resultBuffer,
values = this.sampleValues,
valueSize = this.valueSize,
offset = index * valueSize * 3 + valueSize;
for ( let i = 0; i !== valueSize; i ++ ) {
result[ i ] = values[ offset + i ];
}
return result;
}
interpolate_( i1, t0, t, t1 ) {
const result = this.resultBuffer;
const values = this.sampleValues;
const stride = this.valueSize;
const stride2 = stride * 2;
const stride3 = stride * 3;
const td = t1 - t0;
const p = ( t - t0 ) / td;
const pp = p * p;
const ppp = pp * p;
const offset1 = i1 * stride3;
const offset0 = offset1 - stride3;
const s2 = - 2 * ppp + 3 * pp;
const s3 = ppp - pp;
const s0 = 1 - s2;
const s1 = s3 - pp + p;
// Layout of keyframe output values for CUBICSPLINE animations:
// [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
for ( let i = 0; i !== stride; i ++ ) {
const p0 = values[ offset0 + i + stride ]; // splineVertex_k
const m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k)
const p1 = values[ offset1 + i + stride ]; // splineVertex_k+1
const m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)
result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
}
return result;
}
}
Methods¶
copySampleValue_(index: any): any
¶
Code
copySampleValue_( index ) {
// Copies a sample value to the result buffer. See description of glTF
// CUBICSPLINE values layout in interpolate_() function below.
const result = this.resultBuffer,
values = this.sampleValues,
valueSize = this.valueSize,
offset = index * valueSize * 3 + valueSize;
for ( let i = 0; i !== valueSize; i ++ ) {
result[ i ] = values[ offset + i ];
}
return result;
}
interpolate_(i1: any, t0: any, t: any, t1: any): any
¶
Code
interpolate_( i1, t0, t, t1 ) {
const result = this.resultBuffer;
const values = this.sampleValues;
const stride = this.valueSize;
const stride2 = stride * 2;
const stride3 = stride * 3;
const td = t1 - t0;
const p = ( t - t0 ) / td;
const pp = p * p;
const ppp = pp * p;
const offset1 = i1 * stride3;
const offset0 = offset1 - stride3;
const s2 = - 2 * ppp + 3 * pp;
const s3 = ppp - pp;
const s0 = 1 - s2;
const s1 = s3 - pp + p;
// Layout of keyframe output values for CUBICSPLINE animations:
// [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
for ( let i = 0; i !== stride; i ++ ) {
const p0 = values[ offset0 + i + stride ]; // splineVertex_k
const m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k)
const p1 = values[ offset1 + i + stride ]; // splineVertex_k+1
const m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)
result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
}
return result;
}
GLTFCubicSplineQuaternionInterpolant
¶
Class Code
Methods¶
interpolate_(i1: any, t0: any, t: any, t1: any): any
¶
Code
GLTFParser
¶
Class Code
class GLTFParser {
constructor( json = {}, options = {} ) {
this.json = json;
this.extensions = {};
this.plugins = {};
this.options = options;
// loader object cache
this.cache = new GLTFRegistry();
// associations between Three.js objects and glTF elements
this.associations = new Map();
// BufferGeometry caching
this.primitiveCache = {};
// Node cache
this.nodeCache = {};
// Object3D instance caches
this.meshCache = { refs: {}, uses: {} };
this.cameraCache = { refs: {}, uses: {} };
this.lightCache = { refs: {}, uses: {} };
this.sourceCache = {};
this.textureCache = {};
// Track node names, to ensure no duplicates
this.nodeNamesUsed = {};
// Use an ImageBitmapLoader if imageBitmaps are supported. Moves much of the
// expensive work of uploading a texture to the GPU off the main thread.
let isSafari = false;
let safariVersion = - 1;
let isFirefox = false;
let firefoxVersion = - 1;
if ( typeof navigator !== 'undefined' ) {
const userAgent = navigator.userAgent;
isSafari = /^((?!chrome|android).)*safari/i.test( userAgent ) === true;
const safariMatch = userAgent.match( /Version\/(\d+)/ );
safariVersion = isSafari && safariMatch ? parseInt( safariMatch[ 1 ], 10 ) : - 1;
isFirefox = userAgent.indexOf( 'Firefox' ) > - 1;
firefoxVersion = isFirefox ? userAgent.match( /Firefox\/([0-9]+)\./ )[ 1 ] : - 1;
}
if ( typeof createImageBitmap === 'undefined' || ( isSafari && safariVersion < 17 ) || ( isFirefox && firefoxVersion < 98 ) ) {
this.textureLoader = new TextureLoader( this.options.manager );
} else {
this.textureLoader = new ImageBitmapLoader( this.options.manager );
}
this.textureLoader.setCrossOrigin( this.options.crossOrigin );
this.textureLoader.setRequestHeader( this.options.requestHeader );
this.fileLoader = new FileLoader( this.options.manager );
this.fileLoader.setResponseType( 'arraybuffer' );
if ( this.options.crossOrigin === 'use-credentials' ) {
this.fileLoader.setWithCredentials( true );
}
}
setExtensions( extensions ) {
this.extensions = extensions;
}
setPlugins( plugins ) {
this.plugins = plugins;
}
parse( onLoad, onError ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
// Clear the loader cache
this.cache.removeAll();
this.nodeCache = {};
// Mark the special nodes/meshes in json for efficient parse
this._invokeAll( function ( ext ) {
return ext._markDefs && ext._markDefs();
} );
Promise.all( this._invokeAll( function ( ext ) {
return ext.beforeRoot && ext.beforeRoot();
} ) ).then( function () {
return Promise.all( [
parser.getDependencies( 'scene' ),
parser.getDependencies( 'animation' ),
parser.getDependencies( 'camera' ),
] );
} ).then( function ( dependencies ) {
const result = {
scene: dependencies[ 0 ][ json.scene || 0 ],
scenes: dependencies[ 0 ],
animations: dependencies[ 1 ],
cameras: dependencies[ 2 ],
asset: json.asset,
parser: parser,
userData: {}
};
addUnknownExtensionsToUserData( extensions, result, json );
assignExtrasToUserData( result, json );
return Promise.all( parser._invokeAll( function ( ext ) {
return ext.afterRoot && ext.afterRoot( result );
} ) ).then( function () {
for ( const scene of result.scenes ) {
scene.updateMatrixWorld();
}
onLoad( result );
} );
} ).catch( onError );
}
/**
* Marks the special nodes/meshes in json for efficient parse.
*
* @private
*/
_markDefs() {
const nodeDefs = this.json.nodes || [];
const skinDefs = this.json.skins || [];
const meshDefs = this.json.meshes || [];
// Nothing in the node definition indicates whether it is a Bone or an
// Object3D. Use the skins' joint references to mark bones.
for ( let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {
const joints = skinDefs[ skinIndex ].joints;
for ( let i = 0, il = joints.length; i < il; i ++ ) {
nodeDefs[ joints[ i ] ].isBone = true;
}
}
// Iterate over all nodes, marking references to shared resources,
// as well as skeleton joints.
for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
const nodeDef = nodeDefs[ nodeIndex ];
if ( nodeDef.mesh !== undefined ) {
this._addNodeRef( this.meshCache, nodeDef.mesh );
// Nothing in the mesh definition indicates whether it is
// a SkinnedMesh or Mesh. Use the node's mesh reference
// to mark SkinnedMesh if node has skin.
if ( nodeDef.skin !== undefined ) {
meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;
}
}
if ( nodeDef.camera !== undefined ) {
this._addNodeRef( this.cameraCache, nodeDef.camera );
}
}
}
/**
* Counts references to shared node / Object3D resources. These resources
* can be reused, or "instantiated", at multiple nodes in the scene
* hierarchy. Mesh, Camera, and Light instances are instantiated and must
* be marked. Non-scenegraph resources (like Materials, Geometries, and
* Textures) can be reused directly and are not marked here.
*
* Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
*
* @private
* @param {Object} cache
* @param {Object3D} index
*/
_addNodeRef( cache, index ) {
if ( index === undefined ) return;
if ( cache.refs[ index ] === undefined ) {
cache.refs[ index ] = cache.uses[ index ] = 0;
}
cache.refs[ index ] ++;
}
/**
* Returns a reference to a shared resource, cloning it if necessary.
*
* @private
* @param {Object} cache
* @param {number} index
* @param {Object} object
* @return {Object}
*/
_getNodeRef( cache, index, object ) {
if ( cache.refs[ index ] <= 1 ) return object;
const ref = object.clone();
// Propagates mappings to the cloned object, prevents mappings on the
// original object from being lost.
const updateMappings = ( original, clone ) => {
const mappings = this.associations.get( original );
if ( mappings != null ) {
this.associations.set( clone, mappings );
}
for ( const [ i, child ] of original.children.entries() ) {
updateMappings( child, clone.children[ i ] );
}
};
updateMappings( object, ref );
ref.name += '_instance_' + ( cache.uses[ index ] ++ );
return ref;
}
_invokeOne( func ) {
const extensions = Object.values( this.plugins );
extensions.push( this );
for ( let i = 0; i < extensions.length; i ++ ) {
const result = func( extensions[ i ] );
if ( result ) return result;
}
return null;
}
_invokeAll( func ) {
const extensions = Object.values( this.plugins );
extensions.unshift( this );
const pending = [];
for ( let i = 0; i < extensions.length; i ++ ) {
const result = func( extensions[ i ] );
if ( result ) pending.push( result );
}
return pending;
}
/**
* Requests the specified dependency asynchronously, with caching.
*
* @private
* @param {string} type
* @param {number} index
* @return {Promise<Object3D|Material|THREE.Texture|AnimationClip|ArrayBuffer|Object>}
*/
getDependency( type, index ) {
const cacheKey = type + ':' + index;
let dependency = this.cache.get( cacheKey );
if ( ! dependency ) {
switch ( type ) {
case 'scene':
dependency = this.loadScene( index );
break;
case 'node':
dependency = this._invokeOne( function ( ext ) {
return ext.loadNode && ext.loadNode( index );
} );
break;
case 'mesh':
dependency = this._invokeOne( function ( ext ) {
return ext.loadMesh && ext.loadMesh( index );
} );
break;
case 'accessor':
dependency = this.loadAccessor( index );
break;
case 'bufferView':
dependency = this._invokeOne( function ( ext ) {
return ext.loadBufferView && ext.loadBufferView( index );
} );
break;
case 'buffer':
dependency = this.loadBuffer( index );
break;
case 'material':
dependency = this._invokeOne( function ( ext ) {
return ext.loadMaterial && ext.loadMaterial( index );
} );
break;
case 'texture':
dependency = this._invokeOne( function ( ext ) {
return ext.loadTexture && ext.loadTexture( index );
} );
break;
case 'skin':
dependency = this.loadSkin( index );
break;
case 'animation':
dependency = this._invokeOne( function ( ext ) {
return ext.loadAnimation && ext.loadAnimation( index );
} );
break;
case 'camera':
dependency = this.loadCamera( index );
break;
default:
dependency = this._invokeOne( function ( ext ) {
return ext != this && ext.getDependency && ext.getDependency( type, index );
} );
if ( ! dependency ) {
throw new Error( 'Unknown type: ' + type );
}
break;
}
this.cache.add( cacheKey, dependency );
}
return dependency;
}
/**
* Requests all dependencies of the specified type asynchronously, with caching.
*
* @private
* @param {string} type
* @return {Promise<Array<Object>>}
*/
getDependencies( type ) {
let dependencies = this.cache.get( type );
if ( ! dependencies ) {
const parser = this;
const defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];
dependencies = Promise.all( defs.map( function ( def, index ) {
return parser.getDependency( type, index );
} ) );
this.cache.add( type, dependencies );
}
return dependencies;
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
*
* @private
* @param {number} bufferIndex
* @return {Promise<ArrayBuffer>}
*/
loadBuffer( bufferIndex ) {
const bufferDef = this.json.buffers[ bufferIndex ];
const loader = this.fileLoader;
if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {
throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );
}
// If present, GLB container is required to be the first buffer.
if ( bufferDef.uri === undefined && bufferIndex === 0 ) {
return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );
}
const options = this.options;
return new Promise( function ( resolve, reject ) {
loader.load( LoaderUtils.resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {
reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );
} );
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
*
* @private
* @param {number} bufferViewIndex
* @return {Promise<ArrayBuffer>}
*/
loadBufferView( bufferViewIndex ) {
const bufferViewDef = this.json.bufferViews[ bufferViewIndex ];
return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {
const byteLength = bufferViewDef.byteLength || 0;
const byteOffset = bufferViewDef.byteOffset || 0;
return buffer.slice( byteOffset, byteOffset + byteLength );
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
*
* @private
* @param {number} accessorIndex
* @return {Promise<BufferAttribute|InterleavedBufferAttribute>}
*/
loadAccessor( accessorIndex ) {
const parser = this;
const json = this.json;
const accessorDef = this.json.accessors[ accessorIndex ];
if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {
const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
const normalized = accessorDef.normalized === true;
const array = new TypedArray( accessorDef.count * itemSize );
return Promise.resolve( new BufferAttribute( array, itemSize, normalized ) );
}
const pendingBufferViews = [];
if ( accessorDef.bufferView !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );
} else {
pendingBufferViews.push( null );
}
if ( accessorDef.sparse !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) );
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );
}
return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {
const bufferView = bufferViews[ 0 ];
const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
const elementBytes = TypedArray.BYTES_PER_ELEMENT;
const itemBytes = elementBytes * itemSize;
const byteOffset = accessorDef.byteOffset || 0;
const byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined;
const normalized = accessorDef.normalized === true;
let array, bufferAttribute;
// The buffer is not interleaved if the stride is the item size in bytes.
if ( byteStride && byteStride !== itemBytes ) {
// Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer
// This makes sure that IBA.count reflects accessor.count properly
const ibSlice = Math.floor( byteOffset / byteStride );
const ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count;
let ib = parser.cache.get( ibCacheKey );
if ( ! ib ) {
array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes );
// Integer parameters to IB/IBA are in array elements, not bytes.
ib = new InterleavedBuffer( array, byteStride / elementBytes );
parser.cache.add( ibCacheKey, ib );
}
bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized );
} else {
if ( bufferView === null ) {
array = new TypedArray( accessorDef.count * itemSize );
} else {
array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );
}
bufferAttribute = new BufferAttribute( array, itemSize, normalized );
}
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
if ( accessorDef.sparse !== undefined ) {
const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
const TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];
const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
const sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices );
const sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );
if ( bufferView !== null ) {
// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized );
}
// Ignore normalized since we copy from sparse
bufferAttribute.normalized = false;
for ( let i = 0, il = sparseIndices.length; i < il; i ++ ) {
const index = sparseIndices[ i ];
bufferAttribute.setX( index, sparseValues[ i * itemSize ] );
if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] );
if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] );
if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] );
if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' );
}
bufferAttribute.normalized = normalized;
}
return bufferAttribute;
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
*
* @private
* @param {number} textureIndex
* @return {Promise<THREE.Texture|null>}
*/
loadTexture( textureIndex ) {
const json = this.json;
const options = this.options;
const textureDef = json.textures[ textureIndex ];
const sourceIndex = textureDef.source;
const sourceDef = json.images[ sourceIndex ];
let loader = this.textureLoader;
if ( sourceDef.uri ) {
const handler = options.manager.getHandler( sourceDef.uri );
if ( handler !== null ) loader = handler;
}
return this.loadTextureImage( textureIndex, sourceIndex, loader );
}
loadTextureImage( textureIndex, sourceIndex, loader ) {
const parser = this;
const json = this.json;
const textureDef = json.textures[ textureIndex ];
const sourceDef = json.images[ sourceIndex ];
const cacheKey = ( sourceDef.uri || sourceDef.bufferView ) + ':' + textureDef.sampler;
if ( this.textureCache[ cacheKey ] ) {
// See https://github.com/mrdoob/three.js/issues/21559.
return this.textureCache[ cacheKey ];
}
const promise = this.loadImageSource( sourceIndex, loader ).then( function ( texture ) {
texture.flipY = false;
texture.name = textureDef.name || sourceDef.name || '';
if ( texture.name === '' && typeof sourceDef.uri === 'string' && sourceDef.uri.startsWith( 'data:image/' ) === false ) {
texture.name = sourceDef.uri;
}
const samplers = json.samplers || {};
const sampler = samplers[ textureDef.sampler ] || {};
texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter;
texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter;
texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping;
texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping;
texture.generateMipmaps = ! texture.isCompressedTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
parser.associations.set( texture, { textures: textureIndex } );
return texture;
} ).catch( function () {
return null;
} );
this.textureCache[ cacheKey ] = promise;
return promise;
}
loadImageSource( sourceIndex, loader ) {
const parser = this;
const json = this.json;
const options = this.options;
if ( this.sourceCache[ sourceIndex ] !== undefined ) {
return this.sourceCache[ sourceIndex ].then( ( texture ) => texture.clone() );
}
const sourceDef = json.images[ sourceIndex ];
const URL = self.URL || self.webkitURL;
let sourceURI = sourceDef.uri || '';
let isObjectURL = false;
if ( sourceDef.bufferView !== undefined ) {
// Load binary image data from bufferView, if provided.
sourceURI = parser.getDependency( 'bufferView', sourceDef.bufferView ).then( function ( bufferView ) {
isObjectURL = true;
const blob = new Blob( [ bufferView ], { type: sourceDef.mimeType } );
sourceURI = URL.createObjectURL( blob );
return sourceURI;
} );
} else if ( sourceDef.uri === undefined ) {
throw new Error( 'THREE.GLTFLoader: Image ' + sourceIndex + ' is missing URI and bufferView' );
}
const promise = Promise.resolve( sourceURI ).then( function ( sourceURI ) {
return new Promise( function ( resolve, reject ) {
let onLoad = resolve;
if ( loader.isImageBitmapLoader === true ) {
onLoad = function ( imageBitmap ) {
const texture = new Texture( imageBitmap );
texture.needsUpdate = true;
resolve( texture );
};
}
loader.load( LoaderUtils.resolveURL( sourceURI, options.path ), onLoad, undefined, reject );
} );
} ).then( function ( texture ) {
// Clean up resources and configure Texture.
if ( isObjectURL === true ) {
URL.revokeObjectURL( sourceURI );
}
assignExtrasToUserData( texture, sourceDef );
texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType( sourceDef.uri );
return texture;
} ).catch( function ( error ) {
console.error( 'THREE.GLTFLoader: Couldn\'t load texture', sourceURI );
throw error;
} );
this.sourceCache[ sourceIndex ] = promise;
return promise;
}
/**
* Asynchronously assigns a texture to the given material parameters.
*
* @private
* @param {Object} materialParams
* @param {string} mapName
* @param {Object} mapDef
* @param {string} [colorSpace]
* @return {Promise<Texture>}
*/
assignTexture( materialParams, mapName, mapDef, colorSpace ) {
const parser = this;
return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) {
if ( ! texture ) return null;
if ( mapDef.texCoord !== undefined && mapDef.texCoord > 0 ) {
texture = texture.clone();
texture.channel = mapDef.texCoord;
}
if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) {
const transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined;
if ( transform ) {
const gltfReference = parser.associations.get( texture );
texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform );
parser.associations.set( texture, gltfReference );
}
}
if ( colorSpace !== undefined ) {
texture.colorSpace = colorSpace;
}
materialParams[ mapName ] = texture;
return texture;
} );
}
/**
* Assigns final material to a Mesh, Line, or Points instance. The instance
* already has a material (generated from the glTF material options alone)
* but reuse of the same glTF material may require multiple threejs materials
* to accommodate different primitive types, defines, etc. New materials will
* be created if necessary, and reused from a cache.
*
* @private
* @param {Object3D} mesh Mesh, Line, or Points instance.
*/
assignFinalMaterial( mesh ) {
const geometry = mesh.geometry;
let material = mesh.material;
const useDerivativeTangents = geometry.attributes.tangent === undefined;
const useVertexColors = geometry.attributes.color !== undefined;
const useFlatShading = geometry.attributes.normal === undefined;
if ( mesh.isPoints ) {
const cacheKey = 'PointsMaterial:' + material.uuid;
let pointsMaterial = this.cache.get( cacheKey );
if ( ! pointsMaterial ) {
pointsMaterial = new PointsMaterial();
Material.prototype.copy.call( pointsMaterial, material );
pointsMaterial.color.copy( material.color );
pointsMaterial.map = material.map;
pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px
this.cache.add( cacheKey, pointsMaterial );
}
material = pointsMaterial;
} else if ( mesh.isLine ) {
const cacheKey = 'LineBasicMaterial:' + material.uuid;
let lineMaterial = this.cache.get( cacheKey );
if ( ! lineMaterial ) {
lineMaterial = new LineBasicMaterial();
Material.prototype.copy.call( lineMaterial, material );
lineMaterial.color.copy( material.color );
lineMaterial.map = material.map;
this.cache.add( cacheKey, lineMaterial );
}
material = lineMaterial;
}
// Clone the material if it will be modified
if ( useDerivativeTangents || useVertexColors || useFlatShading ) {
let cacheKey = 'ClonedMaterial:' + material.uuid + ':';
if ( useDerivativeTangents ) cacheKey += 'derivative-tangents:';
if ( useVertexColors ) cacheKey += 'vertex-colors:';
if ( useFlatShading ) cacheKey += 'flat-shading:';
let cachedMaterial = this.cache.get( cacheKey );
if ( ! cachedMaterial ) {
cachedMaterial = material.clone();
if ( useVertexColors ) cachedMaterial.vertexColors = true;
if ( useFlatShading ) cachedMaterial.flatShading = true;
if ( useDerivativeTangents ) {
// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
if ( cachedMaterial.normalScale ) cachedMaterial.normalScale.y *= - 1;
if ( cachedMaterial.clearcoatNormalScale ) cachedMaterial.clearcoatNormalScale.y *= - 1;
}
this.cache.add( cacheKey, cachedMaterial );
this.associations.set( cachedMaterial, this.associations.get( material ) );
}
material = cachedMaterial;
}
mesh.material = material;
}
getMaterialType( /* materialIndex */ ) {
return MeshStandardMaterial;
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
*
* @private
* @param {number} materialIndex
* @return {Promise<Material>}
*/
loadMaterial( materialIndex ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
const materialDef = json.materials[ materialIndex ];
let materialType;
const materialParams = {};
const materialExtensions = materialDef.extensions || {};
const pending = [];
if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) {
const kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ];
materialType = kmuExtension.getMaterialType();
pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) );
} else {
// Specification:
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material
const metallicRoughness = materialDef.pbrMetallicRoughness || {};
materialParams.color = new Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
const array = metallicRoughness.baseColorFactor;
materialParams.color.setRGB( array[ 0 ], array[ 1 ], array[ 2 ], LinearSRGBColorSpace );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, SRGBColorSpace ) );
}
materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;
if ( metallicRoughness.metallicRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) );
pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) );
}
materialType = this._invokeOne( function ( ext ) {
return ext.getMaterialType && ext.getMaterialType( materialIndex );
} );
pending.push( Promise.all( this._invokeAll( function ( ext ) {
return ext.extendMaterialParams && ext.extendMaterialParams( materialIndex, materialParams );
} ) ) );
}
if ( materialDef.doubleSided === true ) {
materialParams.side = DoubleSide;
}
const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;
if ( alphaMode === ALPHA_MODES.BLEND ) {
materialParams.transparent = true;
// See: https://github.com/mrdoob/three.js/issues/17706
materialParams.depthWrite = false;
} else {
materialParams.transparent = false;
if ( alphaMode === ALPHA_MODES.MASK ) {
materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;
}
}
if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) );
materialParams.normalScale = new Vector2( 1, 1 );
if ( materialDef.normalTexture.scale !== undefined ) {
const scale = materialDef.normalTexture.scale;
materialParams.normalScale.set( scale, scale );
}
}
if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) );
if ( materialDef.occlusionTexture.strength !== undefined ) {
materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;
}
}
if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) {
const emissiveFactor = materialDef.emissiveFactor;
materialParams.emissive = new Color().setRGB( emissiveFactor[ 0 ], emissiveFactor[ 1 ], emissiveFactor[ 2 ], LinearSRGBColorSpace );
}
if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture, SRGBColorSpace ) );
}
return Promise.all( pending ).then( function () {
const material = new materialType( materialParams );
if ( materialDef.name ) material.name = materialDef.name;
assignExtrasToUserData( material, materialDef );
parser.associations.set( material, { materials: materialIndex } );
if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef );
return material;
} );
}
/**
* When Object3D instances are targeted by animation, they need unique names.
*
* @private
* @param {string} originalName
* @return {string}
*/
createUniqueName( originalName ) {
const sanitizedName = PropertyBinding.sanitizeNodeName( originalName || '' );
if ( sanitizedName in this.nodeNamesUsed ) {
return sanitizedName + '_' + ( ++ this.nodeNamesUsed[ sanitizedName ] );
} else {
this.nodeNamesUsed[ sanitizedName ] = 0;
return sanitizedName;
}
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
*
* Creates BufferGeometries from primitives.
*
* @private
* @param {Array<GLTF.Primitive>} primitives
* @return {Promise<Array<BufferGeometry>>}
*/
loadGeometries( primitives ) {
const parser = this;
const extensions = this.extensions;
const cache = this.primitiveCache;
function createDracoPrimitive( primitive ) {
return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]
.decodePrimitive( primitive, parser )
.then( function ( geometry ) {
return addPrimitiveAttributes( geometry, primitive, parser );
} );
}
const pending = [];
for ( let i = 0, il = primitives.length; i < il; i ++ ) {
const primitive = primitives[ i ];
const cacheKey = createPrimitiveKey( primitive );
// See if we've already created this geometry
const cached = cache[ cacheKey ];
if ( cached ) {
// Use the cached geometry if it exists
pending.push( cached.promise );
} else {
let geometryPromise;
if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) {
// Use DRACO geometry if available
geometryPromise = createDracoPrimitive( primitive );
} else {
// Otherwise create a new geometry
geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser );
}
// Cache this geometry
cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise };
pending.push( geometryPromise );
}
}
return Promise.all( pending );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
*
* @private
* @param {number} meshIndex
* @return {Promise<Group|Mesh|SkinnedMesh|Line|Points>}
*/
loadMesh( meshIndex ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
const meshDef = json.meshes[ meshIndex ];
const primitives = meshDef.primitives;
const pending = [];
for ( let i = 0, il = primitives.length; i < il; i ++ ) {
const material = primitives[ i ].material === undefined
? createDefaultMaterial( this.cache )
: this.getDependency( 'material', primitives[ i ].material );
pending.push( material );
}
pending.push( parser.loadGeometries( primitives ) );
return Promise.all( pending ).then( function ( results ) {
const materials = results.slice( 0, results.length - 1 );
const geometries = results[ results.length - 1 ];
const meshes = [];
for ( let i = 0, il = geometries.length; i < il; i ++ ) {
const geometry = geometries[ i ];
const primitive = primitives[ i ];
// 1. create Mesh
let mesh;
const material = materials[ i ];
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
primitive.mode === undefined ) {
// .isSkinnedMesh isn't in glTF spec. See ._markDefs()
mesh = meshDef.isSkinnedMesh === true
? new SkinnedMesh( geometry, material )
: new Mesh( geometry, material );
if ( mesh.isSkinnedMesh === true ) {
// normalize skin weights to fix malformed assets (see #15319)
mesh.normalizeSkinWeights();
}
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) {
mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode );
} else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) {
mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode );
}
} else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) {
mesh = new LineSegments( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) {
mesh = new Line( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) {
mesh = new LineLoop( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) {
mesh = new Points( geometry, material );
} else {
throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode );
}
if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) {
updateMorphTargets( mesh, meshDef );
}
mesh.name = parser.createUniqueName( meshDef.name || ( 'mesh_' + meshIndex ) );
assignExtrasToUserData( mesh, meshDef );
if ( primitive.extensions ) addUnknownExtensionsToUserData( extensions, mesh, primitive );
parser.assignFinalMaterial( mesh );
meshes.push( mesh );
}
for ( let i = 0, il = meshes.length; i < il; i ++ ) {
parser.associations.set( meshes[ i ], {
meshes: meshIndex,
primitives: i
} );
}
if ( meshes.length === 1 ) {
if ( meshDef.extensions ) addUnknownExtensionsToUserData( extensions, meshes[ 0 ], meshDef );
return meshes[ 0 ];
}
const group = new Group();
if ( meshDef.extensions ) addUnknownExtensionsToUserData( extensions, group, meshDef );
parser.associations.set( group, { meshes: meshIndex } );
for ( let i = 0, il = meshes.length; i < il; i ++ ) {
group.add( meshes[ i ] );
}
return group;
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
*
* @private
* @param {number} cameraIndex
* @return {Promise<THREE.Camera>}
*/
loadCamera( cameraIndex ) {
let camera;
const cameraDef = this.json.cameras[ cameraIndex ];
const params = cameraDef[ cameraDef.type ];
if ( ! params ) {
console.warn( 'THREE.GLTFLoader: Missing camera parameters.' );
return;
}
if ( cameraDef.type === 'perspective' ) {
camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 );
} else if ( cameraDef.type === 'orthographic' ) {
camera = new OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar );
}
if ( cameraDef.name ) camera.name = this.createUniqueName( cameraDef.name );
assignExtrasToUserData( camera, cameraDef );
return Promise.resolve( camera );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
*
* @private
* @param {number} skinIndex
* @return {Promise<Skeleton>}
*/
loadSkin( skinIndex ) {
const skinDef = this.json.skins[ skinIndex ];
const pending = [];
for ( let i = 0, il = skinDef.joints.length; i < il; i ++ ) {
pending.push( this._loadNodeShallow( skinDef.joints[ i ] ) );
}
if ( skinDef.inverseBindMatrices !== undefined ) {
pending.push( this.getDependency( 'accessor', skinDef.inverseBindMatrices ) );
} else {
pending.push( null );
}
return Promise.all( pending ).then( function ( results ) {
const inverseBindMatrices = results.pop();
const jointNodes = results;
// Note that bones (joint nodes) may or may not be in the
// scene graph at this time.
const bones = [];
const boneInverses = [];
for ( let i = 0, il = jointNodes.length; i < il; i ++ ) {
const jointNode = jointNodes[ i ];
if ( jointNode ) {
bones.push( jointNode );
const mat = new Matrix4();
if ( inverseBindMatrices !== null ) {
mat.fromArray( inverseBindMatrices.array, i * 16 );
}
boneInverses.push( mat );
} else {
console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinDef.joints[ i ] );
}
}
return new Skeleton( bones, boneInverses );
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
*
* @private
* @param {number} animationIndex
* @return {Promise<AnimationClip>}
*/
loadAnimation( animationIndex ) {
const json = this.json;
const parser = this;
const animationDef = json.animations[ animationIndex ];
const animationName = animationDef.name ? animationDef.name : 'animation_' + animationIndex;
const pendingNodes = [];
const pendingInputAccessors = [];
const pendingOutputAccessors = [];
const pendingSamplers = [];
const pendingTargets = [];
for ( let i = 0, il = animationDef.channels.length; i < il; i ++ ) {
const channel = animationDef.channels[ i ];
const sampler = animationDef.samplers[ channel.sampler ];
const target = channel.target;
const name = target.node;
const input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input;
const output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output;
if ( target.node === undefined ) continue;
pendingNodes.push( this.getDependency( 'node', name ) );
pendingInputAccessors.push( this.getDependency( 'accessor', input ) );
pendingOutputAccessors.push( this.getDependency( 'accessor', output ) );
pendingSamplers.push( sampler );
pendingTargets.push( target );
}
return Promise.all( [
Promise.all( pendingNodes ),
Promise.all( pendingInputAccessors ),
Promise.all( pendingOutputAccessors ),
Promise.all( pendingSamplers ),
Promise.all( pendingTargets )
] ).then( function ( dependencies ) {
const nodes = dependencies[ 0 ];
const inputAccessors = dependencies[ 1 ];
const outputAccessors = dependencies[ 2 ];
const samplers = dependencies[ 3 ];
const targets = dependencies[ 4 ];
const tracks = [];
for ( let i = 0, il = nodes.length; i < il; i ++ ) {
const node = nodes[ i ];
const inputAccessor = inputAccessors[ i ];
const outputAccessor = outputAccessors[ i ];
const sampler = samplers[ i ];
const target = targets[ i ];
if ( node === undefined ) continue;
if ( node.updateMatrix ) {
node.updateMatrix();
}
const createdTracks = parser._createAnimationTracks( node, inputAccessor, outputAccessor, sampler, target );
if ( createdTracks ) {
for ( let k = 0; k < createdTracks.length; k ++ ) {
tracks.push( createdTracks[ k ] );
}
}
}
return new AnimationClip( animationName, undefined, tracks );
} );
}
createNodeMesh( nodeIndex ) {
const json = this.json;
const parser = this;
const nodeDef = json.nodes[ nodeIndex ];
if ( nodeDef.mesh === undefined ) return null;
return parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) {
const node = parser._getNodeRef( parser.meshCache, nodeDef.mesh, mesh );
// if weights are provided on the node, override weights on the mesh.
if ( nodeDef.weights !== undefined ) {
node.traverse( function ( o ) {
if ( ! o.isMesh ) return;
for ( let i = 0, il = nodeDef.weights.length; i < il; i ++ ) {
o.morphTargetInfluences[ i ] = nodeDef.weights[ i ];
}
} );
}
return node;
} );
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
*
* @private
* @param {number} nodeIndex
* @return {Promise<Object3D>}
*/
loadNode( nodeIndex ) {
const json = this.json;
const parser = this;
const nodeDef = json.nodes[ nodeIndex ];
const nodePending = parser._loadNodeShallow( nodeIndex );
const childPending = [];
const childrenDef = nodeDef.children || [];
for ( let i = 0, il = childrenDef.length; i < il; i ++ ) {
childPending.push( parser.getDependency( 'node', childrenDef[ i ] ) );
}
const skeletonPending = nodeDef.skin === undefined
? Promise.resolve( null )
: parser.getDependency( 'skin', nodeDef.skin );
return Promise.all( [
nodePending,
Promise.all( childPending ),
skeletonPending
] ).then( function ( results ) {
const node = results[ 0 ];
const children = results[ 1 ];
const skeleton = results[ 2 ];
if ( skeleton !== null ) {
// This full traverse should be fine because
// child glTF nodes have not been added to this node yet.
node.traverse( function ( mesh ) {
if ( ! mesh.isSkinnedMesh ) return;
mesh.bind( skeleton, _identityMatrix );
} );
}
for ( let i = 0, il = children.length; i < il; i ++ ) {
node.add( children[ i ] );
}
return node;
} );
}
// ._loadNodeShallow() parses a single node.
// skin and child nodes are created and added in .loadNode() (no '_' prefix).
_loadNodeShallow( nodeIndex ) {
const json = this.json;
const extensions = this.extensions;
const parser = this;
// This method is called from .loadNode() and .loadSkin().
// Cache a node to avoid duplication.
if ( this.nodeCache[ nodeIndex ] !== undefined ) {
return this.nodeCache[ nodeIndex ];
}
const nodeDef = json.nodes[ nodeIndex ];
// reserve node's name before its dependencies, so the root has the intended name.
const nodeName = nodeDef.name ? parser.createUniqueName( nodeDef.name ) : '';
const pending = [];
const meshPromise = parser._invokeOne( function ( ext ) {
return ext.createNodeMesh && ext.createNodeMesh( nodeIndex );
} );
if ( meshPromise ) {
pending.push( meshPromise );
}
if ( nodeDef.camera !== undefined ) {
pending.push( parser.getDependency( 'camera', nodeDef.camera ).then( function ( camera ) {
return parser._getNodeRef( parser.cameraCache, nodeDef.camera, camera );
} ) );
}
parser._invokeAll( function ( ext ) {
return ext.createNodeAttachment && ext.createNodeAttachment( nodeIndex );
} ).forEach( function ( promise ) {
pending.push( promise );
} );
this.nodeCache[ nodeIndex ] = Promise.all( pending ).then( function ( objects ) {
let node;
// .isBone isn't in glTF spec. See ._markDefs
if ( nodeDef.isBone === true ) {
node = new Bone();
} else if ( objects.length > 1 ) {
node = new Group();
} else if ( objects.length === 1 ) {
node = objects[ 0 ];
} else {
node = new Object3D();
}
if ( node !== objects[ 0 ] ) {
for ( let i = 0, il = objects.length; i < il; i ++ ) {
node.add( objects[ i ] );
}
}
if ( nodeDef.name ) {
node.userData.name = nodeDef.name;
node.name = nodeName;
}
assignExtrasToUserData( node, nodeDef );
if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef );
if ( nodeDef.matrix !== undefined ) {
const matrix = new Matrix4();
matrix.fromArray( nodeDef.matrix );
node.applyMatrix4( matrix );
} else {
if ( nodeDef.translation !== undefined ) {
node.position.fromArray( nodeDef.translation );
}
if ( nodeDef.rotation !== undefined ) {
node.quaternion.fromArray( nodeDef.rotation );
}
if ( nodeDef.scale !== undefined ) {
node.scale.fromArray( nodeDef.scale );
}
}
if ( ! parser.associations.has( node ) ) {
parser.associations.set( node, {} );
} else if ( nodeDef.mesh !== undefined && parser.meshCache.refs[ nodeDef.mesh ] > 1 ) {
const mapping = parser.associations.get( node );
parser.associations.set( node, { ...mapping } );
}
parser.associations.get( node ).nodes = nodeIndex;
return node;
} );
return this.nodeCache[ nodeIndex ];
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
*
* @private
* @param {number} sceneIndex
* @return {Promise<Group>}
*/
loadScene( sceneIndex ) {
const extensions = this.extensions;
const sceneDef = this.json.scenes[ sceneIndex ];
const parser = this;
// Loader returns Group, not Scene.
// See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172
const scene = new Group();
if ( sceneDef.name ) scene.name = parser.createUniqueName( sceneDef.name );
assignExtrasToUserData( scene, sceneDef );
if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef );
const nodeIds = sceneDef.nodes || [];
const pending = [];
for ( let i = 0, il = nodeIds.length; i < il; i ++ ) {
pending.push( parser.getDependency( 'node', nodeIds[ i ] ) );
}
return Promise.all( pending ).then( function ( nodes ) {
for ( let i = 0, il = nodes.length; i < il; i ++ ) {
scene.add( nodes[ i ] );
}
// Removes dangling associations, associations that reference a node that
// didn't make it into the scene.
const reduceAssociations = ( node ) => {
const reducedAssociations = new Map();
for ( const [ key, value ] of parser.associations ) {
if ( key instanceof Material || key instanceof Texture ) {
reducedAssociations.set( key, value );
}
}
node.traverse( ( node ) => {
const mappings = parser.associations.get( node );
if ( mappings != null ) {
reducedAssociations.set( node, mappings );
}
} );
return reducedAssociations;
};
parser.associations = reduceAssociations( scene );
return scene;
} );
}
_createAnimationTracks( node, inputAccessor, outputAccessor, sampler, target ) {
const tracks = [];
const targetName = node.name ? node.name : node.uuid;
const targetNames = [];
if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) {
node.traverse( function ( object ) {
if ( object.morphTargetInfluences ) {
targetNames.push( object.name ? object.name : object.uuid );
}
} );
} else {
targetNames.push( targetName );
}
let TypedKeyframeTrack;
switch ( PATH_PROPERTIES[ target.path ] ) {
case PATH_PROPERTIES.weights:
TypedKeyframeTrack = NumberKeyframeTrack;
break;
case PATH_PROPERTIES.rotation:
TypedKeyframeTrack = QuaternionKeyframeTrack;
break;
case PATH_PROPERTIES.translation:
case PATH_PROPERTIES.scale:
TypedKeyframeTrack = VectorKeyframeTrack;
break;
default:
switch ( outputAccessor.itemSize ) {
case 1:
TypedKeyframeTrack = NumberKeyframeTrack;
break;
case 2:
case 3:
default:
TypedKeyframeTrack = VectorKeyframeTrack;
break;
}
break;
}
const interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear;
const outputArray = this._getArrayFromAccessor( outputAccessor );
for ( let j = 0, jl = targetNames.length; j < jl; j ++ ) {
const track = new TypedKeyframeTrack(
targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ],
inputAccessor.array,
outputArray,
interpolation
);
// Override interpolation with custom factory method.
if ( sampler.interpolation === 'CUBICSPLINE' ) {
this._createCubicSplineTrackInterpolant( track );
}
tracks.push( track );
}
return tracks;
}
_getArrayFromAccessor( accessor ) {
let outputArray = accessor.array;
if ( accessor.normalized ) {
const scale = getNormalizedComponentScale( outputArray.constructor );
const scaled = new Float32Array( outputArray.length );
for ( let j = 0, jl = outputArray.length; j < jl; j ++ ) {
scaled[ j ] = outputArray[ j ] * scale;
}
outputArray = scaled;
}
return outputArray;
}
_createCubicSplineTrackInterpolant( track ) {
track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) {
// A CUBICSPLINE keyframe in glTF has three output values for each input value,
// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
// must be divided by three to get the interpolant's sampleSize argument.
const interpolantType = ( this instanceof QuaternionKeyframeTrack ) ? GLTFCubicSplineQuaternionInterpolant : GLTFCubicSplineInterpolant;
return new interpolantType( this.times, this.values, this.getValueSize() / 3, result );
};
// Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants.
track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;
}
}
Methods¶
setExtensions(extensions: any): void
¶
setPlugins(plugins: any): void
¶
parse(onLoad: any, onError: any): void
¶
Code
parse( onLoad, onError ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
// Clear the loader cache
this.cache.removeAll();
this.nodeCache = {};
// Mark the special nodes/meshes in json for efficient parse
this._invokeAll( function ( ext ) {
return ext._markDefs && ext._markDefs();
} );
Promise.all( this._invokeAll( function ( ext ) {
return ext.beforeRoot && ext.beforeRoot();
} ) ).then( function () {
return Promise.all( [
parser.getDependencies( 'scene' ),
parser.getDependencies( 'animation' ),
parser.getDependencies( 'camera' ),
] );
} ).then( function ( dependencies ) {
const result = {
scene: dependencies[ 0 ][ json.scene || 0 ],
scenes: dependencies[ 0 ],
animations: dependencies[ 1 ],
cameras: dependencies[ 2 ],
asset: json.asset,
parser: parser,
userData: {}
};
addUnknownExtensionsToUserData( extensions, result, json );
assignExtrasToUserData( result, json );
return Promise.all( parser._invokeAll( function ( ext ) {
return ext.afterRoot && ext.afterRoot( result );
} ) ).then( function () {
for ( const scene of result.scenes ) {
scene.updateMatrixWorld();
}
onLoad( result );
} );
} ).catch( onError );
}
_markDefs(): void
¶
Code
_markDefs() {
const nodeDefs = this.json.nodes || [];
const skinDefs = this.json.skins || [];
const meshDefs = this.json.meshes || [];
// Nothing in the node definition indicates whether it is a Bone or an
// Object3D. Use the skins' joint references to mark bones.
for ( let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {
const joints = skinDefs[ skinIndex ].joints;
for ( let i = 0, il = joints.length; i < il; i ++ ) {
nodeDefs[ joints[ i ] ].isBone = true;
}
}
// Iterate over all nodes, marking references to shared resources,
// as well as skeleton joints.
for ( let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {
const nodeDef = nodeDefs[ nodeIndex ];
if ( nodeDef.mesh !== undefined ) {
this._addNodeRef( this.meshCache, nodeDef.mesh );
// Nothing in the mesh definition indicates whether it is
// a SkinnedMesh or Mesh. Use the node's mesh reference
// to mark SkinnedMesh if node has skin.
if ( nodeDef.skin !== undefined ) {
meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;
}
}
if ( nodeDef.camera !== undefined ) {
this._addNodeRef( this.cameraCache, nodeDef.camera );
}
}
}
_addNodeRef(cache: any, index: Object3D): void
¶
Code
_getNodeRef(cache: any, index: number, object: any): any
¶
Code
_getNodeRef( cache, index, object ) {
if ( cache.refs[ index ] <= 1 ) return object;
const ref = object.clone();
// Propagates mappings to the cloned object, prevents mappings on the
// original object from being lost.
const updateMappings = ( original, clone ) => {
const mappings = this.associations.get( original );
if ( mappings != null ) {
this.associations.set( clone, mappings );
}
for ( const [ i, child ] of original.children.entries() ) {
updateMappings( child, clone.children[ i ] );
}
};
updateMappings( object, ref );
ref.name += '_instance_' + ( cache.uses[ index ] ++ );
return ref;
}
_invokeOne(func: any): any
¶
Code
_invokeAll(func: any): any[]
¶
Code
getDependency(type: string, index: number): Promise<any>
¶
Code
getDependency( type, index ) {
const cacheKey = type + ':' + index;
let dependency = this.cache.get( cacheKey );
if ( ! dependency ) {
switch ( type ) {
case 'scene':
dependency = this.loadScene( index );
break;
case 'node':
dependency = this._invokeOne( function ( ext ) {
return ext.loadNode && ext.loadNode( index );
} );
break;
case 'mesh':
dependency = this._invokeOne( function ( ext ) {
return ext.loadMesh && ext.loadMesh( index );
} );
break;
case 'accessor':
dependency = this.loadAccessor( index );
break;
case 'bufferView':
dependency = this._invokeOne( function ( ext ) {
return ext.loadBufferView && ext.loadBufferView( index );
} );
break;
case 'buffer':
dependency = this.loadBuffer( index );
break;
case 'material':
dependency = this._invokeOne( function ( ext ) {
return ext.loadMaterial && ext.loadMaterial( index );
} );
break;
case 'texture':
dependency = this._invokeOne( function ( ext ) {
return ext.loadTexture && ext.loadTexture( index );
} );
break;
case 'skin':
dependency = this.loadSkin( index );
break;
case 'animation':
dependency = this._invokeOne( function ( ext ) {
return ext.loadAnimation && ext.loadAnimation( index );
} );
break;
case 'camera':
dependency = this.loadCamera( index );
break;
default:
dependency = this._invokeOne( function ( ext ) {
return ext != this && ext.getDependency && ext.getDependency( type, index );
} );
if ( ! dependency ) {
throw new Error( 'Unknown type: ' + type );
}
break;
}
this.cache.add( cacheKey, dependency );
}
return dependency;
}
getDependencies(type: string): Promise<any[]>
¶
Code
getDependencies( type ) {
let dependencies = this.cache.get( type );
if ( ! dependencies ) {
const parser = this;
const defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];
dependencies = Promise.all( defs.map( function ( def, index ) {
return parser.getDependency( type, index );
} ) );
this.cache.add( type, dependencies );
}
return dependencies;
}
loadBuffer(bufferIndex: number): Promise<ArrayBuffer>
¶
Code
loadBuffer( bufferIndex ) {
const bufferDef = this.json.buffers[ bufferIndex ];
const loader = this.fileLoader;
if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {
throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );
}
// If present, GLB container is required to be the first buffer.
if ( bufferDef.uri === undefined && bufferIndex === 0 ) {
return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );
}
const options = this.options;
return new Promise( function ( resolve, reject ) {
loader.load( LoaderUtils.resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {
reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );
} );
} );
}
loadBufferView(bufferViewIndex: number): Promise<ArrayBuffer>
¶
Code
loadBufferView( bufferViewIndex ) {
const bufferViewDef = this.json.bufferViews[ bufferViewIndex ];
return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {
const byteLength = bufferViewDef.byteLength || 0;
const byteOffset = bufferViewDef.byteOffset || 0;
return buffer.slice( byteOffset, byteOffset + byteLength );
} );
}
loadAccessor(accessorIndex: number): Promise<any>
¶
Code
loadAccessor( accessorIndex ) {
const parser = this;
const json = this.json;
const accessorDef = this.json.accessors[ accessorIndex ];
if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {
const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
const normalized = accessorDef.normalized === true;
const array = new TypedArray( accessorDef.count * itemSize );
return Promise.resolve( new BufferAttribute( array, itemSize, normalized ) );
}
const pendingBufferViews = [];
if ( accessorDef.bufferView !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );
} else {
pendingBufferViews.push( null );
}
if ( accessorDef.sparse !== undefined ) {
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) );
pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );
}
return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {
const bufferView = bufferViews[ 0 ];
const itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
const TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];
// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
const elementBytes = TypedArray.BYTES_PER_ELEMENT;
const itemBytes = elementBytes * itemSize;
const byteOffset = accessorDef.byteOffset || 0;
const byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined;
const normalized = accessorDef.normalized === true;
let array, bufferAttribute;
// The buffer is not interleaved if the stride is the item size in bytes.
if ( byteStride && byteStride !== itemBytes ) {
// Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer
// This makes sure that IBA.count reflects accessor.count properly
const ibSlice = Math.floor( byteOffset / byteStride );
const ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count;
let ib = parser.cache.get( ibCacheKey );
if ( ! ib ) {
array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes );
// Integer parameters to IB/IBA are in array elements, not bytes.
ib = new InterleavedBuffer( array, byteStride / elementBytes );
parser.cache.add( ibCacheKey, ib );
}
bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized );
} else {
if ( bufferView === null ) {
array = new TypedArray( accessorDef.count * itemSize );
} else {
array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );
}
bufferAttribute = new BufferAttribute( array, itemSize, normalized );
}
// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
if ( accessorDef.sparse !== undefined ) {
const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
const TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];
const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
const sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices );
const sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );
if ( bufferView !== null ) {
// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized );
}
// Ignore normalized since we copy from sparse
bufferAttribute.normalized = false;
for ( let i = 0, il = sparseIndices.length; i < il; i ++ ) {
const index = sparseIndices[ i ];
bufferAttribute.setX( index, sparseValues[ i * itemSize ] );
if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] );
if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] );
if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] );
if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' );
}
bufferAttribute.normalized = normalized;
}
return bufferAttribute;
} );
}
loadTexture(textureIndex: number): Promise<any>
¶
Code
loadTexture( textureIndex ) {
const json = this.json;
const options = this.options;
const textureDef = json.textures[ textureIndex ];
const sourceIndex = textureDef.source;
const sourceDef = json.images[ sourceIndex ];
let loader = this.textureLoader;
if ( sourceDef.uri ) {
const handler = options.manager.getHandler( sourceDef.uri );
if ( handler !== null ) loader = handler;
}
return this.loadTextureImage( textureIndex, sourceIndex, loader );
}
loadTextureImage(textureIndex: any, sourceIndex: any, loader: any): any
¶
Code
loadTextureImage( textureIndex, sourceIndex, loader ) {
const parser = this;
const json = this.json;
const textureDef = json.textures[ textureIndex ];
const sourceDef = json.images[ sourceIndex ];
const cacheKey = ( sourceDef.uri || sourceDef.bufferView ) + ':' + textureDef.sampler;
if ( this.textureCache[ cacheKey ] ) {
// See https://github.com/mrdoob/three.js/issues/21559.
return this.textureCache[ cacheKey ];
}
const promise = this.loadImageSource( sourceIndex, loader ).then( function ( texture ) {
texture.flipY = false;
texture.name = textureDef.name || sourceDef.name || '';
if ( texture.name === '' && typeof sourceDef.uri === 'string' && sourceDef.uri.startsWith( 'data:image/' ) === false ) {
texture.name = sourceDef.uri;
}
const samplers = json.samplers || {};
const sampler = samplers[ textureDef.sampler ] || {};
texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter;
texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter;
texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping;
texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping;
texture.generateMipmaps = ! texture.isCompressedTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
parser.associations.set( texture, { textures: textureIndex } );
return texture;
} ).catch( function () {
return null;
} );
this.textureCache[ cacheKey ] = promise;
return promise;
}
loadImageSource(sourceIndex: any, loader: any): any
¶
Code
loadImageSource( sourceIndex, loader ) {
const parser = this;
const json = this.json;
const options = this.options;
if ( this.sourceCache[ sourceIndex ] !== undefined ) {
return this.sourceCache[ sourceIndex ].then( ( texture ) => texture.clone() );
}
const sourceDef = json.images[ sourceIndex ];
const URL = self.URL || self.webkitURL;
let sourceURI = sourceDef.uri || '';
let isObjectURL = false;
if ( sourceDef.bufferView !== undefined ) {
// Load binary image data from bufferView, if provided.
sourceURI = parser.getDependency( 'bufferView', sourceDef.bufferView ).then( function ( bufferView ) {
isObjectURL = true;
const blob = new Blob( [ bufferView ], { type: sourceDef.mimeType } );
sourceURI = URL.createObjectURL( blob );
return sourceURI;
} );
} else if ( sourceDef.uri === undefined ) {
throw new Error( 'THREE.GLTFLoader: Image ' + sourceIndex + ' is missing URI and bufferView' );
}
const promise = Promise.resolve( sourceURI ).then( function ( sourceURI ) {
return new Promise( function ( resolve, reject ) {
let onLoad = resolve;
if ( loader.isImageBitmapLoader === true ) {
onLoad = function ( imageBitmap ) {
const texture = new Texture( imageBitmap );
texture.needsUpdate = true;
resolve( texture );
};
}
loader.load( LoaderUtils.resolveURL( sourceURI, options.path ), onLoad, undefined, reject );
} );
} ).then( function ( texture ) {
// Clean up resources and configure Texture.
if ( isObjectURL === true ) {
URL.revokeObjectURL( sourceURI );
}
assignExtrasToUserData( texture, sourceDef );
texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType( sourceDef.uri );
return texture;
} ).catch( function ( error ) {
console.error( 'THREE.GLTFLoader: Couldn\'t load texture', sourceURI );
throw error;
} );
this.sourceCache[ sourceIndex ] = promise;
return promise;
}
assignTexture(materialParams: any, mapName: string, mapDef: any, colorSpace: string): Promise<Texture>
¶
Code
assignTexture( materialParams, mapName, mapDef, colorSpace ) {
const parser = this;
return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) {
if ( ! texture ) return null;
if ( mapDef.texCoord !== undefined && mapDef.texCoord > 0 ) {
texture = texture.clone();
texture.channel = mapDef.texCoord;
}
if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) {
const transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined;
if ( transform ) {
const gltfReference = parser.associations.get( texture );
texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform );
parser.associations.set( texture, gltfReference );
}
}
if ( colorSpace !== undefined ) {
texture.colorSpace = colorSpace;
}
materialParams[ mapName ] = texture;
return texture;
} );
}
assignFinalMaterial(mesh: Object3D): void
¶
Code
assignFinalMaterial( mesh ) {
const geometry = mesh.geometry;
let material = mesh.material;
const useDerivativeTangents = geometry.attributes.tangent === undefined;
const useVertexColors = geometry.attributes.color !== undefined;
const useFlatShading = geometry.attributes.normal === undefined;
if ( mesh.isPoints ) {
const cacheKey = 'PointsMaterial:' + material.uuid;
let pointsMaterial = this.cache.get( cacheKey );
if ( ! pointsMaterial ) {
pointsMaterial = new PointsMaterial();
Material.prototype.copy.call( pointsMaterial, material );
pointsMaterial.color.copy( material.color );
pointsMaterial.map = material.map;
pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px
this.cache.add( cacheKey, pointsMaterial );
}
material = pointsMaterial;
} else if ( mesh.isLine ) {
const cacheKey = 'LineBasicMaterial:' + material.uuid;
let lineMaterial = this.cache.get( cacheKey );
if ( ! lineMaterial ) {
lineMaterial = new LineBasicMaterial();
Material.prototype.copy.call( lineMaterial, material );
lineMaterial.color.copy( material.color );
lineMaterial.map = material.map;
this.cache.add( cacheKey, lineMaterial );
}
material = lineMaterial;
}
// Clone the material if it will be modified
if ( useDerivativeTangents || useVertexColors || useFlatShading ) {
let cacheKey = 'ClonedMaterial:' + material.uuid + ':';
if ( useDerivativeTangents ) cacheKey += 'derivative-tangents:';
if ( useVertexColors ) cacheKey += 'vertex-colors:';
if ( useFlatShading ) cacheKey += 'flat-shading:';
let cachedMaterial = this.cache.get( cacheKey );
if ( ! cachedMaterial ) {
cachedMaterial = material.clone();
if ( useVertexColors ) cachedMaterial.vertexColors = true;
if ( useFlatShading ) cachedMaterial.flatShading = true;
if ( useDerivativeTangents ) {
// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
if ( cachedMaterial.normalScale ) cachedMaterial.normalScale.y *= - 1;
if ( cachedMaterial.clearcoatNormalScale ) cachedMaterial.clearcoatNormalScale.y *= - 1;
}
this.cache.add( cacheKey, cachedMaterial );
this.associations.set( cachedMaterial, this.associations.get( material ) );
}
material = cachedMaterial;
}
mesh.material = material;
}
getMaterialType(): any
¶
loadMaterial(materialIndex: number): Promise<Material>
¶
Code
loadMaterial( materialIndex ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
const materialDef = json.materials[ materialIndex ];
let materialType;
const materialParams = {};
const materialExtensions = materialDef.extensions || {};
const pending = [];
if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) {
const kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ];
materialType = kmuExtension.getMaterialType();
pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) );
} else {
// Specification:
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material
const metallicRoughness = materialDef.pbrMetallicRoughness || {};
materialParams.color = new Color( 1.0, 1.0, 1.0 );
materialParams.opacity = 1.0;
if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {
const array = metallicRoughness.baseColorFactor;
materialParams.color.setRGB( array[ 0 ], array[ 1 ], array[ 2 ], LinearSRGBColorSpace );
materialParams.opacity = array[ 3 ];
}
if ( metallicRoughness.baseColorTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture, SRGBColorSpace ) );
}
materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;
if ( metallicRoughness.metallicRoughnessTexture !== undefined ) {
pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) );
pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) );
}
materialType = this._invokeOne( function ( ext ) {
return ext.getMaterialType && ext.getMaterialType( materialIndex );
} );
pending.push( Promise.all( this._invokeAll( function ( ext ) {
return ext.extendMaterialParams && ext.extendMaterialParams( materialIndex, materialParams );
} ) ) );
}
if ( materialDef.doubleSided === true ) {
materialParams.side = DoubleSide;
}
const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;
if ( alphaMode === ALPHA_MODES.BLEND ) {
materialParams.transparent = true;
// See: https://github.com/mrdoob/three.js/issues/17706
materialParams.depthWrite = false;
} else {
materialParams.transparent = false;
if ( alphaMode === ALPHA_MODES.MASK ) {
materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;
}
}
if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) );
materialParams.normalScale = new Vector2( 1, 1 );
if ( materialDef.normalTexture.scale !== undefined ) {
const scale = materialDef.normalTexture.scale;
materialParams.normalScale.set( scale, scale );
}
}
if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) );
if ( materialDef.occlusionTexture.strength !== undefined ) {
materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;
}
}
if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) {
const emissiveFactor = materialDef.emissiveFactor;
materialParams.emissive = new Color().setRGB( emissiveFactor[ 0 ], emissiveFactor[ 1 ], emissiveFactor[ 2 ], LinearSRGBColorSpace );
}
if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) {
pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture, SRGBColorSpace ) );
}
return Promise.all( pending ).then( function () {
const material = new materialType( materialParams );
if ( materialDef.name ) material.name = materialDef.name;
assignExtrasToUserData( material, materialDef );
parser.associations.set( material, { materials: materialIndex } );
if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef );
return material;
} );
}
createUniqueName(originalName: string): string
¶
Code
createUniqueName( originalName ) {
const sanitizedName = PropertyBinding.sanitizeNodeName( originalName || '' );
if ( sanitizedName in this.nodeNamesUsed ) {
return sanitizedName + '_' + ( ++ this.nodeNamesUsed[ sanitizedName ] );
} else {
this.nodeNamesUsed[ sanitizedName ] = 0;
return sanitizedName;
}
}
loadGeometries(primitives: GLTF.Primitive[]): Promise<BufferGeometry[]>
¶
Code
loadGeometries( primitives ) {
const parser = this;
const extensions = this.extensions;
const cache = this.primitiveCache;
function createDracoPrimitive( primitive ) {
return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]
.decodePrimitive( primitive, parser )
.then( function ( geometry ) {
return addPrimitiveAttributes( geometry, primitive, parser );
} );
}
const pending = [];
for ( let i = 0, il = primitives.length; i < il; i ++ ) {
const primitive = primitives[ i ];
const cacheKey = createPrimitiveKey( primitive );
// See if we've already created this geometry
const cached = cache[ cacheKey ];
if ( cached ) {
// Use the cached geometry if it exists
pending.push( cached.promise );
} else {
let geometryPromise;
if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) {
// Use DRACO geometry if available
geometryPromise = createDracoPrimitive( primitive );
} else {
// Otherwise create a new geometry
geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser );
}
// Cache this geometry
cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise };
pending.push( geometryPromise );
}
}
return Promise.all( pending );
}
loadMesh(meshIndex: number): Promise<any>
¶
Code
loadMesh( meshIndex ) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
const meshDef = json.meshes[ meshIndex ];
const primitives = meshDef.primitives;
const pending = [];
for ( let i = 0, il = primitives.length; i < il; i ++ ) {
const material = primitives[ i ].material === undefined
? createDefaultMaterial( this.cache )
: this.getDependency( 'material', primitives[ i ].material );
pending.push( material );
}
pending.push( parser.loadGeometries( primitives ) );
return Promise.all( pending ).then( function ( results ) {
const materials = results.slice( 0, results.length - 1 );
const geometries = results[ results.length - 1 ];
const meshes = [];
for ( let i = 0, il = geometries.length; i < il; i ++ ) {
const geometry = geometries[ i ];
const primitive = primitives[ i ];
// 1. create Mesh
let mesh;
const material = materials[ i ];
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
primitive.mode === undefined ) {
// .isSkinnedMesh isn't in glTF spec. See ._markDefs()
mesh = meshDef.isSkinnedMesh === true
? new SkinnedMesh( geometry, material )
: new Mesh( geometry, material );
if ( mesh.isSkinnedMesh === true ) {
// normalize skin weights to fix malformed assets (see #15319)
mesh.normalizeSkinWeights();
}
if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) {
mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode );
} else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) {
mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode );
}
} else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) {
mesh = new LineSegments( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) {
mesh = new Line( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) {
mesh = new LineLoop( geometry, material );
} else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) {
mesh = new Points( geometry, material );
} else {
throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode );
}
if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) {
updateMorphTargets( mesh, meshDef );
}
mesh.name = parser.createUniqueName( meshDef.name || ( 'mesh_' + meshIndex ) );
assignExtrasToUserData( mesh, meshDef );
if ( primitive.extensions ) addUnknownExtensionsToUserData( extensions, mesh, primitive );
parser.assignFinalMaterial( mesh );
meshes.push( mesh );
}
for ( let i = 0, il = meshes.length; i < il; i ++ ) {
parser.associations.set( meshes[ i ], {
meshes: meshIndex,
primitives: i
} );
}
if ( meshes.length === 1 ) {
if ( meshDef.extensions ) addUnknownExtensionsToUserData( extensions, meshes[ 0 ], meshDef );
return meshes[ 0 ];
}
const group = new Group();
if ( meshDef.extensions ) addUnknownExtensionsToUserData( extensions, group, meshDef );
parser.associations.set( group, { meshes: meshIndex } );
for ( let i = 0, il = meshes.length; i < il; i ++ ) {
group.add( meshes[ i ] );
}
return group;
} );
}
loadCamera(cameraIndex: number): Promise<THREE.Camera>
¶
Code
loadCamera( cameraIndex ) {
let camera;
const cameraDef = this.json.cameras[ cameraIndex ];
const params = cameraDef[ cameraDef.type ];
if ( ! params ) {
console.warn( 'THREE.GLTFLoader: Missing camera parameters.' );
return;
}
if ( cameraDef.type === 'perspective' ) {
camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 );
} else if ( cameraDef.type === 'orthographic' ) {
camera = new OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar );
}
if ( cameraDef.name ) camera.name = this.createUniqueName( cameraDef.name );
assignExtrasToUserData( camera, cameraDef );
return Promise.resolve( camera );
}
loadSkin(skinIndex: number): Promise<Skeleton>
¶
Code
loadSkin( skinIndex ) {
const skinDef = this.json.skins[ skinIndex ];
const pending = [];
for ( let i = 0, il = skinDef.joints.length; i < il; i ++ ) {
pending.push( this._loadNodeShallow( skinDef.joints[ i ] ) );
}
if ( skinDef.inverseBindMatrices !== undefined ) {
pending.push( this.getDependency( 'accessor', skinDef.inverseBindMatrices ) );
} else {
pending.push( null );
}
return Promise.all( pending ).then( function ( results ) {
const inverseBindMatrices = results.pop();
const jointNodes = results;
// Note that bones (joint nodes) may or may not be in the
// scene graph at this time.
const bones = [];
const boneInverses = [];
for ( let i = 0, il = jointNodes.length; i < il; i ++ ) {
const jointNode = jointNodes[ i ];
if ( jointNode ) {
bones.push( jointNode );
const mat = new Matrix4();
if ( inverseBindMatrices !== null ) {
mat.fromArray( inverseBindMatrices.array, i * 16 );
}
boneInverses.push( mat );
} else {
console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinDef.joints[ i ] );
}
}
return new Skeleton( bones, boneInverses );
} );
}
loadAnimation(animationIndex: number): Promise<AnimationClip>
¶
Code
loadAnimation( animationIndex ) {
const json = this.json;
const parser = this;
const animationDef = json.animations[ animationIndex ];
const animationName = animationDef.name ? animationDef.name : 'animation_' + animationIndex;
const pendingNodes = [];
const pendingInputAccessors = [];
const pendingOutputAccessors = [];
const pendingSamplers = [];
const pendingTargets = [];
for ( let i = 0, il = animationDef.channels.length; i < il; i ++ ) {
const channel = animationDef.channels[ i ];
const sampler = animationDef.samplers[ channel.sampler ];
const target = channel.target;
const name = target.node;
const input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input;
const output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output;
if ( target.node === undefined ) continue;
pendingNodes.push( this.getDependency( 'node', name ) );
pendingInputAccessors.push( this.getDependency( 'accessor', input ) );
pendingOutputAccessors.push( this.getDependency( 'accessor', output ) );
pendingSamplers.push( sampler );
pendingTargets.push( target );
}
return Promise.all( [
Promise.all( pendingNodes ),
Promise.all( pendingInputAccessors ),
Promise.all( pendingOutputAccessors ),
Promise.all( pendingSamplers ),
Promise.all( pendingTargets )
] ).then( function ( dependencies ) {
const nodes = dependencies[ 0 ];
const inputAccessors = dependencies[ 1 ];
const outputAccessors = dependencies[ 2 ];
const samplers = dependencies[ 3 ];
const targets = dependencies[ 4 ];
const tracks = [];
for ( let i = 0, il = nodes.length; i < il; i ++ ) {
const node = nodes[ i ];
const inputAccessor = inputAccessors[ i ];
const outputAccessor = outputAccessors[ i ];
const sampler = samplers[ i ];
const target = targets[ i ];
if ( node === undefined ) continue;
if ( node.updateMatrix ) {
node.updateMatrix();
}
const createdTracks = parser._createAnimationTracks( node, inputAccessor, outputAccessor, sampler, target );
if ( createdTracks ) {
for ( let k = 0; k < createdTracks.length; k ++ ) {
tracks.push( createdTracks[ k ] );
}
}
}
return new AnimationClip( animationName, undefined, tracks );
} );
}
createNodeMesh(nodeIndex: any): Promise<any>
¶
Code
createNodeMesh( nodeIndex ) {
const json = this.json;
const parser = this;
const nodeDef = json.nodes[ nodeIndex ];
if ( nodeDef.mesh === undefined ) return null;
return parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) {
const node = parser._getNodeRef( parser.meshCache, nodeDef.mesh, mesh );
// if weights are provided on the node, override weights on the mesh.
if ( nodeDef.weights !== undefined ) {
node.traverse( function ( o ) {
if ( ! o.isMesh ) return;
for ( let i = 0, il = nodeDef.weights.length; i < il; i ++ ) {
o.morphTargetInfluences[ i ] = nodeDef.weights[ i ];
}
} );
}
return node;
} );
}
loadNode(nodeIndex: number): Promise<Object3D>
¶
Code
loadNode( nodeIndex ) {
const json = this.json;
const parser = this;
const nodeDef = json.nodes[ nodeIndex ];
const nodePending = parser._loadNodeShallow( nodeIndex );
const childPending = [];
const childrenDef = nodeDef.children || [];
for ( let i = 0, il = childrenDef.length; i < il; i ++ ) {
childPending.push( parser.getDependency( 'node', childrenDef[ i ] ) );
}
const skeletonPending = nodeDef.skin === undefined
? Promise.resolve( null )
: parser.getDependency( 'skin', nodeDef.skin );
return Promise.all( [
nodePending,
Promise.all( childPending ),
skeletonPending
] ).then( function ( results ) {
const node = results[ 0 ];
const children = results[ 1 ];
const skeleton = results[ 2 ];
if ( skeleton !== null ) {
// This full traverse should be fine because
// child glTF nodes have not been added to this node yet.
node.traverse( function ( mesh ) {
if ( ! mesh.isSkinnedMesh ) return;
mesh.bind( skeleton, _identityMatrix );
} );
}
for ( let i = 0, il = children.length; i < il; i ++ ) {
node.add( children[ i ] );
}
return node;
} );
}
_loadNodeShallow(nodeIndex: any): any
¶
Code
_loadNodeShallow( nodeIndex ) {
const json = this.json;
const extensions = this.extensions;
const parser = this;
// This method is called from .loadNode() and .loadSkin().
// Cache a node to avoid duplication.
if ( this.nodeCache[ nodeIndex ] !== undefined ) {
return this.nodeCache[ nodeIndex ];
}
const nodeDef = json.nodes[ nodeIndex ];
// reserve node's name before its dependencies, so the root has the intended name.
const nodeName = nodeDef.name ? parser.createUniqueName( nodeDef.name ) : '';
const pending = [];
const meshPromise = parser._invokeOne( function ( ext ) {
return ext.createNodeMesh && ext.createNodeMesh( nodeIndex );
} );
if ( meshPromise ) {
pending.push( meshPromise );
}
if ( nodeDef.camera !== undefined ) {
pending.push( parser.getDependency( 'camera', nodeDef.camera ).then( function ( camera ) {
return parser._getNodeRef( parser.cameraCache, nodeDef.camera, camera );
} ) );
}
parser._invokeAll( function ( ext ) {
return ext.createNodeAttachment && ext.createNodeAttachment( nodeIndex );
} ).forEach( function ( promise ) {
pending.push( promise );
} );
this.nodeCache[ nodeIndex ] = Promise.all( pending ).then( function ( objects ) {
let node;
// .isBone isn't in glTF spec. See ._markDefs
if ( nodeDef.isBone === true ) {
node = new Bone();
} else if ( objects.length > 1 ) {
node = new Group();
} else if ( objects.length === 1 ) {
node = objects[ 0 ];
} else {
node = new Object3D();
}
if ( node !== objects[ 0 ] ) {
for ( let i = 0, il = objects.length; i < il; i ++ ) {
node.add( objects[ i ] );
}
}
if ( nodeDef.name ) {
node.userData.name = nodeDef.name;
node.name = nodeName;
}
assignExtrasToUserData( node, nodeDef );
if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef );
if ( nodeDef.matrix !== undefined ) {
const matrix = new Matrix4();
matrix.fromArray( nodeDef.matrix );
node.applyMatrix4( matrix );
} else {
if ( nodeDef.translation !== undefined ) {
node.position.fromArray( nodeDef.translation );
}
if ( nodeDef.rotation !== undefined ) {
node.quaternion.fromArray( nodeDef.rotation );
}
if ( nodeDef.scale !== undefined ) {
node.scale.fromArray( nodeDef.scale );
}
}
if ( ! parser.associations.has( node ) ) {
parser.associations.set( node, {} );
} else if ( nodeDef.mesh !== undefined && parser.meshCache.refs[ nodeDef.mesh ] > 1 ) {
const mapping = parser.associations.get( node );
parser.associations.set( node, { ...mapping } );
}
parser.associations.get( node ).nodes = nodeIndex;
return node;
} );
return this.nodeCache[ nodeIndex ];
}
loadScene(sceneIndex: number): Promise<Group>
¶
Code
loadScene( sceneIndex ) {
const extensions = this.extensions;
const sceneDef = this.json.scenes[ sceneIndex ];
const parser = this;
// Loader returns Group, not Scene.
// See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172
const scene = new Group();
if ( sceneDef.name ) scene.name = parser.createUniqueName( sceneDef.name );
assignExtrasToUserData( scene, sceneDef );
if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef );
const nodeIds = sceneDef.nodes || [];
const pending = [];
for ( let i = 0, il = nodeIds.length; i < il; i ++ ) {
pending.push( parser.getDependency( 'node', nodeIds[ i ] ) );
}
return Promise.all( pending ).then( function ( nodes ) {
for ( let i = 0, il = nodes.length; i < il; i ++ ) {
scene.add( nodes[ i ] );
}
// Removes dangling associations, associations that reference a node that
// didn't make it into the scene.
const reduceAssociations = ( node ) => {
const reducedAssociations = new Map();
for ( const [ key, value ] of parser.associations ) {
if ( key instanceof Material || key instanceof Texture ) {
reducedAssociations.set( key, value );
}
}
node.traverse( ( node ) => {
const mappings = parser.associations.get( node );
if ( mappings != null ) {
reducedAssociations.set( node, mappings );
}
} );
return reducedAssociations;
};
parser.associations = reduceAssociations( scene );
return scene;
} );
}
_createAnimationTracks(node: any, inputAccessor: any, outputAccessor: any, sampler: any, target: any): any[]
¶
Code
_createAnimationTracks( node, inputAccessor, outputAccessor, sampler, target ) {
const tracks = [];
const targetName = node.name ? node.name : node.uuid;
const targetNames = [];
if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) {
node.traverse( function ( object ) {
if ( object.morphTargetInfluences ) {
targetNames.push( object.name ? object.name : object.uuid );
}
} );
} else {
targetNames.push( targetName );
}
let TypedKeyframeTrack;
switch ( PATH_PROPERTIES[ target.path ] ) {
case PATH_PROPERTIES.weights:
TypedKeyframeTrack = NumberKeyframeTrack;
break;
case PATH_PROPERTIES.rotation:
TypedKeyframeTrack = QuaternionKeyframeTrack;
break;
case PATH_PROPERTIES.translation:
case PATH_PROPERTIES.scale:
TypedKeyframeTrack = VectorKeyframeTrack;
break;
default:
switch ( outputAccessor.itemSize ) {
case 1:
TypedKeyframeTrack = NumberKeyframeTrack;
break;
case 2:
case 3:
default:
TypedKeyframeTrack = VectorKeyframeTrack;
break;
}
break;
}
const interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear;
const outputArray = this._getArrayFromAccessor( outputAccessor );
for ( let j = 0, jl = targetNames.length; j < jl; j ++ ) {
const track = new TypedKeyframeTrack(
targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ],
inputAccessor.array,
outputArray,
interpolation
);
// Override interpolation with custom factory method.
if ( sampler.interpolation === 'CUBICSPLINE' ) {
this._createCubicSplineTrackInterpolant( track );
}
tracks.push( track );
}
return tracks;
}
_getArrayFromAccessor(accessor: any): any
¶
Code
_getArrayFromAccessor( accessor ) {
let outputArray = accessor.array;
if ( accessor.normalized ) {
const scale = getNormalizedComponentScale( outputArray.constructor );
const scaled = new Float32Array( outputArray.length );
for ( let j = 0, jl = outputArray.length; j < jl; j ++ ) {
scaled[ j ] = outputArray[ j ] * scale;
}
outputArray = scaled;
}
return outputArray;
}
_createCubicSplineTrackInterpolant(track: any): void
¶
Code
_createCubicSplineTrackInterpolant( track ) {
track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) {
// A CUBICSPLINE keyframe in glTF has three output values for each input value,
// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
// must be divided by three to get the interpolant's sampleSize argument.
const interpolantType = ( this instanceof QuaternionKeyframeTrack ) ? GLTFCubicSplineQuaternionInterpolant : GLTFCubicSplineInterpolant;
return new interpolantType( this.times, this.values, this.getValueSize() / 3, result );
};
// Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants.
track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;
}