Skip to content

⬅️ Back to Table of Contents

📄 VTKLoader.js

📊 Analysis Summary

Metric Count
🔧 Functions 11
🧱 Classes 1
📦 Imports 7
📊 Variables & Constants 131

📚 Table of Contents

🛠️ File Location:

📂 examples/jsm/loaders/VTKLoader.js

📦 Imports

Name Source
BufferAttribute three
BufferGeometry three
Color three
FileLoader three
Float32BufferAttribute three
Loader three
SRGBColorSpace three

Variables & Constants

Name Type Kind Value Exported
scope this let/var this
loader any let/var new FileLoader( scope.manager )
indices any[] let/var []
positions any[] let/var []
colors any[] let/var []
normals any[] let/var []
result any let/var *not shown*
patWord RegExp let/var /^[^\d.\s-]+/
pat3Floats RegExp let/var /(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)/g
patConnectivity RegExp let/var /^(\d+)\s+([\s\d]*)/
patPOINTS RegExp let/var /^POINTS /
patPOLYGONS RegExp let/var /^POLYGONS /
patTRIANGLE_STRIPS RegExp let/var /^TRIANGLE_STRIPS /
patPOINT_DATA RegExp let/var /^POINT_DATA[ ]+(\d+)/
patCELL_DATA RegExp let/var /^CELL_DATA[ ]+(\d+)/
patCOLOR_SCALARS RegExp let/var /^COLOR_SCALARS[ ]+(\w+)[ ]+3/
patNORMALS RegExp let/var /^NORMALS[ ]+(\w+)[ ]+(\w+)/
inPointsSection boolean let/var false
inPolygonsSection boolean let/var false
inTriangleStripSection boolean let/var false
inPointDataSection boolean let/var false
inCellDataSection boolean let/var false
inColorSection boolean let/var false
inNormalsSection boolean let/var false
color any let/var new Color()
dataset any let/var line.split( ' ' )[ 1 ]
k number let/var 1
geometry any let/var new BufferGeometry()
numTriangles number let/var geometry.attributes.position.count / 3
newColors any[] let/var []
r any let/var colors[ 3 * i + 0 ]
g any let/var colors[ 3 * i + 1 ]
b any let/var colors[ 3 * i + 2 ]
buffer Uint8Array<any> let/var new Uint8Array( data )
dataView DataView<any> let/var new DataView( data )
points any[] let/var []
normals any[] let/var []
indices any[] let/var []
index number let/var 0
index any let/var start
c any let/var buffer[ index ]
s any[] let/var []
state any let/var *not shown*
line any let/var *not shown*
dataset string let/var line.split( ' ' )[ 1 ]
count number let/var numberOfPoints * 4 * 3
pointIndex any let/var state.next
count number let/var size * 4
indicesIndex number let/var 0
pointIndex any let/var state.next
strip any[] let/var []
count number let/var size * 4
indicesIndex number let/var 0
pointIndex any let/var state.next
strip any[] let/var []
count number let/var numberOfPoints * 4 * 3
pointIndex any let/var state.next
geometry any let/var new BufferGeometry()
firstLength any let/var first.length
result Float32Array<any> let/var new Float32Array( firstLength + second.length )
firstLength any let/var first.length
result Int32Array<any> let/var new Int32Array( firstLength + second.length )
obj { attributes: {}; } let/var {}
nodeName any let/var item.nodeName
old any let/var obj[ nodeName ]
Arr Uint8ArrayConstructor \| ArrayConstru... let/var typeof Uint8Array !== 'undefined' ? Uint8Array : Array
revLookup any[] let/var []
code "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij... let/var 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
len any let/var b64.length
placeHolders 1 \| 2 \| 0 let/var b64[ len - 2 ] === '=' ? 2 : b64[ len - 1 ] === '=' ? 1 : 0
arr any[] \| Uint8Array<ArrayBuffer> let/var new Arr( len * 3 / 4 - placeHolders )
l any let/var placeHolders > 0 ? len - 4 : len
L number let/var 0
i any let/var *not shown*
j any let/var *not shown*
tmp number let/var ( revLookup[ b64.charCodeAt( i ) ] << 18 ) \| ( revLookup[ b64.charCodeAt( i ...
tmp number let/var ( revLookup[ b64.charCodeAt( i ) ] << 2 ) \| ( revLookup[ b64.charCodeAt( i +...
tmp number let/var ( revLookup[ b64.charCodeAt( i ) ] << 10 ) \| ( revLookup[ b64.charCodeAt( i ...
numBytes number let/var 0
txt any let/var *not shown*
content any let/var *not shown*
textNode any let/var ele[ '#text' ]
rawData any let/var Array.isArray( textNode ) ? textNode[ 0 ] : textNode
dataPointSize 8 let/var 8
blocks any let/var byteData[ 0 ]
headerSize number let/var ( blocks + 3 ) * numBytes
padding number let/var ( ( headerSize % 3 ) > 0 ) ? 3 - ( headerSize % 3 ) : 0
dataOffsets any[] let/var []
currentOffset number let/var headerSize
cSizeStart number let/var 3 * numBytes
currentBlockSize any let/var byteData[ i * numBytes + cSizeStart ]
doc HTMLElement let/var dom.documentElement
points any[] let/var []
normals any[] let/var []
indices any[] let/var []
piece any let/var json.PolyData.Piece
sections string[] let/var [ 'PointData', 'CellData', 'Points', 'Verts', 'Lines', 'Strips', 'Polys' ]
sectionIndex number let/var 0
sect any let/var piece[ s ]
arr any let/var Array.isArray( sect.DataArray ) ? sect.DataArray : [ sect.DataArray ]
section any let/var piece[ sect ]
piece any let/var json.PolyData.Piece
sections string[] let/var [ 'PointData', 'Points', 'Strips', 'Polys' ]
sectionIndex number let/var 0
numberOfSections number let/var sections.length
section any let/var piece[ sections[ sectionIndex ] ]
arr any let/var *not shown*
dataArrayIndex number let/var 0
numberOfDataArrays any let/var arr.length
normalsName any let/var section.attributes.Normals
components any let/var arr[ i ].attributes.NumberOfComponents
components any let/var section.DataArray.attributes.NumberOfComponents
connectivity Int32Array<any> let/var new Int32Array( section.DataArray[ 0 ].text.length )
offset Int32Array<any> let/var new Int32Array( section.DataArray[ 1 ].text.length )
size number let/var numberOfStrips + connectivity.length
indicesIndex number let/var 0
strip any[] let/var []
connectivity Int32Array<any> let/var new Int32Array( section.DataArray[ 0 ].text.length )
offset Int32Array<any> let/var new Int32Array( section.DataArray[ 1 ].text.length )
size number let/var numberOfPolys + connectivity.length
indicesIndex number let/var 0
connectivityIndex number let/var 0
i number let/var 0
len0 number let/var 0
len number let/var numberOfPolys
poly any[] let/var []
s number let/var 0
len1 number let/var offset[ i ]
j number let/var 1
geometry any let/var new BufferGeometry()
textDecoder TextDecoder let/var new TextDecoder()

Functions

VTKLoader.load(url: string, onLoad: (arg0: BufferGeometry) => any, onProgress: onProgressCallback, onError: onErrorCallback): void

JSDoc:

/**
     * Starts loading from the given URL and passes the loaded VRML asset
     * to the `onLoad()` callback.
     *
     * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI.
     * @param {function(BufferGeometry)} onLoad - Executed when the loading process has been finished.
     * @param {onProgressCallback} onProgress - Executed while the loading is in progress.
     * @param {onErrorCallback} onError - Executed when errors occur.
     */

Parameters:

  • url string
  • onLoad (arg0: BufferGeometry) => any
  • onProgress onProgressCallback
  • onError onErrorCallback

Returns: void

Calls:

  • loader.setPath
  • loader.setResponseType
  • loader.setRequestHeader
  • loader.setWithCredentials
  • loader.load
  • onLoad
  • scope.parse
  • onError
  • console.error
  • scope.manager.itemError
Code
load( url, onLoad, onProgress, onError ) {

        const scope = this;

        const loader = new FileLoader( scope.manager );
        loader.setPath( scope.path );
        loader.setResponseType( 'arraybuffer' );
        loader.setRequestHeader( scope.requestHeader );
        loader.setWithCredentials( scope.withCredentials );
        loader.load( url, function ( text ) {

            try {

                onLoad( scope.parse( text ) );

            } catch ( e ) {

                if ( onError ) {

                    onError( e );

                } else {

                    console.error( e );

                }

                scope.manager.itemError( url );

            }

        }, onProgress, onError );

    }

VTKLoader.parse(data: ArrayBuffer): BufferGeometry

JSDoc:

/**
     * Parses the given VTK data and returns the resulting geometry.
     *
     * @param {ArrayBuffer} data - The raw VTK data as an array buffer
     * @return {BufferGeometry} The parsed geometry.
     */

Parameters:

  • data ArrayBuffer

Returns: BufferGeometry

Calls:

  • data.split
  • lines[ i ].trim
  • line.indexOf
  • line.split
  • pat3Floats.exec
  • patWord.exec
  • parseFloat
  • positions.push
  • patConnectivity.exec
  • parseInt
  • result[ 2 ].split
  • indices.push
  • color.setRGB
  • colors.push
  • normals.push
  • patPOLYGONS.exec
  • patPOINTS.exec
  • patTRIANGLE_STRIPS.exec
  • patPOINT_DATA.exec
  • patCELL_DATA.exec
  • patCOLOR_SCALARS.exec
  • patNORMALS.exec
  • geometry.setIndex
  • geometry.setAttribute
  • geometry.toNonIndexed
  • newColors.push
  • s.push
  • String.fromCharCode
  • s.join
  • findString
  • dataView.getFloat32
  • dataView.getInt32
  • strip.push
  • result.set
  • xml.attributes.item
  • attribute.nodeValue.trim
  • xml.nodeValue.trim
  • xml.hasChildNodes
  • xml.childNodes.item
  • xmlToJson
  • Array.isArray
  • obj[ nodeName ].push
  • code.charCodeAt
  • '-'.charCodeAt
  • '_'.charCodeAt
  • b64.charCodeAt
  • Base64toByteArray
  • dataOffsets.push
  • fflate.unzlibSync
  • byteData.slice
  • Float32Concat
  • Int32Concat
  • txt.filter
  • content.slice
  • ele[ '#text' ].split( /\s+/ ).filter
  • new DOMParser().parseFromString
  • json.AppendedData[ '#text' ].slice
  • `sections.map( s => {
                const sect = piece[ s ];
    
                if ( sect && sect.DataArray ) {
    
                    const arr = Array.isArray( sect.DataArray ) ? sect.DataArray : [ sect.DataArray ];
    
                    return arr.map( a => a.attributes.offset );
    
                }
    
                return [];
    
            } ).flat`
    
    • appendedData.slice
    • json.attributes.hasOwnProperty
    • parseDataArray
    • normals.set
    • points.set
    • connectivity.set
    • offset.set
    • poly.push
    • textDecoder.decode( new Uint8Array( data, 0, 250 ) ).split
    • meta[ 0 ].indexOf
    • parseXML
    • textDecoder.decode
    • meta[ 2 ].includes
    • parseASCII
    • parseBinary

Internal Comments:

// connectivity of the triangles (x2)
// triangles vertices (x2)
// red, green, blue colors in the range 0 to 1 (x2)
// normal vector, one per vertex (x2)
// pattern for detecting the end of a number sequence (x2)
// pattern for reading vertices, 3 floats or integers (x2)
// pattern for connectivity, an integer followed by any number of ints (x2)
// the first integer is the number of polygon nodes (x2)
// indicates start of vertex data section (x2)
// indicates start of polygon connectivity section (x2)
// indicates start of triangle strips section (x2)
// POINT_DATA number_of_values (x2)
// CELL_DATA number_of_polys (x2)
// Start of color section (x2)
// NORMALS Normals float (x2)
// get the vertices
// numVertices i0 i1 i2 ... (x4)
// split the polygon in numVertices - 2 triangles (x2)
// Get the colors
// Get the normal vectors
// stagger
// cell (x3)
// Points and normals, by default, are empty (x2)
// Get a string (x3)
// Add the points (x2)
// Each point is 3 4-byte floats (x2)
// increment our next pointer (x12)
// 4 byte integers (x4)
// For each strip, read the first value, then record that many more points (x4)
// retrieves the n-2 triangles from the triangle strip
// divide the polygon in n-2 triangle
// Grab the next line (x3)
// Now grab the binary data (x2)
// Increment past our data (x4)
// Increment index (x3)
// Changes XML to JSON, based on https://davidwalsh.name/convert-xml-json
// Create the return object (x2)
// do attributes
// do children
// Taken from Base64-js
// Check the format
// VTP data with the header has the following structure: (x2)
// [#blocks][#u-size][#p-size][#c-size-1][#c-size-2]...[#c-size-#blocks][DATA] (x2)
// (x4)
// Each token is an integer value whose type is specified by "header_type" at the top of the file (UInt32 if no type specified). The token meanings are: (x2)
// [#blocks] = Number of blocks (x2)
// [#u-size] = Block size before compression (x2)
// [#p-size] = Size of last partial block (zero if it not needed) (x2)
// [#c-size-i] = Size in bytes of block i after compression (x2)
// The [DATA] portion stores contiguously every block appended together. The offset from the beginning of the data section to the beginning of a block is (x2)
// computed by summing the compressed block sizes from preceding blocks according to the header. (x2)
// Each data point consists of 8 bits regardless of the header type (x2)
// Get the blocks sizes after the compression. (x2)
// There are three blocks before c-size-i, so we skip 3*numBytes (x2)
//  VTP data for the uncompressed case has the following structure: (x3)
// [#bytes][DATA] (x3)
// where "[#bytes]" is an integer value specifying the number of bytes in the block of data following it. (x3)
// Get the content and optimize it
// Main part (x2)
// Get Dom (x2)
// Get the doc (x2)
// Convert to json (x2)
// Can be optimized (x2)
// Loop through the sections (x2)
// If it has a DataArray in it
// Depending on the number of DataArrays (x2)
// Parse the DataArray
// if iti is point data
// if it is points
// if it is strips
// if it is polys
// get the 5 first lines of the files to check if there is the key word binary (x2)

Code
parse( data ) {

        function parseASCII( data ) {

            // connectivity of the triangles
            const indices = [];

            // triangles vertices
            const positions = [];

            // red, green, blue colors in the range 0 to 1
            const colors = [];

            // normal vector, one per vertex
            const normals = [];

            let result;

            // pattern for detecting the end of a number sequence
            const patWord = /^[^\d.\s-]+/;

            // pattern for reading vertices, 3 floats or integers
            const pat3Floats = /(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)/g;

            // pattern for connectivity, an integer followed by any number of ints
            // the first integer is the number of polygon nodes
            const patConnectivity = /^(\d+)\s+([\s\d]*)/;

            // indicates start of vertex data section
            const patPOINTS = /^POINTS /;

            // indicates start of polygon connectivity section
            const patPOLYGONS = /^POLYGONS /;

            // indicates start of triangle strips section
            const patTRIANGLE_STRIPS = /^TRIANGLE_STRIPS /;

            // POINT_DATA number_of_values
            const patPOINT_DATA = /^POINT_DATA[ ]+(\d+)/;

            // CELL_DATA number_of_polys
            const patCELL_DATA = /^CELL_DATA[ ]+(\d+)/;

            // Start of color section
            const patCOLOR_SCALARS = /^COLOR_SCALARS[ ]+(\w+)[ ]+3/;

            // NORMALS Normals float
            const patNORMALS = /^NORMALS[ ]+(\w+)[ ]+(\w+)/;

            let inPointsSection = false;
            let inPolygonsSection = false;
            let inTriangleStripSection = false;
            let inPointDataSection = false;
            let inCellDataSection = false;
            let inColorSection = false;
            let inNormalsSection = false;

            const color = new Color();

            const lines = data.split( '\n' );

            for ( const i in lines ) {

                const line = lines[ i ].trim();

                if ( line.indexOf( 'DATASET' ) === 0 ) {

                    const dataset = line.split( ' ' )[ 1 ];

                    if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );

                } else if ( inPointsSection ) {

                    // get the vertices
                    while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                        if ( patWord.exec( line ) !== null ) break;

                        const x = parseFloat( result[ 1 ] );
                        const y = parseFloat( result[ 2 ] );
                        const z = parseFloat( result[ 3 ] );
                        positions.push( x, y, z );

                    }

                } else if ( inPolygonsSection ) {

                    if ( ( result = patConnectivity.exec( line ) ) !== null ) {

                        // numVertices i0 i1 i2 ...
                        const numVertices = parseInt( result[ 1 ] );
                        const inds = result[ 2 ].split( /\s+/ );

                        if ( numVertices >= 3 ) {

                            const i0 = parseInt( inds[ 0 ] );
                            let k = 1;
                            // split the polygon in numVertices - 2 triangles
                            for ( let j = 0; j < numVertices - 2; ++ j ) {

                                const i1 = parseInt( inds[ k ] );
                                const i2 = parseInt( inds[ k + 1 ] );
                                indices.push( i0, i1, i2 );
                                k ++;

                            }

                        }

                    }

                } else if ( inTriangleStripSection ) {

                    if ( ( result = patConnectivity.exec( line ) ) !== null ) {

                        // numVertices i0 i1 i2 ...
                        const numVertices = parseInt( result[ 1 ] );
                        const inds = result[ 2 ].split( /\s+/ );

                        if ( numVertices >= 3 ) {

                            // split the polygon in numVertices - 2 triangles
                            for ( let j = 0; j < numVertices - 2; j ++ ) {

                                if ( j % 2 === 1 ) {

                                    const i0 = parseInt( inds[ j ] );
                                    const i1 = parseInt( inds[ j + 2 ] );
                                    const i2 = parseInt( inds[ j + 1 ] );
                                    indices.push( i0, i1, i2 );

                                } else {

                                    const i0 = parseInt( inds[ j ] );
                                    const i1 = parseInt( inds[ j + 1 ] );
                                    const i2 = parseInt( inds[ j + 2 ] );
                                    indices.push( i0, i1, i2 );

                                }

                            }

                        }

                    }

                } else if ( inPointDataSection || inCellDataSection ) {

                    if ( inColorSection ) {

                        // Get the colors

                        while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                            if ( patWord.exec( line ) !== null ) break;

                            const r = parseFloat( result[ 1 ] );
                            const g = parseFloat( result[ 2 ] );
                            const b = parseFloat( result[ 3 ] );

                            color.setRGB( r, g, b, SRGBColorSpace );

                            colors.push( color.r, color.g, color.b );

                        }

                    } else if ( inNormalsSection ) {

                        // Get the normal vectors

                        while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                            if ( patWord.exec( line ) !== null ) break;

                            const nx = parseFloat( result[ 1 ] );
                            const ny = parseFloat( result[ 2 ] );
                            const nz = parseFloat( result[ 3 ] );
                            normals.push( nx, ny, nz );

                        }

                    }

                }

                if ( patPOLYGONS.exec( line ) !== null ) {

                    inPolygonsSection = true;
                    inPointsSection = false;
                    inTriangleStripSection = false;

                } else if ( patPOINTS.exec( line ) !== null ) {

                    inPolygonsSection = false;
                    inPointsSection = true;
                    inTriangleStripSection = false;

                } else if ( patTRIANGLE_STRIPS.exec( line ) !== null ) {

                    inPolygonsSection = false;
                    inPointsSection = false;
                    inTriangleStripSection = true;

                } else if ( patPOINT_DATA.exec( line ) !== null ) {

                    inPointDataSection = true;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patCELL_DATA.exec( line ) !== null ) {

                    inCellDataSection = true;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patCOLOR_SCALARS.exec( line ) !== null ) {

                    inColorSection = true;
                    inNormalsSection = false;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patNORMALS.exec( line ) !== null ) {

                    inNormalsSection = true;
                    inColorSection = false;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                }

            }

            let geometry = new BufferGeometry();
            geometry.setIndex( indices );
            geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

            if ( normals.length === positions.length ) {

                geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );

            }

            if ( colors.length !== indices.length ) {

                // stagger

                if ( colors.length === positions.length ) {

                    geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

                }

            } else {

                // cell

                geometry = geometry.toNonIndexed();
                const numTriangles = geometry.attributes.position.count / 3;

                if ( colors.length === ( numTriangles * 3 ) ) {

                    const newColors = [];

                    for ( let i = 0; i < numTriangles; i ++ ) {

                        const r = colors[ 3 * i + 0 ];
                        const g = colors[ 3 * i + 1 ];
                        const b = colors[ 3 * i + 2 ];

                        color.setRGB( r, g, b, SRGBColorSpace );

                        newColors.push( color.r, color.g, color.b );
                        newColors.push( color.r, color.g, color.b );
                        newColors.push( color.r, color.g, color.b );

                    }

                    geometry.setAttribute( 'color', new Float32BufferAttribute( newColors, 3 ) );

                }

            }

            return geometry;

        }

        function parseBinary( data ) {

            const buffer = new Uint8Array( data );
            const dataView = new DataView( data );

            // Points and normals, by default, are empty
            let points = [];
            let normals = [];
            let indices = [];

            let index = 0;

            function findString( buffer, start ) {

                let index = start;
                let c = buffer[ index ];
                const s = [];
                while ( c !== 10 ) {

                    s.push( String.fromCharCode( c ) );
                    index ++;
                    c = buffer[ index ];

                }

                return { start: start,
                    end: index,
                    next: index + 1,
                    parsedString: s.join( '' ) };

            }

            let state, line;

            while ( true ) {

                // Get a string
                state = findString( buffer, index );
                line = state.parsedString;

                if ( line.indexOf( 'DATASET' ) === 0 ) {

                    const dataset = line.split( ' ' )[ 1 ];

                    if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );

                } else if ( line.indexOf( 'POINTS' ) === 0 ) {

                    // Add the points
                    const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );

                    // Each point is 3 4-byte floats
                    const count = numberOfPoints * 4 * 3;

                    points = new Float32Array( numberOfPoints * 3 );

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfPoints; i ++ ) {

                        points[ 3 * i ] = dataView.getFloat32( pointIndex, false );
                        points[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
                        points[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
                        pointIndex = pointIndex + 12;

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'TRIANGLE_STRIPS' ) === 0 ) {

                    const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
                    const size = parseInt( line.split( ' ' )[ 2 ], 10 );
                    // 4 byte integers
                    const count = size * 4;

                    indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
                    let indicesIndex = 0;

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfStrips; i ++ ) {

                        // For each strip, read the first value, then record that many more points
                        const indexCount = dataView.getInt32( pointIndex, false );
                        const strip = [];
                        pointIndex += 4;
                        for ( let s = 0; s < indexCount; s ++ ) {

                            strip.push( dataView.getInt32( pointIndex, false ) );
                            pointIndex += 4;

                        }

                        // retrieves the n-2 triangles from the triangle strip
                        for ( let j = 0; j < indexCount - 2; j ++ ) {

                            if ( j % 2 ) {

                                indices[ indicesIndex ++ ] = strip[ j ];
                                indices[ indicesIndex ++ ] = strip[ j + 2 ];
                                indices[ indicesIndex ++ ] = strip[ j + 1 ];

                            } else {

                                indices[ indicesIndex ++ ] = strip[ j ];
                                indices[ indicesIndex ++ ] = strip[ j + 1 ];
                                indices[ indicesIndex ++ ] = strip[ j + 2 ];

                            }

                        }

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'POLYGONS' ) === 0 ) {

                    const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
                    const size = parseInt( line.split( ' ' )[ 2 ], 10 );
                    // 4 byte integers
                    const count = size * 4;

                    indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
                    let indicesIndex = 0;

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfStrips; i ++ ) {

                        // For each strip, read the first value, then record that many more points
                        const indexCount = dataView.getInt32( pointIndex, false );
                        const strip = [];
                        pointIndex += 4;
                        for ( let s = 0; s < indexCount; s ++ ) {

                            strip.push( dataView.getInt32( pointIndex, false ) );
                            pointIndex += 4;

                        }

                        // divide the polygon in n-2 triangle
                        for ( let j = 1; j < indexCount - 1; j ++ ) {

                            indices[ indicesIndex ++ ] = strip[ 0 ];
                            indices[ indicesIndex ++ ] = strip[ j ];
                            indices[ indicesIndex ++ ] = strip[ j + 1 ];

                        }

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'POINT_DATA' ) === 0 ) {

                    const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );

                    // Grab the next line
                    state = findString( buffer, state.next );

                    // Now grab the binary data
                    const count = numberOfPoints * 4 * 3;

                    normals = new Float32Array( numberOfPoints * 3 );
                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfPoints; i ++ ) {

                        normals[ 3 * i ] = dataView.getFloat32( pointIndex, false );
                        normals[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
                        normals[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
                        pointIndex += 12;

                    }

                    // Increment past our data
                    state.next = state.next + count;

                }

                // Increment index
                index = state.next;

                if ( index >= buffer.byteLength ) {

                    break;

                }

            }

            const geometry = new BufferGeometry();
            geometry.setIndex( new BufferAttribute( indices, 1 ) );
            geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );

            if ( normals.length === points.length ) {

                geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );

            }

            return geometry;

        }

        function Float32Concat( first, second ) {

            const firstLength = first.length, result = new Float32Array( firstLength + second.length );

            result.set( first );
            result.set( second, firstLength );

            return result;

        }

        function Int32Concat( first, second ) {

            const firstLength = first.length, result = new Int32Array( firstLength + second.length );

            result.set( first );
            result.set( second, firstLength );

            return result;

        }

        function parseXML( stringFile ) {

            // Changes XML to JSON, based on https://davidwalsh.name/convert-xml-json

            function xmlToJson( xml ) {

                // Create the return object
                let obj = {};

                if ( xml.nodeType === 1 ) { // element

                    // do attributes

                    if ( xml.attributes ) {

                        if ( xml.attributes.length > 0 ) {

                            obj[ 'attributes' ] = {};

                            for ( let j = 0; j < xml.attributes.length; j ++ ) {

                                const attribute = xml.attributes.item( j );
                                obj[ 'attributes' ][ attribute.nodeName ] = attribute.nodeValue.trim();

                            }

                        }

                    }

                } else if ( xml.nodeType === 3 ) { // text

                    obj = xml.nodeValue.trim();

                }

                // do children
                if ( xml.hasChildNodes() ) {

                    for ( let i = 0; i < xml.childNodes.length; i ++ ) {

                        const item = xml.childNodes.item( i );
                        const nodeName = item.nodeName;

                        if ( typeof obj[ nodeName ] === 'undefined' ) {

                            const tmp = xmlToJson( item );

                            if ( tmp !== '' ) {

                                if ( Array.isArray( tmp[ '#text' ] ) ) {

                                    tmp[ '#text' ] = tmp[ '#text' ][ 0 ];

                                }

                                obj[ nodeName ] = tmp;

                            }

                        } else {

                            if ( typeof obj[ nodeName ].push === 'undefined' ) {

                                const old = obj[ nodeName ];
                                obj[ nodeName ] = [ old ];

                            }

                            const tmp = xmlToJson( item );

                            if ( tmp !== '' ) {

                                if ( Array.isArray( tmp[ '#text' ] ) ) {

                                    tmp[ '#text' ] = tmp[ '#text' ][ 0 ];

                                }

                                obj[ nodeName ].push( tmp );

                            }

                        }

                    }

                }

                return obj;

            }

            // Taken from Base64-js
            function Base64toByteArray( b64 ) {

                const Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array;
                const revLookup = [];
                const code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';

                for ( let i = 0, l = code.length; i < l; ++ i ) {

                    revLookup[ code.charCodeAt( i ) ] = i;

                }

                revLookup[ '-'.charCodeAt( 0 ) ] = 62;
                revLookup[ '_'.charCodeAt( 0 ) ] = 63;

                const len = b64.length;

                if ( len % 4 > 0 ) {

                    throw new Error( 'Invalid string. Length must be a multiple of 4' );

                }

                const placeHolders = b64[ len - 2 ] === '=' ? 2 : b64[ len - 1 ] === '=' ? 1 : 0;
                const arr = new Arr( len * 3 / 4 - placeHolders );
                const l = placeHolders > 0 ? len - 4 : len;

                let L = 0;
                let i, j;

                for ( i = 0, j = 0; i < l; i += 4, j += 3 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 18 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 12 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] << 6 ) | revLookup[ b64.charCodeAt( i + 3 ) ];
                    arr[ L ++ ] = ( tmp & 0xFF0000 ) >> 16;
                    arr[ L ++ ] = ( tmp & 0xFF00 ) >> 8;
                    arr[ L ++ ] = tmp & 0xFF;

                }

                if ( placeHolders === 2 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 2 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] >> 4 );
                    arr[ L ++ ] = tmp & 0xFF;

                } else if ( placeHolders === 1 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 10 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 4 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] >> 2 );
                    arr[ L ++ ] = ( tmp >> 8 ) & 0xFF;
                    arr[ L ++ ] = tmp & 0xFF;

                }

                return arr;

            }

            function parseDataArray( ele, compressed ) {

                let numBytes = 0;

                if ( json.attributes.header_type === 'UInt64' ) {

                    numBytes = 8;

                }   else if ( json.attributes.header_type === 'UInt32' ) {

                    numBytes = 4;

                }

                let txt, content;

                // Check the format
                if ( ele.attributes.format === 'binary' && compressed ) {

                    if ( ele.attributes.type === 'Float32' ) {

                        txt = new Float32Array( );

                    } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {

                        txt = new Int32Array( );

                    }

                    // VTP data with the header has the following structure:
                    // [#blocks][#u-size][#p-size][#c-size-1][#c-size-2]...[#c-size-#blocks][DATA]
                    //
                    // Each token is an integer value whose type is specified by "header_type" at the top of the file (UInt32 if no type specified). The token meanings are:
                    // [#blocks] = Number of blocks
                    // [#u-size] = Block size before compression
                    // [#p-size] = Size of last partial block (zero if it not needed)
                    // [#c-size-i] = Size in bytes of block i after compression
                    //
                    // The [DATA] portion stores contiguously every block appended together. The offset from the beginning of the data section to the beginning of a block is
                    // computed by summing the compressed block sizes from preceding blocks according to the header.

                    const textNode = ele[ '#text' ];
                    const rawData = Array.isArray( textNode ) ? textNode[ 0 ] : textNode;

                    const byteData = Base64toByteArray( rawData );

                    // Each data point consists of 8 bits regardless of the header type
                    const dataPointSize = 8;

                    let blocks = byteData[ 0 ];
                    for ( let i = 1; i < numBytes - 1; i ++ ) {

                        blocks = blocks | ( byteData[ i ] << ( i * dataPointSize ) );

                    }

                    let headerSize = ( blocks + 3 ) * numBytes;
                    const padding = ( ( headerSize % 3 ) > 0 ) ? 3 - ( headerSize % 3 ) : 0;
                    headerSize = headerSize + padding;

                    const dataOffsets = [];
                    let currentOffset = headerSize;
                    dataOffsets.push( currentOffset );

                    // Get the blocks sizes after the compression.
                    // There are three blocks before c-size-i, so we skip 3*numBytes
                    const cSizeStart = 3 * numBytes;

                    for ( let i = 0; i < blocks; i ++ ) {

                        let currentBlockSize = byteData[ i * numBytes + cSizeStart ];

                        for ( let j = 1; j < numBytes - 1; j ++ ) {

                            currentBlockSize = currentBlockSize | ( byteData[ i * numBytes + cSizeStart + j ] << ( j * dataPointSize ) );

                        }

                        currentOffset = currentOffset + currentBlockSize;
                        dataOffsets.push( currentOffset );

                    }

                    for ( let i = 0; i < dataOffsets.length - 1; i ++ ) {

                        const data = fflate.unzlibSync( byteData.slice( dataOffsets[ i ], dataOffsets[ i + 1 ] ) );
                        content = data.buffer;

                        if ( ele.attributes.type === 'Float32' ) {

                            content = new Float32Array( content );
                            txt = Float32Concat( txt, content );

                        } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {

                            content = new Int32Array( content );
                            txt = Int32Concat( txt, content );

                        }

                    }

                    delete ele[ '#text' ];

                    if ( ele.attributes.type === 'Int64' ) {

                        if ( ele.attributes.format === 'binary' ) {

                            txt = txt.filter( function ( el, idx ) {

                                if ( idx % 2 !== 1 ) return true;

                            } );

                        }

                    }

                } else {

                    if ( ele.attributes.format === 'binary' && ! compressed ) {

                        content = Base64toByteArray( ele[ '#text' ] );

                        //  VTP data for the uncompressed case has the following structure:
                        // [#bytes][DATA]
                        // where "[#bytes]" is an integer value specifying the number of bytes in the block of data following it.
                        content = content.slice( numBytes ).buffer;

                    } else {

                        if ( ele[ '#text' ] ) {

                            content = ele[ '#text' ].split( /\s+/ ).filter( function ( el ) {

                                if ( el !== '' ) return el;

                            } );

                        } else {

                            content = new Int32Array( 0 ).buffer;

                        }

                    }

                    delete ele[ '#text' ];

                    // Get the content and optimize it
                    if ( ele.attributes.type === 'Float32' ) {

                        txt = new Float32Array( content );

                    } else if ( ele.attributes.type === 'Int32' ) {

                        txt = new Int32Array( content );

                    } else if ( ele.attributes.type === 'Int64' ) {

                        txt = new Int32Array( content );

                        if ( ele.attributes.format === 'binary' ) {

                            txt = txt.filter( function ( el, idx ) {

                                if ( idx % 2 !== 1 ) return true;

                            } );

                        }

                    }

                } // endif ( ele.attributes.format === 'binary' && compressed )

                return txt;

            }

            // Main part
            // Get Dom
            const dom = new DOMParser().parseFromString( stringFile, 'application/xml' );

            // Get the doc
            const doc = dom.documentElement;
            // Convert to json
            const json = xmlToJson( doc );
            let points = [];
            let normals = [];
            let indices = [];

            if ( json.AppendedData ) {

                const appendedData = json.AppendedData[ '#text' ].slice( 1 );
                const piece = json.PolyData.Piece;

                const sections = [ 'PointData', 'CellData', 'Points', 'Verts', 'Lines', 'Strips', 'Polys' ];
                let sectionIndex = 0;

                const offsets = sections.map( s => {

                    const sect = piece[ s ];

                    if ( sect && sect.DataArray ) {

                        const arr = Array.isArray( sect.DataArray ) ? sect.DataArray : [ sect.DataArray ];

                        return arr.map( a => a.attributes.offset );

                    }

                    return [];

                } ).flat();

                for ( const sect of sections ) {

                    const section = piece[ sect ];

                    if ( section && section.DataArray ) {

                        if ( Array.isArray( section.DataArray ) ) {

                            for ( const sectionEle of section.DataArray ) {

                                sectionEle[ '#text' ] = appendedData.slice( offsets[ sectionIndex ], offsets[ sectionIndex + 1 ] );
                                sectionEle.attributes.format = 'binary';
                                sectionIndex ++;

                            }

                        } else {

                            section.DataArray[ '#text' ] = appendedData.slice( offsets[ sectionIndex ], offsets[ sectionIndex + 1 ] );
                            section.DataArray.attributes.format = 'binary';
                            sectionIndex ++;

                        }

                    }

                }

            }

            if ( json.PolyData ) {

                const piece = json.PolyData.Piece;
                const compressed = json.attributes.hasOwnProperty( 'compressor' );

                // Can be optimized
                // Loop through the sections
                const sections = [ 'PointData', 'Points', 'Strips', 'Polys' ];// +['CellData', 'Verts', 'Lines'];
                let sectionIndex = 0;
                const numberOfSections = sections.length;

                while ( sectionIndex < numberOfSections ) {

                    const section = piece[ sections[ sectionIndex ] ];

                    // If it has a DataArray in it

                    if ( section && section.DataArray ) {

                        // Depending on the number of DataArrays

                        let arr;

                        if ( Array.isArray( section.DataArray ) ) {

                            arr = section.DataArray;

                        } else {

                            arr = [ section.DataArray ];

                        }

                        let dataArrayIndex = 0;
                        const numberOfDataArrays = arr.length;

                        while ( dataArrayIndex < numberOfDataArrays ) {

                            // Parse the DataArray
                            if ( ( '#text' in arr[ dataArrayIndex ] ) && ( arr[ dataArrayIndex ][ '#text' ].length > 0 ) ) {

                                arr[ dataArrayIndex ].text = parseDataArray( arr[ dataArrayIndex ], compressed );

                            }

                            dataArrayIndex ++;

                        }

                        switch ( sections[ sectionIndex ] ) {

                            // if iti is point data
                            case 'PointData':

                                {

                                    const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );
                                    const normalsName = section.attributes.Normals;

                                    if ( numberOfPoints > 0 ) {

                                        for ( let i = 0, len = arr.length; i < len; i ++ ) {

                                            if ( normalsName === arr[ i ].attributes.Name ) {

                                                const components = arr[ i ].attributes.NumberOfComponents;
                                                normals = new Float32Array( numberOfPoints * components );
                                                normals.set( arr[ i ].text, 0 );

                                            }

                                        }

                                    }

                                }

                                break;

                            // if it is points
                            case 'Points':

                                {

                                    const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );

                                    if ( numberOfPoints > 0 ) {

                                        const components = section.DataArray.attributes.NumberOfComponents;
                                        points = new Float32Array( numberOfPoints * components );
                                        points.set( section.DataArray.text, 0 );

                                    }

                                }

                                break;

                            // if it is strips
                            case 'Strips':

                                {

                                    const numberOfStrips = parseInt( piece.attributes.NumberOfStrips );

                                    if ( numberOfStrips > 0 ) {

                                        const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
                                        const offset = new Int32Array( section.DataArray[ 1 ].text.length );
                                        connectivity.set( section.DataArray[ 0 ].text, 0 );
                                        offset.set( section.DataArray[ 1 ].text, 0 );

                                        const size = numberOfStrips + connectivity.length;
                                        indices = new Uint32Array( 3 * size - 9 * numberOfStrips );

                                        let indicesIndex = 0;

                                        for ( let i = 0, len = numberOfStrips; i < len; i ++ ) {

                                            const strip = [];

                                            for ( let s = 0, len1 = offset[ i ], len0 = 0; s < len1 - len0; s ++ ) {

                                                strip.push( connectivity[ s ] );

                                                if ( i > 0 ) len0 = offset[ i - 1 ];

                                            }

                                            for ( let j = 0, len1 = offset[ i ], len0 = 0; j < len1 - len0 - 2; j ++ ) {

                                                if ( j % 2 ) {

                                                    indices[ indicesIndex ++ ] = strip[ j ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 2 ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 1 ];

                                                } else {

                                                    indices[ indicesIndex ++ ] = strip[ j ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 1 ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 2 ];

                                                }

                                                if ( i > 0 ) len0 = offset[ i - 1 ];

                                            }

                                        }

                                    }

                                }

                                break;

                            // if it is polys
                            case 'Polys':

                                {

                                    const numberOfPolys = parseInt( piece.attributes.NumberOfPolys );

                                    if ( numberOfPolys > 0 ) {

                                        const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
                                        const offset = new Int32Array( section.DataArray[ 1 ].text.length );
                                        connectivity.set( section.DataArray[ 0 ].text, 0 );
                                        offset.set( section.DataArray[ 1 ].text, 0 );

                                        const size = numberOfPolys + connectivity.length;
                                        indices = new Uint32Array( 3 * size - 9 * numberOfPolys );
                                        let indicesIndex = 0, connectivityIndex = 0;
                                        let i = 0, len0 = 0;
                                        const len = numberOfPolys;

                                        while ( i < len ) {

                                            const poly = [];
                                            let s = 0;
                                            const len1 = offset[ i ];

                                            while ( s < len1 - len0 ) {

                                                poly.push( connectivity[ connectivityIndex ++ ] );
                                                s ++;

                                            }

                                            let j = 1;

                                            while ( j < len1 - len0 - 1 ) {

                                                indices[ indicesIndex ++ ] = poly[ 0 ];
                                                indices[ indicesIndex ++ ] = poly[ j ];
                                                indices[ indicesIndex ++ ] = poly[ j + 1 ];
                                                j ++;

                                            }

                                            i ++;
                                            len0 = offset[ i - 1 ];

                                        }

                                    }

                                }

                                break;

                            default:
                                break;

                        }

                    }

                    sectionIndex ++;

                }

                const geometry = new BufferGeometry();
                geometry.setIndex( new BufferAttribute( indices, 1 ) );
                geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );

                if ( normals.length === points.length ) {

                    geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );

                }

                return geometry;

            } else {

                throw new Error( 'Unsupported DATASET type' );

            }

        }

        const textDecoder = new TextDecoder();

        // get the 5 first lines of the files to check if there is the key word binary
        const meta = textDecoder.decode( new Uint8Array( data, 0, 250 ) ).split( '\n' );

        if ( meta[ 0 ].indexOf( 'xml' ) !== - 1 ) {

            return parseXML( textDecoder.decode( data ) );

        } else if ( meta[ 2 ].includes( 'ASCII' ) ) {

            return parseASCII( textDecoder.decode( data ) );

        } else {

            return parseBinary( data );

        }

    }

parseASCII(data: any): any

Parameters:

  • data any

Returns: any

Calls:

  • data.split
  • lines[ i ].trim
  • line.indexOf
  • line.split
  • pat3Floats.exec
  • patWord.exec
  • parseFloat
  • positions.push
  • patConnectivity.exec
  • parseInt
  • result[ 2 ].split
  • indices.push
  • color.setRGB
  • colors.push
  • normals.push
  • patPOLYGONS.exec
  • patPOINTS.exec
  • patTRIANGLE_STRIPS.exec
  • patPOINT_DATA.exec
  • patCELL_DATA.exec
  • patCOLOR_SCALARS.exec
  • patNORMALS.exec
  • geometry.setIndex
  • geometry.setAttribute
  • geometry.toNonIndexed
  • newColors.push

Internal Comments:

// connectivity of the triangles (x2)
// triangles vertices (x2)
// red, green, blue colors in the range 0 to 1 (x2)
// normal vector, one per vertex (x2)
// pattern for detecting the end of a number sequence (x2)
// pattern for reading vertices, 3 floats or integers (x2)
// pattern for connectivity, an integer followed by any number of ints (x2)
// the first integer is the number of polygon nodes (x2)
// indicates start of vertex data section (x2)
// indicates start of polygon connectivity section (x2)
// indicates start of triangle strips section (x2)
// POINT_DATA number_of_values (x2)
// CELL_DATA number_of_polys (x2)
// Start of color section (x2)
// NORMALS Normals float (x2)
// get the vertices
// numVertices i0 i1 i2 ... (x4)
// split the polygon in numVertices - 2 triangles (x2)
// Get the colors
// Get the normal vectors
// stagger
// cell (x3)

Code
function parseASCII( data ) {

            // connectivity of the triangles
            const indices = [];

            // triangles vertices
            const positions = [];

            // red, green, blue colors in the range 0 to 1
            const colors = [];

            // normal vector, one per vertex
            const normals = [];

            let result;

            // pattern for detecting the end of a number sequence
            const patWord = /^[^\d.\s-]+/;

            // pattern for reading vertices, 3 floats or integers
            const pat3Floats = /(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)/g;

            // pattern for connectivity, an integer followed by any number of ints
            // the first integer is the number of polygon nodes
            const patConnectivity = /^(\d+)\s+([\s\d]*)/;

            // indicates start of vertex data section
            const patPOINTS = /^POINTS /;

            // indicates start of polygon connectivity section
            const patPOLYGONS = /^POLYGONS /;

            // indicates start of triangle strips section
            const patTRIANGLE_STRIPS = /^TRIANGLE_STRIPS /;

            // POINT_DATA number_of_values
            const patPOINT_DATA = /^POINT_DATA[ ]+(\d+)/;

            // CELL_DATA number_of_polys
            const patCELL_DATA = /^CELL_DATA[ ]+(\d+)/;

            // Start of color section
            const patCOLOR_SCALARS = /^COLOR_SCALARS[ ]+(\w+)[ ]+3/;

            // NORMALS Normals float
            const patNORMALS = /^NORMALS[ ]+(\w+)[ ]+(\w+)/;

            let inPointsSection = false;
            let inPolygonsSection = false;
            let inTriangleStripSection = false;
            let inPointDataSection = false;
            let inCellDataSection = false;
            let inColorSection = false;
            let inNormalsSection = false;

            const color = new Color();

            const lines = data.split( '\n' );

            for ( const i in lines ) {

                const line = lines[ i ].trim();

                if ( line.indexOf( 'DATASET' ) === 0 ) {

                    const dataset = line.split( ' ' )[ 1 ];

                    if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );

                } else if ( inPointsSection ) {

                    // get the vertices
                    while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                        if ( patWord.exec( line ) !== null ) break;

                        const x = parseFloat( result[ 1 ] );
                        const y = parseFloat( result[ 2 ] );
                        const z = parseFloat( result[ 3 ] );
                        positions.push( x, y, z );

                    }

                } else if ( inPolygonsSection ) {

                    if ( ( result = patConnectivity.exec( line ) ) !== null ) {

                        // numVertices i0 i1 i2 ...
                        const numVertices = parseInt( result[ 1 ] );
                        const inds = result[ 2 ].split( /\s+/ );

                        if ( numVertices >= 3 ) {

                            const i0 = parseInt( inds[ 0 ] );
                            let k = 1;
                            // split the polygon in numVertices - 2 triangles
                            for ( let j = 0; j < numVertices - 2; ++ j ) {

                                const i1 = parseInt( inds[ k ] );
                                const i2 = parseInt( inds[ k + 1 ] );
                                indices.push( i0, i1, i2 );
                                k ++;

                            }

                        }

                    }

                } else if ( inTriangleStripSection ) {

                    if ( ( result = patConnectivity.exec( line ) ) !== null ) {

                        // numVertices i0 i1 i2 ...
                        const numVertices = parseInt( result[ 1 ] );
                        const inds = result[ 2 ].split( /\s+/ );

                        if ( numVertices >= 3 ) {

                            // split the polygon in numVertices - 2 triangles
                            for ( let j = 0; j < numVertices - 2; j ++ ) {

                                if ( j % 2 === 1 ) {

                                    const i0 = parseInt( inds[ j ] );
                                    const i1 = parseInt( inds[ j + 2 ] );
                                    const i2 = parseInt( inds[ j + 1 ] );
                                    indices.push( i0, i1, i2 );

                                } else {

                                    const i0 = parseInt( inds[ j ] );
                                    const i1 = parseInt( inds[ j + 1 ] );
                                    const i2 = parseInt( inds[ j + 2 ] );
                                    indices.push( i0, i1, i2 );

                                }

                            }

                        }

                    }

                } else if ( inPointDataSection || inCellDataSection ) {

                    if ( inColorSection ) {

                        // Get the colors

                        while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                            if ( patWord.exec( line ) !== null ) break;

                            const r = parseFloat( result[ 1 ] );
                            const g = parseFloat( result[ 2 ] );
                            const b = parseFloat( result[ 3 ] );

                            color.setRGB( r, g, b, SRGBColorSpace );

                            colors.push( color.r, color.g, color.b );

                        }

                    } else if ( inNormalsSection ) {

                        // Get the normal vectors

                        while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                            if ( patWord.exec( line ) !== null ) break;

                            const nx = parseFloat( result[ 1 ] );
                            const ny = parseFloat( result[ 2 ] );
                            const nz = parseFloat( result[ 3 ] );
                            normals.push( nx, ny, nz );

                        }

                    }

                }

                if ( patPOLYGONS.exec( line ) !== null ) {

                    inPolygonsSection = true;
                    inPointsSection = false;
                    inTriangleStripSection = false;

                } else if ( patPOINTS.exec( line ) !== null ) {

                    inPolygonsSection = false;
                    inPointsSection = true;
                    inTriangleStripSection = false;

                } else if ( patTRIANGLE_STRIPS.exec( line ) !== null ) {

                    inPolygonsSection = false;
                    inPointsSection = false;
                    inTriangleStripSection = true;

                } else if ( patPOINT_DATA.exec( line ) !== null ) {

                    inPointDataSection = true;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patCELL_DATA.exec( line ) !== null ) {

                    inCellDataSection = true;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patCOLOR_SCALARS.exec( line ) !== null ) {

                    inColorSection = true;
                    inNormalsSection = false;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patNORMALS.exec( line ) !== null ) {

                    inNormalsSection = true;
                    inColorSection = false;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                }

            }

            let geometry = new BufferGeometry();
            geometry.setIndex( indices );
            geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

            if ( normals.length === positions.length ) {

                geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );

            }

            if ( colors.length !== indices.length ) {

                // stagger

                if ( colors.length === positions.length ) {

                    geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

                }

            } else {

                // cell

                geometry = geometry.toNonIndexed();
                const numTriangles = geometry.attributes.position.count / 3;

                if ( colors.length === ( numTriangles * 3 ) ) {

                    const newColors = [];

                    for ( let i = 0; i < numTriangles; i ++ ) {

                        const r = colors[ 3 * i + 0 ];
                        const g = colors[ 3 * i + 1 ];
                        const b = colors[ 3 * i + 2 ];

                        color.setRGB( r, g, b, SRGBColorSpace );

                        newColors.push( color.r, color.g, color.b );
                        newColors.push( color.r, color.g, color.b );
                        newColors.push( color.r, color.g, color.b );

                    }

                    geometry.setAttribute( 'color', new Float32BufferAttribute( newColors, 3 ) );

                }

            }

            return geometry;

        }

parseBinary(data: any): any

Parameters:

  • data any

Returns: any

Calls:

  • s.push
  • String.fromCharCode
  • s.join
  • findString
  • line.indexOf
  • line.split
  • parseInt
  • dataView.getFloat32
  • dataView.getInt32
  • strip.push
  • geometry.setIndex
  • geometry.setAttribute

Internal Comments:

// Points and normals, by default, are empty (x2)
// Get a string (x3)
// Add the points (x2)
// Each point is 3 4-byte floats (x2)
// increment our next pointer (x12)
// 4 byte integers (x4)
// For each strip, read the first value, then record that many more points (x4)
// retrieves the n-2 triangles from the triangle strip
// divide the polygon in n-2 triangle
// Grab the next line (x3)
// Now grab the binary data (x2)
// Increment past our data (x4)
// Increment index (x3)

Code
function parseBinary( data ) {

            const buffer = new Uint8Array( data );
            const dataView = new DataView( data );

            // Points and normals, by default, are empty
            let points = [];
            let normals = [];
            let indices = [];

            let index = 0;

            function findString( buffer, start ) {

                let index = start;
                let c = buffer[ index ];
                const s = [];
                while ( c !== 10 ) {

                    s.push( String.fromCharCode( c ) );
                    index ++;
                    c = buffer[ index ];

                }

                return { start: start,
                    end: index,
                    next: index + 1,
                    parsedString: s.join( '' ) };

            }

            let state, line;

            while ( true ) {

                // Get a string
                state = findString( buffer, index );
                line = state.parsedString;

                if ( line.indexOf( 'DATASET' ) === 0 ) {

                    const dataset = line.split( ' ' )[ 1 ];

                    if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );

                } else if ( line.indexOf( 'POINTS' ) === 0 ) {

                    // Add the points
                    const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );

                    // Each point is 3 4-byte floats
                    const count = numberOfPoints * 4 * 3;

                    points = new Float32Array( numberOfPoints * 3 );

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfPoints; i ++ ) {

                        points[ 3 * i ] = dataView.getFloat32( pointIndex, false );
                        points[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
                        points[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
                        pointIndex = pointIndex + 12;

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'TRIANGLE_STRIPS' ) === 0 ) {

                    const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
                    const size = parseInt( line.split( ' ' )[ 2 ], 10 );
                    // 4 byte integers
                    const count = size * 4;

                    indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
                    let indicesIndex = 0;

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfStrips; i ++ ) {

                        // For each strip, read the first value, then record that many more points
                        const indexCount = dataView.getInt32( pointIndex, false );
                        const strip = [];
                        pointIndex += 4;
                        for ( let s = 0; s < indexCount; s ++ ) {

                            strip.push( dataView.getInt32( pointIndex, false ) );
                            pointIndex += 4;

                        }

                        // retrieves the n-2 triangles from the triangle strip
                        for ( let j = 0; j < indexCount - 2; j ++ ) {

                            if ( j % 2 ) {

                                indices[ indicesIndex ++ ] = strip[ j ];
                                indices[ indicesIndex ++ ] = strip[ j + 2 ];
                                indices[ indicesIndex ++ ] = strip[ j + 1 ];

                            } else {

                                indices[ indicesIndex ++ ] = strip[ j ];
                                indices[ indicesIndex ++ ] = strip[ j + 1 ];
                                indices[ indicesIndex ++ ] = strip[ j + 2 ];

                            }

                        }

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'POLYGONS' ) === 0 ) {

                    const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
                    const size = parseInt( line.split( ' ' )[ 2 ], 10 );
                    // 4 byte integers
                    const count = size * 4;

                    indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
                    let indicesIndex = 0;

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfStrips; i ++ ) {

                        // For each strip, read the first value, then record that many more points
                        const indexCount = dataView.getInt32( pointIndex, false );
                        const strip = [];
                        pointIndex += 4;
                        for ( let s = 0; s < indexCount; s ++ ) {

                            strip.push( dataView.getInt32( pointIndex, false ) );
                            pointIndex += 4;

                        }

                        // divide the polygon in n-2 triangle
                        for ( let j = 1; j < indexCount - 1; j ++ ) {

                            indices[ indicesIndex ++ ] = strip[ 0 ];
                            indices[ indicesIndex ++ ] = strip[ j ];
                            indices[ indicesIndex ++ ] = strip[ j + 1 ];

                        }

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'POINT_DATA' ) === 0 ) {

                    const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );

                    // Grab the next line
                    state = findString( buffer, state.next );

                    // Now grab the binary data
                    const count = numberOfPoints * 4 * 3;

                    normals = new Float32Array( numberOfPoints * 3 );
                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfPoints; i ++ ) {

                        normals[ 3 * i ] = dataView.getFloat32( pointIndex, false );
                        normals[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
                        normals[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
                        pointIndex += 12;

                    }

                    // Increment past our data
                    state.next = state.next + count;

                }

                // Increment index
                index = state.next;

                if ( index >= buffer.byteLength ) {

                    break;

                }

            }

            const geometry = new BufferGeometry();
            geometry.setIndex( new BufferAttribute( indices, 1 ) );
            geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );

            if ( normals.length === points.length ) {

                geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );

            }

            return geometry;

        }

findString(buffer: any, start: any): { start: any; end: any; next: any; parsedString: string; }

Parameters:

  • buffer any
  • start any

Returns: { start: any; end: any; next: any; parsedString: string; }

Calls:

  • s.push
  • String.fromCharCode
  • s.join
Code
function findString( buffer, start ) {

                let index = start;
                let c = buffer[ index ];
                const s = [];
                while ( c !== 10 ) {

                    s.push( String.fromCharCode( c ) );
                    index ++;
                    c = buffer[ index ];

                }

                return { start: start,
                    end: index,
                    next: index + 1,
                    parsedString: s.join( '' ) };

            }

Float32Concat(first: any, second: any): Float32Array<any>

Parameters:

  • first any
  • second any

Returns: Float32Array<any>

Calls:

  • result.set
Code
function Float32Concat( first, second ) {

            const firstLength = first.length, result = new Float32Array( firstLength + second.length );

            result.set( first );
            result.set( second, firstLength );

            return result;

        }

Int32Concat(first: any, second: any): Int32Array<any>

Parameters:

  • first any
  • second any

Returns: Int32Array<any>

Calls:

  • result.set
Code
function Int32Concat( first, second ) {

            const firstLength = first.length, result = new Int32Array( firstLength + second.length );

            result.set( first );
            result.set( second, firstLength );

            return result;

        }

parseXML(stringFile: any): any

Parameters:

  • stringFile any

Returns: any

Calls:

  • xml.attributes.item
  • attribute.nodeValue.trim
  • xml.nodeValue.trim
  • xml.hasChildNodes
  • xml.childNodes.item
  • xmlToJson
  • Array.isArray
  • obj[ nodeName ].push
  • code.charCodeAt
  • '-'.charCodeAt
  • '_'.charCodeAt
  • b64.charCodeAt
  • Base64toByteArray
  • dataOffsets.push
  • fflate.unzlibSync
  • byteData.slice
  • Float32Concat
  • Int32Concat
  • txt.filter
  • content.slice
  • ele[ '#text' ].split( /\s+/ ).filter
  • new DOMParser().parseFromString
  • json.AppendedData[ '#text' ].slice
  • `sections.map( s => {
                const sect = piece[ s ];
    
                if ( sect && sect.DataArray ) {
    
                    const arr = Array.isArray( sect.DataArray ) ? sect.DataArray : [ sect.DataArray ];
    
                    return arr.map( a => a.attributes.offset );
    
                }
    
                return [];
    
            } ).flat`
    
    • appendedData.slice
    • json.attributes.hasOwnProperty
    • parseDataArray
    • parseInt
    • normals.set
    • points.set
    • connectivity.set
    • offset.set
    • strip.push
    • poly.push
    • geometry.setIndex
    • geometry.setAttribute

Internal Comments:

// Changes XML to JSON, based on https://davidwalsh.name/convert-xml-json
// Create the return object (x2)
// do attributes
// do children
// Taken from Base64-js
// Check the format
// VTP data with the header has the following structure: (x2)
// [#blocks][#u-size][#p-size][#c-size-1][#c-size-2]...[#c-size-#blocks][DATA] (x2)
// (x4)
// Each token is an integer value whose type is specified by "header_type" at the top of the file (UInt32 if no type specified). The token meanings are: (x2)
// [#blocks] = Number of blocks (x2)
// [#u-size] = Block size before compression (x2)
// [#p-size] = Size of last partial block (zero if it not needed) (x2)
// [#c-size-i] = Size in bytes of block i after compression (x2)
// The [DATA] portion stores contiguously every block appended together. The offset from the beginning of the data section to the beginning of a block is (x2)
// computed by summing the compressed block sizes from preceding blocks according to the header. (x2)
// Each data point consists of 8 bits regardless of the header type (x2)
// Get the blocks sizes after the compression. (x2)
// There are three blocks before c-size-i, so we skip 3*numBytes (x2)
//  VTP data for the uncompressed case has the following structure: (x3)
// [#bytes][DATA] (x3)
// where "[#bytes]" is an integer value specifying the number of bytes in the block of data following it. (x3)
// Get the content and optimize it
// Main part (x2)
// Get Dom (x2)
// Get the doc (x2)
// Convert to json (x2)
// Can be optimized (x2)
// Loop through the sections (x2)
// If it has a DataArray in it
// Depending on the number of DataArrays (x2)
// Parse the DataArray
// if iti is point data
// if it is points
// if it is strips
// if it is polys

Code
function parseXML( stringFile ) {

            // Changes XML to JSON, based on https://davidwalsh.name/convert-xml-json

            function xmlToJson( xml ) {

                // Create the return object
                let obj = {};

                if ( xml.nodeType === 1 ) { // element

                    // do attributes

                    if ( xml.attributes ) {

                        if ( xml.attributes.length > 0 ) {

                            obj[ 'attributes' ] = {};

                            for ( let j = 0; j < xml.attributes.length; j ++ ) {

                                const attribute = xml.attributes.item( j );
                                obj[ 'attributes' ][ attribute.nodeName ] = attribute.nodeValue.trim();

                            }

                        }

                    }

                } else if ( xml.nodeType === 3 ) { // text

                    obj = xml.nodeValue.trim();

                }

                // do children
                if ( xml.hasChildNodes() ) {

                    for ( let i = 0; i < xml.childNodes.length; i ++ ) {

                        const item = xml.childNodes.item( i );
                        const nodeName = item.nodeName;

                        if ( typeof obj[ nodeName ] === 'undefined' ) {

                            const tmp = xmlToJson( item );

                            if ( tmp !== '' ) {

                                if ( Array.isArray( tmp[ '#text' ] ) ) {

                                    tmp[ '#text' ] = tmp[ '#text' ][ 0 ];

                                }

                                obj[ nodeName ] = tmp;

                            }

                        } else {

                            if ( typeof obj[ nodeName ].push === 'undefined' ) {

                                const old = obj[ nodeName ];
                                obj[ nodeName ] = [ old ];

                            }

                            const tmp = xmlToJson( item );

                            if ( tmp !== '' ) {

                                if ( Array.isArray( tmp[ '#text' ] ) ) {

                                    tmp[ '#text' ] = tmp[ '#text' ][ 0 ];

                                }

                                obj[ nodeName ].push( tmp );

                            }

                        }

                    }

                }

                return obj;

            }

            // Taken from Base64-js
            function Base64toByteArray( b64 ) {

                const Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array;
                const revLookup = [];
                const code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';

                for ( let i = 0, l = code.length; i < l; ++ i ) {

                    revLookup[ code.charCodeAt( i ) ] = i;

                }

                revLookup[ '-'.charCodeAt( 0 ) ] = 62;
                revLookup[ '_'.charCodeAt( 0 ) ] = 63;

                const len = b64.length;

                if ( len % 4 > 0 ) {

                    throw new Error( 'Invalid string. Length must be a multiple of 4' );

                }

                const placeHolders = b64[ len - 2 ] === '=' ? 2 : b64[ len - 1 ] === '=' ? 1 : 0;
                const arr = new Arr( len * 3 / 4 - placeHolders );
                const l = placeHolders > 0 ? len - 4 : len;

                let L = 0;
                let i, j;

                for ( i = 0, j = 0; i < l; i += 4, j += 3 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 18 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 12 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] << 6 ) | revLookup[ b64.charCodeAt( i + 3 ) ];
                    arr[ L ++ ] = ( tmp & 0xFF0000 ) >> 16;
                    arr[ L ++ ] = ( tmp & 0xFF00 ) >> 8;
                    arr[ L ++ ] = tmp & 0xFF;

                }

                if ( placeHolders === 2 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 2 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] >> 4 );
                    arr[ L ++ ] = tmp & 0xFF;

                } else if ( placeHolders === 1 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 10 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 4 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] >> 2 );
                    arr[ L ++ ] = ( tmp >> 8 ) & 0xFF;
                    arr[ L ++ ] = tmp & 0xFF;

                }

                return arr;

            }

            function parseDataArray( ele, compressed ) {

                let numBytes = 0;

                if ( json.attributes.header_type === 'UInt64' ) {

                    numBytes = 8;

                }   else if ( json.attributes.header_type === 'UInt32' ) {

                    numBytes = 4;

                }

                let txt, content;

                // Check the format
                if ( ele.attributes.format === 'binary' && compressed ) {

                    if ( ele.attributes.type === 'Float32' ) {

                        txt = new Float32Array( );

                    } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {

                        txt = new Int32Array( );

                    }

                    // VTP data with the header has the following structure:
                    // [#blocks][#u-size][#p-size][#c-size-1][#c-size-2]...[#c-size-#blocks][DATA]
                    //
                    // Each token is an integer value whose type is specified by "header_type" at the top of the file (UInt32 if no type specified). The token meanings are:
                    // [#blocks] = Number of blocks
                    // [#u-size] = Block size before compression
                    // [#p-size] = Size of last partial block (zero if it not needed)
                    // [#c-size-i] = Size in bytes of block i after compression
                    //
                    // The [DATA] portion stores contiguously every block appended together. The offset from the beginning of the data section to the beginning of a block is
                    // computed by summing the compressed block sizes from preceding blocks according to the header.

                    const textNode = ele[ '#text' ];
                    const rawData = Array.isArray( textNode ) ? textNode[ 0 ] : textNode;

                    const byteData = Base64toByteArray( rawData );

                    // Each data point consists of 8 bits regardless of the header type
                    const dataPointSize = 8;

                    let blocks = byteData[ 0 ];
                    for ( let i = 1; i < numBytes - 1; i ++ ) {

                        blocks = blocks | ( byteData[ i ] << ( i * dataPointSize ) );

                    }

                    let headerSize = ( blocks + 3 ) * numBytes;
                    const padding = ( ( headerSize % 3 ) > 0 ) ? 3 - ( headerSize % 3 ) : 0;
                    headerSize = headerSize + padding;

                    const dataOffsets = [];
                    let currentOffset = headerSize;
                    dataOffsets.push( currentOffset );

                    // Get the blocks sizes after the compression.
                    // There are three blocks before c-size-i, so we skip 3*numBytes
                    const cSizeStart = 3 * numBytes;

                    for ( let i = 0; i < blocks; i ++ ) {

                        let currentBlockSize = byteData[ i * numBytes + cSizeStart ];

                        for ( let j = 1; j < numBytes - 1; j ++ ) {

                            currentBlockSize = currentBlockSize | ( byteData[ i * numBytes + cSizeStart + j ] << ( j * dataPointSize ) );

                        }

                        currentOffset = currentOffset + currentBlockSize;
                        dataOffsets.push( currentOffset );

                    }

                    for ( let i = 0; i < dataOffsets.length - 1; i ++ ) {

                        const data = fflate.unzlibSync( byteData.slice( dataOffsets[ i ], dataOffsets[ i + 1 ] ) );
                        content = data.buffer;

                        if ( ele.attributes.type === 'Float32' ) {

                            content = new Float32Array( content );
                            txt = Float32Concat( txt, content );

                        } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {

                            content = new Int32Array( content );
                            txt = Int32Concat( txt, content );

                        }

                    }

                    delete ele[ '#text' ];

                    if ( ele.attributes.type === 'Int64' ) {

                        if ( ele.attributes.format === 'binary' ) {

                            txt = txt.filter( function ( el, idx ) {

                                if ( idx % 2 !== 1 ) return true;

                            } );

                        }

                    }

                } else {

                    if ( ele.attributes.format === 'binary' && ! compressed ) {

                        content = Base64toByteArray( ele[ '#text' ] );

                        //  VTP data for the uncompressed case has the following structure:
                        // [#bytes][DATA]
                        // where "[#bytes]" is an integer value specifying the number of bytes in the block of data following it.
                        content = content.slice( numBytes ).buffer;

                    } else {

                        if ( ele[ '#text' ] ) {

                            content = ele[ '#text' ].split( /\s+/ ).filter( function ( el ) {

                                if ( el !== '' ) return el;

                            } );

                        } else {

                            content = new Int32Array( 0 ).buffer;

                        }

                    }

                    delete ele[ '#text' ];

                    // Get the content and optimize it
                    if ( ele.attributes.type === 'Float32' ) {

                        txt = new Float32Array( content );

                    } else if ( ele.attributes.type === 'Int32' ) {

                        txt = new Int32Array( content );

                    } else if ( ele.attributes.type === 'Int64' ) {

                        txt = new Int32Array( content );

                        if ( ele.attributes.format === 'binary' ) {

                            txt = txt.filter( function ( el, idx ) {

                                if ( idx % 2 !== 1 ) return true;

                            } );

                        }

                    }

                } // endif ( ele.attributes.format === 'binary' && compressed )

                return txt;

            }

            // Main part
            // Get Dom
            const dom = new DOMParser().parseFromString( stringFile, 'application/xml' );

            // Get the doc
            const doc = dom.documentElement;
            // Convert to json
            const json = xmlToJson( doc );
            let points = [];
            let normals = [];
            let indices = [];

            if ( json.AppendedData ) {

                const appendedData = json.AppendedData[ '#text' ].slice( 1 );
                const piece = json.PolyData.Piece;

                const sections = [ 'PointData', 'CellData', 'Points', 'Verts', 'Lines', 'Strips', 'Polys' ];
                let sectionIndex = 0;

                const offsets = sections.map( s => {

                    const sect = piece[ s ];

                    if ( sect && sect.DataArray ) {

                        const arr = Array.isArray( sect.DataArray ) ? sect.DataArray : [ sect.DataArray ];

                        return arr.map( a => a.attributes.offset );

                    }

                    return [];

                } ).flat();

                for ( const sect of sections ) {

                    const section = piece[ sect ];

                    if ( section && section.DataArray ) {

                        if ( Array.isArray( section.DataArray ) ) {

                            for ( const sectionEle of section.DataArray ) {

                                sectionEle[ '#text' ] = appendedData.slice( offsets[ sectionIndex ], offsets[ sectionIndex + 1 ] );
                                sectionEle.attributes.format = 'binary';
                                sectionIndex ++;

                            }

                        } else {

                            section.DataArray[ '#text' ] = appendedData.slice( offsets[ sectionIndex ], offsets[ sectionIndex + 1 ] );
                            section.DataArray.attributes.format = 'binary';
                            sectionIndex ++;

                        }

                    }

                }

            }

            if ( json.PolyData ) {

                const piece = json.PolyData.Piece;
                const compressed = json.attributes.hasOwnProperty( 'compressor' );

                // Can be optimized
                // Loop through the sections
                const sections = [ 'PointData', 'Points', 'Strips', 'Polys' ];// +['CellData', 'Verts', 'Lines'];
                let sectionIndex = 0;
                const numberOfSections = sections.length;

                while ( sectionIndex < numberOfSections ) {

                    const section = piece[ sections[ sectionIndex ] ];

                    // If it has a DataArray in it

                    if ( section && section.DataArray ) {

                        // Depending on the number of DataArrays

                        let arr;

                        if ( Array.isArray( section.DataArray ) ) {

                            arr = section.DataArray;

                        } else {

                            arr = [ section.DataArray ];

                        }

                        let dataArrayIndex = 0;
                        const numberOfDataArrays = arr.length;

                        while ( dataArrayIndex < numberOfDataArrays ) {

                            // Parse the DataArray
                            if ( ( '#text' in arr[ dataArrayIndex ] ) && ( arr[ dataArrayIndex ][ '#text' ].length > 0 ) ) {

                                arr[ dataArrayIndex ].text = parseDataArray( arr[ dataArrayIndex ], compressed );

                            }

                            dataArrayIndex ++;

                        }

                        switch ( sections[ sectionIndex ] ) {

                            // if iti is point data
                            case 'PointData':

                                {

                                    const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );
                                    const normalsName = section.attributes.Normals;

                                    if ( numberOfPoints > 0 ) {

                                        for ( let i = 0, len = arr.length; i < len; i ++ ) {

                                            if ( normalsName === arr[ i ].attributes.Name ) {

                                                const components = arr[ i ].attributes.NumberOfComponents;
                                                normals = new Float32Array( numberOfPoints * components );
                                                normals.set( arr[ i ].text, 0 );

                                            }

                                        }

                                    }

                                }

                                break;

                            // if it is points
                            case 'Points':

                                {

                                    const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );

                                    if ( numberOfPoints > 0 ) {

                                        const components = section.DataArray.attributes.NumberOfComponents;
                                        points = new Float32Array( numberOfPoints * components );
                                        points.set( section.DataArray.text, 0 );

                                    }

                                }

                                break;

                            // if it is strips
                            case 'Strips':

                                {

                                    const numberOfStrips = parseInt( piece.attributes.NumberOfStrips );

                                    if ( numberOfStrips > 0 ) {

                                        const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
                                        const offset = new Int32Array( section.DataArray[ 1 ].text.length );
                                        connectivity.set( section.DataArray[ 0 ].text, 0 );
                                        offset.set( section.DataArray[ 1 ].text, 0 );

                                        const size = numberOfStrips + connectivity.length;
                                        indices = new Uint32Array( 3 * size - 9 * numberOfStrips );

                                        let indicesIndex = 0;

                                        for ( let i = 0, len = numberOfStrips; i < len; i ++ ) {

                                            const strip = [];

                                            for ( let s = 0, len1 = offset[ i ], len0 = 0; s < len1 - len0; s ++ ) {

                                                strip.push( connectivity[ s ] );

                                                if ( i > 0 ) len0 = offset[ i - 1 ];

                                            }

                                            for ( let j = 0, len1 = offset[ i ], len0 = 0; j < len1 - len0 - 2; j ++ ) {

                                                if ( j % 2 ) {

                                                    indices[ indicesIndex ++ ] = strip[ j ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 2 ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 1 ];

                                                } else {

                                                    indices[ indicesIndex ++ ] = strip[ j ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 1 ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 2 ];

                                                }

                                                if ( i > 0 ) len0 = offset[ i - 1 ];

                                            }

                                        }

                                    }

                                }

                                break;

                            // if it is polys
                            case 'Polys':

                                {

                                    const numberOfPolys = parseInt( piece.attributes.NumberOfPolys );

                                    if ( numberOfPolys > 0 ) {

                                        const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
                                        const offset = new Int32Array( section.DataArray[ 1 ].text.length );
                                        connectivity.set( section.DataArray[ 0 ].text, 0 );
                                        offset.set( section.DataArray[ 1 ].text, 0 );

                                        const size = numberOfPolys + connectivity.length;
                                        indices = new Uint32Array( 3 * size - 9 * numberOfPolys );
                                        let indicesIndex = 0, connectivityIndex = 0;
                                        let i = 0, len0 = 0;
                                        const len = numberOfPolys;

                                        while ( i < len ) {

                                            const poly = [];
                                            let s = 0;
                                            const len1 = offset[ i ];

                                            while ( s < len1 - len0 ) {

                                                poly.push( connectivity[ connectivityIndex ++ ] );
                                                s ++;

                                            }

                                            let j = 1;

                                            while ( j < len1 - len0 - 1 ) {

                                                indices[ indicesIndex ++ ] = poly[ 0 ];
                                                indices[ indicesIndex ++ ] = poly[ j ];
                                                indices[ indicesIndex ++ ] = poly[ j + 1 ];
                                                j ++;

                                            }

                                            i ++;
                                            len0 = offset[ i - 1 ];

                                        }

                                    }

                                }

                                break;

                            default:
                                break;

                        }

                    }

                    sectionIndex ++;

                }

                const geometry = new BufferGeometry();
                geometry.setIndex( new BufferAttribute( indices, 1 ) );
                geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );

                if ( normals.length === points.length ) {

                    geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );

                }

                return geometry;

            } else {

                throw new Error( 'Unsupported DATASET type' );

            }

        }

xmlToJson(xml: any): { attributes: {}; }

Parameters:

  • xml any

Returns: { attributes: {}; }

Calls:

  • xml.attributes.item
  • attribute.nodeValue.trim
  • xml.nodeValue.trim
  • xml.hasChildNodes
  • xml.childNodes.item
  • xmlToJson
  • Array.isArray
  • obj[ nodeName ].push

Internal Comments:

// Create the return object (x2)
// do attributes
// do children

Code
function xmlToJson( xml ) {

                // Create the return object
                let obj = {};

                if ( xml.nodeType === 1 ) { // element

                    // do attributes

                    if ( xml.attributes ) {

                        if ( xml.attributes.length > 0 ) {

                            obj[ 'attributes' ] = {};

                            for ( let j = 0; j < xml.attributes.length; j ++ ) {

                                const attribute = xml.attributes.item( j );
                                obj[ 'attributes' ][ attribute.nodeName ] = attribute.nodeValue.trim();

                            }

                        }

                    }

                } else if ( xml.nodeType === 3 ) { // text

                    obj = xml.nodeValue.trim();

                }

                // do children
                if ( xml.hasChildNodes() ) {

                    for ( let i = 0; i < xml.childNodes.length; i ++ ) {

                        const item = xml.childNodes.item( i );
                        const nodeName = item.nodeName;

                        if ( typeof obj[ nodeName ] === 'undefined' ) {

                            const tmp = xmlToJson( item );

                            if ( tmp !== '' ) {

                                if ( Array.isArray( tmp[ '#text' ] ) ) {

                                    tmp[ '#text' ] = tmp[ '#text' ][ 0 ];

                                }

                                obj[ nodeName ] = tmp;

                            }

                        } else {

                            if ( typeof obj[ nodeName ].push === 'undefined' ) {

                                const old = obj[ nodeName ];
                                obj[ nodeName ] = [ old ];

                            }

                            const tmp = xmlToJson( item );

                            if ( tmp !== '' ) {

                                if ( Array.isArray( tmp[ '#text' ] ) ) {

                                    tmp[ '#text' ] = tmp[ '#text' ][ 0 ];

                                }

                                obj[ nodeName ].push( tmp );

                            }

                        }

                    }

                }

                return obj;

            }

Base64toByteArray(b64: any): any[] | Uint8Array<ArrayBuffer>

Parameters:

  • b64 any

Returns: any[] | Uint8Array<ArrayBuffer>

Calls:

  • code.charCodeAt
  • '-'.charCodeAt
  • '_'.charCodeAt
  • b64.charCodeAt
Code
function Base64toByteArray( b64 ) {

                const Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array;
                const revLookup = [];
                const code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';

                for ( let i = 0, l = code.length; i < l; ++ i ) {

                    revLookup[ code.charCodeAt( i ) ] = i;

                }

                revLookup[ '-'.charCodeAt( 0 ) ] = 62;
                revLookup[ '_'.charCodeAt( 0 ) ] = 63;

                const len = b64.length;

                if ( len % 4 > 0 ) {

                    throw new Error( 'Invalid string. Length must be a multiple of 4' );

                }

                const placeHolders = b64[ len - 2 ] === '=' ? 2 : b64[ len - 1 ] === '=' ? 1 : 0;
                const arr = new Arr( len * 3 / 4 - placeHolders );
                const l = placeHolders > 0 ? len - 4 : len;

                let L = 0;
                let i, j;

                for ( i = 0, j = 0; i < l; i += 4, j += 3 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 18 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 12 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] << 6 ) | revLookup[ b64.charCodeAt( i + 3 ) ];
                    arr[ L ++ ] = ( tmp & 0xFF0000 ) >> 16;
                    arr[ L ++ ] = ( tmp & 0xFF00 ) >> 8;
                    arr[ L ++ ] = tmp & 0xFF;

                }

                if ( placeHolders === 2 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 2 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] >> 4 );
                    arr[ L ++ ] = tmp & 0xFF;

                } else if ( placeHolders === 1 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 10 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 4 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] >> 2 );
                    arr[ L ++ ] = ( tmp >> 8 ) & 0xFF;
                    arr[ L ++ ] = tmp & 0xFF;

                }

                return arr;

            }

parseDataArray(ele: any, compressed: any): Int32Array<any> | Float32Array<any>

Parameters:

  • ele any
  • compressed any

Returns: Int32Array<any> | Float32Array<any>

Calls:

  • Array.isArray
  • Base64toByteArray
  • dataOffsets.push
  • fflate.unzlibSync
  • byteData.slice
  • Float32Concat
  • Int32Concat
  • txt.filter
  • content.slice
  • ele[ '#text' ].split( /\s+/ ).filter

Internal Comments:

// Check the format
// VTP data with the header has the following structure: (x2)
// [#blocks][#u-size][#p-size][#c-size-1][#c-size-2]...[#c-size-#blocks][DATA] (x2)
// (x4)
// Each token is an integer value whose type is specified by "header_type" at the top of the file (UInt32 if no type specified). The token meanings are: (x2)
// [#blocks] = Number of blocks (x2)
// [#u-size] = Block size before compression (x2)
// [#p-size] = Size of last partial block (zero if it not needed) (x2)
// [#c-size-i] = Size in bytes of block i after compression (x2)
// The [DATA] portion stores contiguously every block appended together. The offset from the beginning of the data section to the beginning of a block is (x2)
// computed by summing the compressed block sizes from preceding blocks according to the header. (x2)
// Each data point consists of 8 bits regardless of the header type (x2)
// Get the blocks sizes after the compression. (x2)
// There are three blocks before c-size-i, so we skip 3*numBytes (x2)
//  VTP data for the uncompressed case has the following structure: (x3)
// [#bytes][DATA] (x3)
// where "[#bytes]" is an integer value specifying the number of bytes in the block of data following it. (x3)
// Get the content and optimize it

Code
function parseDataArray( ele, compressed ) {

                let numBytes = 0;

                if ( json.attributes.header_type === 'UInt64' ) {

                    numBytes = 8;

                }   else if ( json.attributes.header_type === 'UInt32' ) {

                    numBytes = 4;

                }

                let txt, content;

                // Check the format
                if ( ele.attributes.format === 'binary' && compressed ) {

                    if ( ele.attributes.type === 'Float32' ) {

                        txt = new Float32Array( );

                    } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {

                        txt = new Int32Array( );

                    }

                    // VTP data with the header has the following structure:
                    // [#blocks][#u-size][#p-size][#c-size-1][#c-size-2]...[#c-size-#blocks][DATA]
                    //
                    // Each token is an integer value whose type is specified by "header_type" at the top of the file (UInt32 if no type specified). The token meanings are:
                    // [#blocks] = Number of blocks
                    // [#u-size] = Block size before compression
                    // [#p-size] = Size of last partial block (zero if it not needed)
                    // [#c-size-i] = Size in bytes of block i after compression
                    //
                    // The [DATA] portion stores contiguously every block appended together. The offset from the beginning of the data section to the beginning of a block is
                    // computed by summing the compressed block sizes from preceding blocks according to the header.

                    const textNode = ele[ '#text' ];
                    const rawData = Array.isArray( textNode ) ? textNode[ 0 ] : textNode;

                    const byteData = Base64toByteArray( rawData );

                    // Each data point consists of 8 bits regardless of the header type
                    const dataPointSize = 8;

                    let blocks = byteData[ 0 ];
                    for ( let i = 1; i < numBytes - 1; i ++ ) {

                        blocks = blocks | ( byteData[ i ] << ( i * dataPointSize ) );

                    }

                    let headerSize = ( blocks + 3 ) * numBytes;
                    const padding = ( ( headerSize % 3 ) > 0 ) ? 3 - ( headerSize % 3 ) : 0;
                    headerSize = headerSize + padding;

                    const dataOffsets = [];
                    let currentOffset = headerSize;
                    dataOffsets.push( currentOffset );

                    // Get the blocks sizes after the compression.
                    // There are three blocks before c-size-i, so we skip 3*numBytes
                    const cSizeStart = 3 * numBytes;

                    for ( let i = 0; i < blocks; i ++ ) {

                        let currentBlockSize = byteData[ i * numBytes + cSizeStart ];

                        for ( let j = 1; j < numBytes - 1; j ++ ) {

                            currentBlockSize = currentBlockSize | ( byteData[ i * numBytes + cSizeStart + j ] << ( j * dataPointSize ) );

                        }

                        currentOffset = currentOffset + currentBlockSize;
                        dataOffsets.push( currentOffset );

                    }

                    for ( let i = 0; i < dataOffsets.length - 1; i ++ ) {

                        const data = fflate.unzlibSync( byteData.slice( dataOffsets[ i ], dataOffsets[ i + 1 ] ) );
                        content = data.buffer;

                        if ( ele.attributes.type === 'Float32' ) {

                            content = new Float32Array( content );
                            txt = Float32Concat( txt, content );

                        } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {

                            content = new Int32Array( content );
                            txt = Int32Concat( txt, content );

                        }

                    }

                    delete ele[ '#text' ];

                    if ( ele.attributes.type === 'Int64' ) {

                        if ( ele.attributes.format === 'binary' ) {

                            txt = txt.filter( function ( el, idx ) {

                                if ( idx % 2 !== 1 ) return true;

                            } );

                        }

                    }

                } else {

                    if ( ele.attributes.format === 'binary' && ! compressed ) {

                        content = Base64toByteArray( ele[ '#text' ] );

                        //  VTP data for the uncompressed case has the following structure:
                        // [#bytes][DATA]
                        // where "[#bytes]" is an integer value specifying the number of bytes in the block of data following it.
                        content = content.slice( numBytes ).buffer;

                    } else {

                        if ( ele[ '#text' ] ) {

                            content = ele[ '#text' ].split( /\s+/ ).filter( function ( el ) {

                                if ( el !== '' ) return el;

                            } );

                        } else {

                            content = new Int32Array( 0 ).buffer;

                        }

                    }

                    delete ele[ '#text' ];

                    // Get the content and optimize it
                    if ( ele.attributes.type === 'Float32' ) {

                        txt = new Float32Array( content );

                    } else if ( ele.attributes.type === 'Int32' ) {

                        txt = new Int32Array( content );

                    } else if ( ele.attributes.type === 'Int64' ) {

                        txt = new Int32Array( content );

                        if ( ele.attributes.format === 'binary' ) {

                            txt = txt.filter( function ( el, idx ) {

                                if ( idx % 2 !== 1 ) return true;

                            } );

                        }

                    }

                } // endif ( ele.attributes.format === 'binary' && compressed )

                return txt;

            }

Classes

VTKLoader

Class Code
class VTKLoader extends Loader {

    /**
     * Constructs a new VTK loader.
     *
     * @param {LoadingManager} [manager] - The loading manager.
     */
    constructor( manager ) {

        super( manager );

    }

    /**
     * Starts loading from the given URL and passes the loaded VRML asset
     * to the `onLoad()` callback.
     *
     * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI.
     * @param {function(BufferGeometry)} onLoad - Executed when the loading process has been finished.
     * @param {onProgressCallback} onProgress - Executed while the loading is in progress.
     * @param {onErrorCallback} onError - Executed when errors occur.
     */
    load( url, onLoad, onProgress, onError ) {

        const scope = this;

        const loader = new FileLoader( scope.manager );
        loader.setPath( scope.path );
        loader.setResponseType( 'arraybuffer' );
        loader.setRequestHeader( scope.requestHeader );
        loader.setWithCredentials( scope.withCredentials );
        loader.load( url, function ( text ) {

            try {

                onLoad( scope.parse( text ) );

            } catch ( e ) {

                if ( onError ) {

                    onError( e );

                } else {

                    console.error( e );

                }

                scope.manager.itemError( url );

            }

        }, onProgress, onError );

    }

    /**
     * Parses the given VTK data and returns the resulting geometry.
     *
     * @param {ArrayBuffer} data - The raw VTK data as an array buffer
     * @return {BufferGeometry} The parsed geometry.
     */
    parse( data ) {

        function parseASCII( data ) {

            // connectivity of the triangles
            const indices = [];

            // triangles vertices
            const positions = [];

            // red, green, blue colors in the range 0 to 1
            const colors = [];

            // normal vector, one per vertex
            const normals = [];

            let result;

            // pattern for detecting the end of a number sequence
            const patWord = /^[^\d.\s-]+/;

            // pattern for reading vertices, 3 floats or integers
            const pat3Floats = /(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)/g;

            // pattern for connectivity, an integer followed by any number of ints
            // the first integer is the number of polygon nodes
            const patConnectivity = /^(\d+)\s+([\s\d]*)/;

            // indicates start of vertex data section
            const patPOINTS = /^POINTS /;

            // indicates start of polygon connectivity section
            const patPOLYGONS = /^POLYGONS /;

            // indicates start of triangle strips section
            const patTRIANGLE_STRIPS = /^TRIANGLE_STRIPS /;

            // POINT_DATA number_of_values
            const patPOINT_DATA = /^POINT_DATA[ ]+(\d+)/;

            // CELL_DATA number_of_polys
            const patCELL_DATA = /^CELL_DATA[ ]+(\d+)/;

            // Start of color section
            const patCOLOR_SCALARS = /^COLOR_SCALARS[ ]+(\w+)[ ]+3/;

            // NORMALS Normals float
            const patNORMALS = /^NORMALS[ ]+(\w+)[ ]+(\w+)/;

            let inPointsSection = false;
            let inPolygonsSection = false;
            let inTriangleStripSection = false;
            let inPointDataSection = false;
            let inCellDataSection = false;
            let inColorSection = false;
            let inNormalsSection = false;

            const color = new Color();

            const lines = data.split( '\n' );

            for ( const i in lines ) {

                const line = lines[ i ].trim();

                if ( line.indexOf( 'DATASET' ) === 0 ) {

                    const dataset = line.split( ' ' )[ 1 ];

                    if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );

                } else if ( inPointsSection ) {

                    // get the vertices
                    while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                        if ( patWord.exec( line ) !== null ) break;

                        const x = parseFloat( result[ 1 ] );
                        const y = parseFloat( result[ 2 ] );
                        const z = parseFloat( result[ 3 ] );
                        positions.push( x, y, z );

                    }

                } else if ( inPolygonsSection ) {

                    if ( ( result = patConnectivity.exec( line ) ) !== null ) {

                        // numVertices i0 i1 i2 ...
                        const numVertices = parseInt( result[ 1 ] );
                        const inds = result[ 2 ].split( /\s+/ );

                        if ( numVertices >= 3 ) {

                            const i0 = parseInt( inds[ 0 ] );
                            let k = 1;
                            // split the polygon in numVertices - 2 triangles
                            for ( let j = 0; j < numVertices - 2; ++ j ) {

                                const i1 = parseInt( inds[ k ] );
                                const i2 = parseInt( inds[ k + 1 ] );
                                indices.push( i0, i1, i2 );
                                k ++;

                            }

                        }

                    }

                } else if ( inTriangleStripSection ) {

                    if ( ( result = patConnectivity.exec( line ) ) !== null ) {

                        // numVertices i0 i1 i2 ...
                        const numVertices = parseInt( result[ 1 ] );
                        const inds = result[ 2 ].split( /\s+/ );

                        if ( numVertices >= 3 ) {

                            // split the polygon in numVertices - 2 triangles
                            for ( let j = 0; j < numVertices - 2; j ++ ) {

                                if ( j % 2 === 1 ) {

                                    const i0 = parseInt( inds[ j ] );
                                    const i1 = parseInt( inds[ j + 2 ] );
                                    const i2 = parseInt( inds[ j + 1 ] );
                                    indices.push( i0, i1, i2 );

                                } else {

                                    const i0 = parseInt( inds[ j ] );
                                    const i1 = parseInt( inds[ j + 1 ] );
                                    const i2 = parseInt( inds[ j + 2 ] );
                                    indices.push( i0, i1, i2 );

                                }

                            }

                        }

                    }

                } else if ( inPointDataSection || inCellDataSection ) {

                    if ( inColorSection ) {

                        // Get the colors

                        while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                            if ( patWord.exec( line ) !== null ) break;

                            const r = parseFloat( result[ 1 ] );
                            const g = parseFloat( result[ 2 ] );
                            const b = parseFloat( result[ 3 ] );

                            color.setRGB( r, g, b, SRGBColorSpace );

                            colors.push( color.r, color.g, color.b );

                        }

                    } else if ( inNormalsSection ) {

                        // Get the normal vectors

                        while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                            if ( patWord.exec( line ) !== null ) break;

                            const nx = parseFloat( result[ 1 ] );
                            const ny = parseFloat( result[ 2 ] );
                            const nz = parseFloat( result[ 3 ] );
                            normals.push( nx, ny, nz );

                        }

                    }

                }

                if ( patPOLYGONS.exec( line ) !== null ) {

                    inPolygonsSection = true;
                    inPointsSection = false;
                    inTriangleStripSection = false;

                } else if ( patPOINTS.exec( line ) !== null ) {

                    inPolygonsSection = false;
                    inPointsSection = true;
                    inTriangleStripSection = false;

                } else if ( patTRIANGLE_STRIPS.exec( line ) !== null ) {

                    inPolygonsSection = false;
                    inPointsSection = false;
                    inTriangleStripSection = true;

                } else if ( patPOINT_DATA.exec( line ) !== null ) {

                    inPointDataSection = true;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patCELL_DATA.exec( line ) !== null ) {

                    inCellDataSection = true;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patCOLOR_SCALARS.exec( line ) !== null ) {

                    inColorSection = true;
                    inNormalsSection = false;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patNORMALS.exec( line ) !== null ) {

                    inNormalsSection = true;
                    inColorSection = false;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                }

            }

            let geometry = new BufferGeometry();
            geometry.setIndex( indices );
            geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

            if ( normals.length === positions.length ) {

                geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );

            }

            if ( colors.length !== indices.length ) {

                // stagger

                if ( colors.length === positions.length ) {

                    geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

                }

            } else {

                // cell

                geometry = geometry.toNonIndexed();
                const numTriangles = geometry.attributes.position.count / 3;

                if ( colors.length === ( numTriangles * 3 ) ) {

                    const newColors = [];

                    for ( let i = 0; i < numTriangles; i ++ ) {

                        const r = colors[ 3 * i + 0 ];
                        const g = colors[ 3 * i + 1 ];
                        const b = colors[ 3 * i + 2 ];

                        color.setRGB( r, g, b, SRGBColorSpace );

                        newColors.push( color.r, color.g, color.b );
                        newColors.push( color.r, color.g, color.b );
                        newColors.push( color.r, color.g, color.b );

                    }

                    geometry.setAttribute( 'color', new Float32BufferAttribute( newColors, 3 ) );

                }

            }

            return geometry;

        }

        function parseBinary( data ) {

            const buffer = new Uint8Array( data );
            const dataView = new DataView( data );

            // Points and normals, by default, are empty
            let points = [];
            let normals = [];
            let indices = [];

            let index = 0;

            function findString( buffer, start ) {

                let index = start;
                let c = buffer[ index ];
                const s = [];
                while ( c !== 10 ) {

                    s.push( String.fromCharCode( c ) );
                    index ++;
                    c = buffer[ index ];

                }

                return { start: start,
                    end: index,
                    next: index + 1,
                    parsedString: s.join( '' ) };

            }

            let state, line;

            while ( true ) {

                // Get a string
                state = findString( buffer, index );
                line = state.parsedString;

                if ( line.indexOf( 'DATASET' ) === 0 ) {

                    const dataset = line.split( ' ' )[ 1 ];

                    if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );

                } else if ( line.indexOf( 'POINTS' ) === 0 ) {

                    // Add the points
                    const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );

                    // Each point is 3 4-byte floats
                    const count = numberOfPoints * 4 * 3;

                    points = new Float32Array( numberOfPoints * 3 );

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfPoints; i ++ ) {

                        points[ 3 * i ] = dataView.getFloat32( pointIndex, false );
                        points[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
                        points[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
                        pointIndex = pointIndex + 12;

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'TRIANGLE_STRIPS' ) === 0 ) {

                    const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
                    const size = parseInt( line.split( ' ' )[ 2 ], 10 );
                    // 4 byte integers
                    const count = size * 4;

                    indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
                    let indicesIndex = 0;

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfStrips; i ++ ) {

                        // For each strip, read the first value, then record that many more points
                        const indexCount = dataView.getInt32( pointIndex, false );
                        const strip = [];
                        pointIndex += 4;
                        for ( let s = 0; s < indexCount; s ++ ) {

                            strip.push( dataView.getInt32( pointIndex, false ) );
                            pointIndex += 4;

                        }

                        // retrieves the n-2 triangles from the triangle strip
                        for ( let j = 0; j < indexCount - 2; j ++ ) {

                            if ( j % 2 ) {

                                indices[ indicesIndex ++ ] = strip[ j ];
                                indices[ indicesIndex ++ ] = strip[ j + 2 ];
                                indices[ indicesIndex ++ ] = strip[ j + 1 ];

                            } else {

                                indices[ indicesIndex ++ ] = strip[ j ];
                                indices[ indicesIndex ++ ] = strip[ j + 1 ];
                                indices[ indicesIndex ++ ] = strip[ j + 2 ];

                            }

                        }

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'POLYGONS' ) === 0 ) {

                    const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
                    const size = parseInt( line.split( ' ' )[ 2 ], 10 );
                    // 4 byte integers
                    const count = size * 4;

                    indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
                    let indicesIndex = 0;

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfStrips; i ++ ) {

                        // For each strip, read the first value, then record that many more points
                        const indexCount = dataView.getInt32( pointIndex, false );
                        const strip = [];
                        pointIndex += 4;
                        for ( let s = 0; s < indexCount; s ++ ) {

                            strip.push( dataView.getInt32( pointIndex, false ) );
                            pointIndex += 4;

                        }

                        // divide the polygon in n-2 triangle
                        for ( let j = 1; j < indexCount - 1; j ++ ) {

                            indices[ indicesIndex ++ ] = strip[ 0 ];
                            indices[ indicesIndex ++ ] = strip[ j ];
                            indices[ indicesIndex ++ ] = strip[ j + 1 ];

                        }

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'POINT_DATA' ) === 0 ) {

                    const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );

                    // Grab the next line
                    state = findString( buffer, state.next );

                    // Now grab the binary data
                    const count = numberOfPoints * 4 * 3;

                    normals = new Float32Array( numberOfPoints * 3 );
                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfPoints; i ++ ) {

                        normals[ 3 * i ] = dataView.getFloat32( pointIndex, false );
                        normals[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
                        normals[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
                        pointIndex += 12;

                    }

                    // Increment past our data
                    state.next = state.next + count;

                }

                // Increment index
                index = state.next;

                if ( index >= buffer.byteLength ) {

                    break;

                }

            }

            const geometry = new BufferGeometry();
            geometry.setIndex( new BufferAttribute( indices, 1 ) );
            geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );

            if ( normals.length === points.length ) {

                geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );

            }

            return geometry;

        }

        function Float32Concat( first, second ) {

            const firstLength = first.length, result = new Float32Array( firstLength + second.length );

            result.set( first );
            result.set( second, firstLength );

            return result;

        }

        function Int32Concat( first, second ) {

            const firstLength = first.length, result = new Int32Array( firstLength + second.length );

            result.set( first );
            result.set( second, firstLength );

            return result;

        }

        function parseXML( stringFile ) {

            // Changes XML to JSON, based on https://davidwalsh.name/convert-xml-json

            function xmlToJson( xml ) {

                // Create the return object
                let obj = {};

                if ( xml.nodeType === 1 ) { // element

                    // do attributes

                    if ( xml.attributes ) {

                        if ( xml.attributes.length > 0 ) {

                            obj[ 'attributes' ] = {};

                            for ( let j = 0; j < xml.attributes.length; j ++ ) {

                                const attribute = xml.attributes.item( j );
                                obj[ 'attributes' ][ attribute.nodeName ] = attribute.nodeValue.trim();

                            }

                        }

                    }

                } else if ( xml.nodeType === 3 ) { // text

                    obj = xml.nodeValue.trim();

                }

                // do children
                if ( xml.hasChildNodes() ) {

                    for ( let i = 0; i < xml.childNodes.length; i ++ ) {

                        const item = xml.childNodes.item( i );
                        const nodeName = item.nodeName;

                        if ( typeof obj[ nodeName ] === 'undefined' ) {

                            const tmp = xmlToJson( item );

                            if ( tmp !== '' ) {

                                if ( Array.isArray( tmp[ '#text' ] ) ) {

                                    tmp[ '#text' ] = tmp[ '#text' ][ 0 ];

                                }

                                obj[ nodeName ] = tmp;

                            }

                        } else {

                            if ( typeof obj[ nodeName ].push === 'undefined' ) {

                                const old = obj[ nodeName ];
                                obj[ nodeName ] = [ old ];

                            }

                            const tmp = xmlToJson( item );

                            if ( tmp !== '' ) {

                                if ( Array.isArray( tmp[ '#text' ] ) ) {

                                    tmp[ '#text' ] = tmp[ '#text' ][ 0 ];

                                }

                                obj[ nodeName ].push( tmp );

                            }

                        }

                    }

                }

                return obj;

            }

            // Taken from Base64-js
            function Base64toByteArray( b64 ) {

                const Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array;
                const revLookup = [];
                const code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';

                for ( let i = 0, l = code.length; i < l; ++ i ) {

                    revLookup[ code.charCodeAt( i ) ] = i;

                }

                revLookup[ '-'.charCodeAt( 0 ) ] = 62;
                revLookup[ '_'.charCodeAt( 0 ) ] = 63;

                const len = b64.length;

                if ( len % 4 > 0 ) {

                    throw new Error( 'Invalid string. Length must be a multiple of 4' );

                }

                const placeHolders = b64[ len - 2 ] === '=' ? 2 : b64[ len - 1 ] === '=' ? 1 : 0;
                const arr = new Arr( len * 3 / 4 - placeHolders );
                const l = placeHolders > 0 ? len - 4 : len;

                let L = 0;
                let i, j;

                for ( i = 0, j = 0; i < l; i += 4, j += 3 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 18 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 12 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] << 6 ) | revLookup[ b64.charCodeAt( i + 3 ) ];
                    arr[ L ++ ] = ( tmp & 0xFF0000 ) >> 16;
                    arr[ L ++ ] = ( tmp & 0xFF00 ) >> 8;
                    arr[ L ++ ] = tmp & 0xFF;

                }

                if ( placeHolders === 2 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 2 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] >> 4 );
                    arr[ L ++ ] = tmp & 0xFF;

                } else if ( placeHolders === 1 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 10 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 4 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] >> 2 );
                    arr[ L ++ ] = ( tmp >> 8 ) & 0xFF;
                    arr[ L ++ ] = tmp & 0xFF;

                }

                return arr;

            }

            function parseDataArray( ele, compressed ) {

                let numBytes = 0;

                if ( json.attributes.header_type === 'UInt64' ) {

                    numBytes = 8;

                }   else if ( json.attributes.header_type === 'UInt32' ) {

                    numBytes = 4;

                }

                let txt, content;

                // Check the format
                if ( ele.attributes.format === 'binary' && compressed ) {

                    if ( ele.attributes.type === 'Float32' ) {

                        txt = new Float32Array( );

                    } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {

                        txt = new Int32Array( );

                    }

                    // VTP data with the header has the following structure:
                    // [#blocks][#u-size][#p-size][#c-size-1][#c-size-2]...[#c-size-#blocks][DATA]
                    //
                    // Each token is an integer value whose type is specified by "header_type" at the top of the file (UInt32 if no type specified). The token meanings are:
                    // [#blocks] = Number of blocks
                    // [#u-size] = Block size before compression
                    // [#p-size] = Size of last partial block (zero if it not needed)
                    // [#c-size-i] = Size in bytes of block i after compression
                    //
                    // The [DATA] portion stores contiguously every block appended together. The offset from the beginning of the data section to the beginning of a block is
                    // computed by summing the compressed block sizes from preceding blocks according to the header.

                    const textNode = ele[ '#text' ];
                    const rawData = Array.isArray( textNode ) ? textNode[ 0 ] : textNode;

                    const byteData = Base64toByteArray( rawData );

                    // Each data point consists of 8 bits regardless of the header type
                    const dataPointSize = 8;

                    let blocks = byteData[ 0 ];
                    for ( let i = 1; i < numBytes - 1; i ++ ) {

                        blocks = blocks | ( byteData[ i ] << ( i * dataPointSize ) );

                    }

                    let headerSize = ( blocks + 3 ) * numBytes;
                    const padding = ( ( headerSize % 3 ) > 0 ) ? 3 - ( headerSize % 3 ) : 0;
                    headerSize = headerSize + padding;

                    const dataOffsets = [];
                    let currentOffset = headerSize;
                    dataOffsets.push( currentOffset );

                    // Get the blocks sizes after the compression.
                    // There are three blocks before c-size-i, so we skip 3*numBytes
                    const cSizeStart = 3 * numBytes;

                    for ( let i = 0; i < blocks; i ++ ) {

                        let currentBlockSize = byteData[ i * numBytes + cSizeStart ];

                        for ( let j = 1; j < numBytes - 1; j ++ ) {

                            currentBlockSize = currentBlockSize | ( byteData[ i * numBytes + cSizeStart + j ] << ( j * dataPointSize ) );

                        }

                        currentOffset = currentOffset + currentBlockSize;
                        dataOffsets.push( currentOffset );

                    }

                    for ( let i = 0; i < dataOffsets.length - 1; i ++ ) {

                        const data = fflate.unzlibSync( byteData.slice( dataOffsets[ i ], dataOffsets[ i + 1 ] ) );
                        content = data.buffer;

                        if ( ele.attributes.type === 'Float32' ) {

                            content = new Float32Array( content );
                            txt = Float32Concat( txt, content );

                        } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {

                            content = new Int32Array( content );
                            txt = Int32Concat( txt, content );

                        }

                    }

                    delete ele[ '#text' ];

                    if ( ele.attributes.type === 'Int64' ) {

                        if ( ele.attributes.format === 'binary' ) {

                            txt = txt.filter( function ( el, idx ) {

                                if ( idx % 2 !== 1 ) return true;

                            } );

                        }

                    }

                } else {

                    if ( ele.attributes.format === 'binary' && ! compressed ) {

                        content = Base64toByteArray( ele[ '#text' ] );

                        //  VTP data for the uncompressed case has the following structure:
                        // [#bytes][DATA]
                        // where "[#bytes]" is an integer value specifying the number of bytes in the block of data following it.
                        content = content.slice( numBytes ).buffer;

                    } else {

                        if ( ele[ '#text' ] ) {

                            content = ele[ '#text' ].split( /\s+/ ).filter( function ( el ) {

                                if ( el !== '' ) return el;

                            } );

                        } else {

                            content = new Int32Array( 0 ).buffer;

                        }

                    }

                    delete ele[ '#text' ];

                    // Get the content and optimize it
                    if ( ele.attributes.type === 'Float32' ) {

                        txt = new Float32Array( content );

                    } else if ( ele.attributes.type === 'Int32' ) {

                        txt = new Int32Array( content );

                    } else if ( ele.attributes.type === 'Int64' ) {

                        txt = new Int32Array( content );

                        if ( ele.attributes.format === 'binary' ) {

                            txt = txt.filter( function ( el, idx ) {

                                if ( idx % 2 !== 1 ) return true;

                            } );

                        }

                    }

                } // endif ( ele.attributes.format === 'binary' && compressed )

                return txt;

            }

            // Main part
            // Get Dom
            const dom = new DOMParser().parseFromString( stringFile, 'application/xml' );

            // Get the doc
            const doc = dom.documentElement;
            // Convert to json
            const json = xmlToJson( doc );
            let points = [];
            let normals = [];
            let indices = [];

            if ( json.AppendedData ) {

                const appendedData = json.AppendedData[ '#text' ].slice( 1 );
                const piece = json.PolyData.Piece;

                const sections = [ 'PointData', 'CellData', 'Points', 'Verts', 'Lines', 'Strips', 'Polys' ];
                let sectionIndex = 0;

                const offsets = sections.map( s => {

                    const sect = piece[ s ];

                    if ( sect && sect.DataArray ) {

                        const arr = Array.isArray( sect.DataArray ) ? sect.DataArray : [ sect.DataArray ];

                        return arr.map( a => a.attributes.offset );

                    }

                    return [];

                } ).flat();

                for ( const sect of sections ) {

                    const section = piece[ sect ];

                    if ( section && section.DataArray ) {

                        if ( Array.isArray( section.DataArray ) ) {

                            for ( const sectionEle of section.DataArray ) {

                                sectionEle[ '#text' ] = appendedData.slice( offsets[ sectionIndex ], offsets[ sectionIndex + 1 ] );
                                sectionEle.attributes.format = 'binary';
                                sectionIndex ++;

                            }

                        } else {

                            section.DataArray[ '#text' ] = appendedData.slice( offsets[ sectionIndex ], offsets[ sectionIndex + 1 ] );
                            section.DataArray.attributes.format = 'binary';
                            sectionIndex ++;

                        }

                    }

                }

            }

            if ( json.PolyData ) {

                const piece = json.PolyData.Piece;
                const compressed = json.attributes.hasOwnProperty( 'compressor' );

                // Can be optimized
                // Loop through the sections
                const sections = [ 'PointData', 'Points', 'Strips', 'Polys' ];// +['CellData', 'Verts', 'Lines'];
                let sectionIndex = 0;
                const numberOfSections = sections.length;

                while ( sectionIndex < numberOfSections ) {

                    const section = piece[ sections[ sectionIndex ] ];

                    // If it has a DataArray in it

                    if ( section && section.DataArray ) {

                        // Depending on the number of DataArrays

                        let arr;

                        if ( Array.isArray( section.DataArray ) ) {

                            arr = section.DataArray;

                        } else {

                            arr = [ section.DataArray ];

                        }

                        let dataArrayIndex = 0;
                        const numberOfDataArrays = arr.length;

                        while ( dataArrayIndex < numberOfDataArrays ) {

                            // Parse the DataArray
                            if ( ( '#text' in arr[ dataArrayIndex ] ) && ( arr[ dataArrayIndex ][ '#text' ].length > 0 ) ) {

                                arr[ dataArrayIndex ].text = parseDataArray( arr[ dataArrayIndex ], compressed );

                            }

                            dataArrayIndex ++;

                        }

                        switch ( sections[ sectionIndex ] ) {

                            // if iti is point data
                            case 'PointData':

                                {

                                    const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );
                                    const normalsName = section.attributes.Normals;

                                    if ( numberOfPoints > 0 ) {

                                        for ( let i = 0, len = arr.length; i < len; i ++ ) {

                                            if ( normalsName === arr[ i ].attributes.Name ) {

                                                const components = arr[ i ].attributes.NumberOfComponents;
                                                normals = new Float32Array( numberOfPoints * components );
                                                normals.set( arr[ i ].text, 0 );

                                            }

                                        }

                                    }

                                }

                                break;

                            // if it is points
                            case 'Points':

                                {

                                    const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );

                                    if ( numberOfPoints > 0 ) {

                                        const components = section.DataArray.attributes.NumberOfComponents;
                                        points = new Float32Array( numberOfPoints * components );
                                        points.set( section.DataArray.text, 0 );

                                    }

                                }

                                break;

                            // if it is strips
                            case 'Strips':

                                {

                                    const numberOfStrips = parseInt( piece.attributes.NumberOfStrips );

                                    if ( numberOfStrips > 0 ) {

                                        const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
                                        const offset = new Int32Array( section.DataArray[ 1 ].text.length );
                                        connectivity.set( section.DataArray[ 0 ].text, 0 );
                                        offset.set( section.DataArray[ 1 ].text, 0 );

                                        const size = numberOfStrips + connectivity.length;
                                        indices = new Uint32Array( 3 * size - 9 * numberOfStrips );

                                        let indicesIndex = 0;

                                        for ( let i = 0, len = numberOfStrips; i < len; i ++ ) {

                                            const strip = [];

                                            for ( let s = 0, len1 = offset[ i ], len0 = 0; s < len1 - len0; s ++ ) {

                                                strip.push( connectivity[ s ] );

                                                if ( i > 0 ) len0 = offset[ i - 1 ];

                                            }

                                            for ( let j = 0, len1 = offset[ i ], len0 = 0; j < len1 - len0 - 2; j ++ ) {

                                                if ( j % 2 ) {

                                                    indices[ indicesIndex ++ ] = strip[ j ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 2 ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 1 ];

                                                } else {

                                                    indices[ indicesIndex ++ ] = strip[ j ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 1 ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 2 ];

                                                }

                                                if ( i > 0 ) len0 = offset[ i - 1 ];

                                            }

                                        }

                                    }

                                }

                                break;

                            // if it is polys
                            case 'Polys':

                                {

                                    const numberOfPolys = parseInt( piece.attributes.NumberOfPolys );

                                    if ( numberOfPolys > 0 ) {

                                        const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
                                        const offset = new Int32Array( section.DataArray[ 1 ].text.length );
                                        connectivity.set( section.DataArray[ 0 ].text, 0 );
                                        offset.set( section.DataArray[ 1 ].text, 0 );

                                        const size = numberOfPolys + connectivity.length;
                                        indices = new Uint32Array( 3 * size - 9 * numberOfPolys );
                                        let indicesIndex = 0, connectivityIndex = 0;
                                        let i = 0, len0 = 0;
                                        const len = numberOfPolys;

                                        while ( i < len ) {

                                            const poly = [];
                                            let s = 0;
                                            const len1 = offset[ i ];

                                            while ( s < len1 - len0 ) {

                                                poly.push( connectivity[ connectivityIndex ++ ] );
                                                s ++;

                                            }

                                            let j = 1;

                                            while ( j < len1 - len0 - 1 ) {

                                                indices[ indicesIndex ++ ] = poly[ 0 ];
                                                indices[ indicesIndex ++ ] = poly[ j ];
                                                indices[ indicesIndex ++ ] = poly[ j + 1 ];
                                                j ++;

                                            }

                                            i ++;
                                            len0 = offset[ i - 1 ];

                                        }

                                    }

                                }

                                break;

                            default:
                                break;

                        }

                    }

                    sectionIndex ++;

                }

                const geometry = new BufferGeometry();
                geometry.setIndex( new BufferAttribute( indices, 1 ) );
                geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );

                if ( normals.length === points.length ) {

                    geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );

                }

                return geometry;

            } else {

                throw new Error( 'Unsupported DATASET type' );

            }

        }

        const textDecoder = new TextDecoder();

        // get the 5 first lines of the files to check if there is the key word binary
        const meta = textDecoder.decode( new Uint8Array( data, 0, 250 ) ).split( '\n' );

        if ( meta[ 0 ].indexOf( 'xml' ) !== - 1 ) {

            return parseXML( textDecoder.decode( data ) );

        } else if ( meta[ 2 ].includes( 'ASCII' ) ) {

            return parseASCII( textDecoder.decode( data ) );

        } else {

            return parseBinary( data );

        }

    }

}

Methods

load(url: string, onLoad: (arg0: BufferGeometry) => any, onProgress: onProgressCallback, onError: onErrorCallback): void
Code
load( url, onLoad, onProgress, onError ) {

        const scope = this;

        const loader = new FileLoader( scope.manager );
        loader.setPath( scope.path );
        loader.setResponseType( 'arraybuffer' );
        loader.setRequestHeader( scope.requestHeader );
        loader.setWithCredentials( scope.withCredentials );
        loader.load( url, function ( text ) {

            try {

                onLoad( scope.parse( text ) );

            } catch ( e ) {

                if ( onError ) {

                    onError( e );

                } else {

                    console.error( e );

                }

                scope.manager.itemError( url );

            }

        }, onProgress, onError );

    }
parse(data: ArrayBuffer): BufferGeometry
Code
parse( data ) {

        function parseASCII( data ) {

            // connectivity of the triangles
            const indices = [];

            // triangles vertices
            const positions = [];

            // red, green, blue colors in the range 0 to 1
            const colors = [];

            // normal vector, one per vertex
            const normals = [];

            let result;

            // pattern for detecting the end of a number sequence
            const patWord = /^[^\d.\s-]+/;

            // pattern for reading vertices, 3 floats or integers
            const pat3Floats = /(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)/g;

            // pattern for connectivity, an integer followed by any number of ints
            // the first integer is the number of polygon nodes
            const patConnectivity = /^(\d+)\s+([\s\d]*)/;

            // indicates start of vertex data section
            const patPOINTS = /^POINTS /;

            // indicates start of polygon connectivity section
            const patPOLYGONS = /^POLYGONS /;

            // indicates start of triangle strips section
            const patTRIANGLE_STRIPS = /^TRIANGLE_STRIPS /;

            // POINT_DATA number_of_values
            const patPOINT_DATA = /^POINT_DATA[ ]+(\d+)/;

            // CELL_DATA number_of_polys
            const patCELL_DATA = /^CELL_DATA[ ]+(\d+)/;

            // Start of color section
            const patCOLOR_SCALARS = /^COLOR_SCALARS[ ]+(\w+)[ ]+3/;

            // NORMALS Normals float
            const patNORMALS = /^NORMALS[ ]+(\w+)[ ]+(\w+)/;

            let inPointsSection = false;
            let inPolygonsSection = false;
            let inTriangleStripSection = false;
            let inPointDataSection = false;
            let inCellDataSection = false;
            let inColorSection = false;
            let inNormalsSection = false;

            const color = new Color();

            const lines = data.split( '\n' );

            for ( const i in lines ) {

                const line = lines[ i ].trim();

                if ( line.indexOf( 'DATASET' ) === 0 ) {

                    const dataset = line.split( ' ' )[ 1 ];

                    if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );

                } else if ( inPointsSection ) {

                    // get the vertices
                    while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                        if ( patWord.exec( line ) !== null ) break;

                        const x = parseFloat( result[ 1 ] );
                        const y = parseFloat( result[ 2 ] );
                        const z = parseFloat( result[ 3 ] );
                        positions.push( x, y, z );

                    }

                } else if ( inPolygonsSection ) {

                    if ( ( result = patConnectivity.exec( line ) ) !== null ) {

                        // numVertices i0 i1 i2 ...
                        const numVertices = parseInt( result[ 1 ] );
                        const inds = result[ 2 ].split( /\s+/ );

                        if ( numVertices >= 3 ) {

                            const i0 = parseInt( inds[ 0 ] );
                            let k = 1;
                            // split the polygon in numVertices - 2 triangles
                            for ( let j = 0; j < numVertices - 2; ++ j ) {

                                const i1 = parseInt( inds[ k ] );
                                const i2 = parseInt( inds[ k + 1 ] );
                                indices.push( i0, i1, i2 );
                                k ++;

                            }

                        }

                    }

                } else if ( inTriangleStripSection ) {

                    if ( ( result = patConnectivity.exec( line ) ) !== null ) {

                        // numVertices i0 i1 i2 ...
                        const numVertices = parseInt( result[ 1 ] );
                        const inds = result[ 2 ].split( /\s+/ );

                        if ( numVertices >= 3 ) {

                            // split the polygon in numVertices - 2 triangles
                            for ( let j = 0; j < numVertices - 2; j ++ ) {

                                if ( j % 2 === 1 ) {

                                    const i0 = parseInt( inds[ j ] );
                                    const i1 = parseInt( inds[ j + 2 ] );
                                    const i2 = parseInt( inds[ j + 1 ] );
                                    indices.push( i0, i1, i2 );

                                } else {

                                    const i0 = parseInt( inds[ j ] );
                                    const i1 = parseInt( inds[ j + 1 ] );
                                    const i2 = parseInt( inds[ j + 2 ] );
                                    indices.push( i0, i1, i2 );

                                }

                            }

                        }

                    }

                } else if ( inPointDataSection || inCellDataSection ) {

                    if ( inColorSection ) {

                        // Get the colors

                        while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                            if ( patWord.exec( line ) !== null ) break;

                            const r = parseFloat( result[ 1 ] );
                            const g = parseFloat( result[ 2 ] );
                            const b = parseFloat( result[ 3 ] );

                            color.setRGB( r, g, b, SRGBColorSpace );

                            colors.push( color.r, color.g, color.b );

                        }

                    } else if ( inNormalsSection ) {

                        // Get the normal vectors

                        while ( ( result = pat3Floats.exec( line ) ) !== null ) {

                            if ( patWord.exec( line ) !== null ) break;

                            const nx = parseFloat( result[ 1 ] );
                            const ny = parseFloat( result[ 2 ] );
                            const nz = parseFloat( result[ 3 ] );
                            normals.push( nx, ny, nz );

                        }

                    }

                }

                if ( patPOLYGONS.exec( line ) !== null ) {

                    inPolygonsSection = true;
                    inPointsSection = false;
                    inTriangleStripSection = false;

                } else if ( patPOINTS.exec( line ) !== null ) {

                    inPolygonsSection = false;
                    inPointsSection = true;
                    inTriangleStripSection = false;

                } else if ( patTRIANGLE_STRIPS.exec( line ) !== null ) {

                    inPolygonsSection = false;
                    inPointsSection = false;
                    inTriangleStripSection = true;

                } else if ( patPOINT_DATA.exec( line ) !== null ) {

                    inPointDataSection = true;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patCELL_DATA.exec( line ) !== null ) {

                    inCellDataSection = true;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patCOLOR_SCALARS.exec( line ) !== null ) {

                    inColorSection = true;
                    inNormalsSection = false;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                } else if ( patNORMALS.exec( line ) !== null ) {

                    inNormalsSection = true;
                    inColorSection = false;
                    inPointsSection = false;
                    inPolygonsSection = false;
                    inTriangleStripSection = false;

                }

            }

            let geometry = new BufferGeometry();
            geometry.setIndex( indices );
            geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

            if ( normals.length === positions.length ) {

                geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );

            }

            if ( colors.length !== indices.length ) {

                // stagger

                if ( colors.length === positions.length ) {

                    geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

                }

            } else {

                // cell

                geometry = geometry.toNonIndexed();
                const numTriangles = geometry.attributes.position.count / 3;

                if ( colors.length === ( numTriangles * 3 ) ) {

                    const newColors = [];

                    for ( let i = 0; i < numTriangles; i ++ ) {

                        const r = colors[ 3 * i + 0 ];
                        const g = colors[ 3 * i + 1 ];
                        const b = colors[ 3 * i + 2 ];

                        color.setRGB( r, g, b, SRGBColorSpace );

                        newColors.push( color.r, color.g, color.b );
                        newColors.push( color.r, color.g, color.b );
                        newColors.push( color.r, color.g, color.b );

                    }

                    geometry.setAttribute( 'color', new Float32BufferAttribute( newColors, 3 ) );

                }

            }

            return geometry;

        }

        function parseBinary( data ) {

            const buffer = new Uint8Array( data );
            const dataView = new DataView( data );

            // Points and normals, by default, are empty
            let points = [];
            let normals = [];
            let indices = [];

            let index = 0;

            function findString( buffer, start ) {

                let index = start;
                let c = buffer[ index ];
                const s = [];
                while ( c !== 10 ) {

                    s.push( String.fromCharCode( c ) );
                    index ++;
                    c = buffer[ index ];

                }

                return { start: start,
                    end: index,
                    next: index + 1,
                    parsedString: s.join( '' ) };

            }

            let state, line;

            while ( true ) {

                // Get a string
                state = findString( buffer, index );
                line = state.parsedString;

                if ( line.indexOf( 'DATASET' ) === 0 ) {

                    const dataset = line.split( ' ' )[ 1 ];

                    if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );

                } else if ( line.indexOf( 'POINTS' ) === 0 ) {

                    // Add the points
                    const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );

                    // Each point is 3 4-byte floats
                    const count = numberOfPoints * 4 * 3;

                    points = new Float32Array( numberOfPoints * 3 );

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfPoints; i ++ ) {

                        points[ 3 * i ] = dataView.getFloat32( pointIndex, false );
                        points[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
                        points[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
                        pointIndex = pointIndex + 12;

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'TRIANGLE_STRIPS' ) === 0 ) {

                    const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
                    const size = parseInt( line.split( ' ' )[ 2 ], 10 );
                    // 4 byte integers
                    const count = size * 4;

                    indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
                    let indicesIndex = 0;

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfStrips; i ++ ) {

                        // For each strip, read the first value, then record that many more points
                        const indexCount = dataView.getInt32( pointIndex, false );
                        const strip = [];
                        pointIndex += 4;
                        for ( let s = 0; s < indexCount; s ++ ) {

                            strip.push( dataView.getInt32( pointIndex, false ) );
                            pointIndex += 4;

                        }

                        // retrieves the n-2 triangles from the triangle strip
                        for ( let j = 0; j < indexCount - 2; j ++ ) {

                            if ( j % 2 ) {

                                indices[ indicesIndex ++ ] = strip[ j ];
                                indices[ indicesIndex ++ ] = strip[ j + 2 ];
                                indices[ indicesIndex ++ ] = strip[ j + 1 ];

                            } else {

                                indices[ indicesIndex ++ ] = strip[ j ];
                                indices[ indicesIndex ++ ] = strip[ j + 1 ];
                                indices[ indicesIndex ++ ] = strip[ j + 2 ];

                            }

                        }

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'POLYGONS' ) === 0 ) {

                    const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
                    const size = parseInt( line.split( ' ' )[ 2 ], 10 );
                    // 4 byte integers
                    const count = size * 4;

                    indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
                    let indicesIndex = 0;

                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfStrips; i ++ ) {

                        // For each strip, read the first value, then record that many more points
                        const indexCount = dataView.getInt32( pointIndex, false );
                        const strip = [];
                        pointIndex += 4;
                        for ( let s = 0; s < indexCount; s ++ ) {

                            strip.push( dataView.getInt32( pointIndex, false ) );
                            pointIndex += 4;

                        }

                        // divide the polygon in n-2 triangle
                        for ( let j = 1; j < indexCount - 1; j ++ ) {

                            indices[ indicesIndex ++ ] = strip[ 0 ];
                            indices[ indicesIndex ++ ] = strip[ j ];
                            indices[ indicesIndex ++ ] = strip[ j + 1 ];

                        }

                    }

                    // increment our next pointer
                    state.next = state.next + count + 1;

                } else if ( line.indexOf( 'POINT_DATA' ) === 0 ) {

                    const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );

                    // Grab the next line
                    state = findString( buffer, state.next );

                    // Now grab the binary data
                    const count = numberOfPoints * 4 * 3;

                    normals = new Float32Array( numberOfPoints * 3 );
                    let pointIndex = state.next;
                    for ( let i = 0; i < numberOfPoints; i ++ ) {

                        normals[ 3 * i ] = dataView.getFloat32( pointIndex, false );
                        normals[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
                        normals[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
                        pointIndex += 12;

                    }

                    // Increment past our data
                    state.next = state.next + count;

                }

                // Increment index
                index = state.next;

                if ( index >= buffer.byteLength ) {

                    break;

                }

            }

            const geometry = new BufferGeometry();
            geometry.setIndex( new BufferAttribute( indices, 1 ) );
            geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );

            if ( normals.length === points.length ) {

                geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );

            }

            return geometry;

        }

        function Float32Concat( first, second ) {

            const firstLength = first.length, result = new Float32Array( firstLength + second.length );

            result.set( first );
            result.set( second, firstLength );

            return result;

        }

        function Int32Concat( first, second ) {

            const firstLength = first.length, result = new Int32Array( firstLength + second.length );

            result.set( first );
            result.set( second, firstLength );

            return result;

        }

        function parseXML( stringFile ) {

            // Changes XML to JSON, based on https://davidwalsh.name/convert-xml-json

            function xmlToJson( xml ) {

                // Create the return object
                let obj = {};

                if ( xml.nodeType === 1 ) { // element

                    // do attributes

                    if ( xml.attributes ) {

                        if ( xml.attributes.length > 0 ) {

                            obj[ 'attributes' ] = {};

                            for ( let j = 0; j < xml.attributes.length; j ++ ) {

                                const attribute = xml.attributes.item( j );
                                obj[ 'attributes' ][ attribute.nodeName ] = attribute.nodeValue.trim();

                            }

                        }

                    }

                } else if ( xml.nodeType === 3 ) { // text

                    obj = xml.nodeValue.trim();

                }

                // do children
                if ( xml.hasChildNodes() ) {

                    for ( let i = 0; i < xml.childNodes.length; i ++ ) {

                        const item = xml.childNodes.item( i );
                        const nodeName = item.nodeName;

                        if ( typeof obj[ nodeName ] === 'undefined' ) {

                            const tmp = xmlToJson( item );

                            if ( tmp !== '' ) {

                                if ( Array.isArray( tmp[ '#text' ] ) ) {

                                    tmp[ '#text' ] = tmp[ '#text' ][ 0 ];

                                }

                                obj[ nodeName ] = tmp;

                            }

                        } else {

                            if ( typeof obj[ nodeName ].push === 'undefined' ) {

                                const old = obj[ nodeName ];
                                obj[ nodeName ] = [ old ];

                            }

                            const tmp = xmlToJson( item );

                            if ( tmp !== '' ) {

                                if ( Array.isArray( tmp[ '#text' ] ) ) {

                                    tmp[ '#text' ] = tmp[ '#text' ][ 0 ];

                                }

                                obj[ nodeName ].push( tmp );

                            }

                        }

                    }

                }

                return obj;

            }

            // Taken from Base64-js
            function Base64toByteArray( b64 ) {

                const Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array;
                const revLookup = [];
                const code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';

                for ( let i = 0, l = code.length; i < l; ++ i ) {

                    revLookup[ code.charCodeAt( i ) ] = i;

                }

                revLookup[ '-'.charCodeAt( 0 ) ] = 62;
                revLookup[ '_'.charCodeAt( 0 ) ] = 63;

                const len = b64.length;

                if ( len % 4 > 0 ) {

                    throw new Error( 'Invalid string. Length must be a multiple of 4' );

                }

                const placeHolders = b64[ len - 2 ] === '=' ? 2 : b64[ len - 1 ] === '=' ? 1 : 0;
                const arr = new Arr( len * 3 / 4 - placeHolders );
                const l = placeHolders > 0 ? len - 4 : len;

                let L = 0;
                let i, j;

                for ( i = 0, j = 0; i < l; i += 4, j += 3 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 18 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 12 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] << 6 ) | revLookup[ b64.charCodeAt( i + 3 ) ];
                    arr[ L ++ ] = ( tmp & 0xFF0000 ) >> 16;
                    arr[ L ++ ] = ( tmp & 0xFF00 ) >> 8;
                    arr[ L ++ ] = tmp & 0xFF;

                }

                if ( placeHolders === 2 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 2 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] >> 4 );
                    arr[ L ++ ] = tmp & 0xFF;

                } else if ( placeHolders === 1 ) {

                    const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 10 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 4 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] >> 2 );
                    arr[ L ++ ] = ( tmp >> 8 ) & 0xFF;
                    arr[ L ++ ] = tmp & 0xFF;

                }

                return arr;

            }

            function parseDataArray( ele, compressed ) {

                let numBytes = 0;

                if ( json.attributes.header_type === 'UInt64' ) {

                    numBytes = 8;

                }   else if ( json.attributes.header_type === 'UInt32' ) {

                    numBytes = 4;

                }

                let txt, content;

                // Check the format
                if ( ele.attributes.format === 'binary' && compressed ) {

                    if ( ele.attributes.type === 'Float32' ) {

                        txt = new Float32Array( );

                    } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {

                        txt = new Int32Array( );

                    }

                    // VTP data with the header has the following structure:
                    // [#blocks][#u-size][#p-size][#c-size-1][#c-size-2]...[#c-size-#blocks][DATA]
                    //
                    // Each token is an integer value whose type is specified by "header_type" at the top of the file (UInt32 if no type specified). The token meanings are:
                    // [#blocks] = Number of blocks
                    // [#u-size] = Block size before compression
                    // [#p-size] = Size of last partial block (zero if it not needed)
                    // [#c-size-i] = Size in bytes of block i after compression
                    //
                    // The [DATA] portion stores contiguously every block appended together. The offset from the beginning of the data section to the beginning of a block is
                    // computed by summing the compressed block sizes from preceding blocks according to the header.

                    const textNode = ele[ '#text' ];
                    const rawData = Array.isArray( textNode ) ? textNode[ 0 ] : textNode;

                    const byteData = Base64toByteArray( rawData );

                    // Each data point consists of 8 bits regardless of the header type
                    const dataPointSize = 8;

                    let blocks = byteData[ 0 ];
                    for ( let i = 1; i < numBytes - 1; i ++ ) {

                        blocks = blocks | ( byteData[ i ] << ( i * dataPointSize ) );

                    }

                    let headerSize = ( blocks + 3 ) * numBytes;
                    const padding = ( ( headerSize % 3 ) > 0 ) ? 3 - ( headerSize % 3 ) : 0;
                    headerSize = headerSize + padding;

                    const dataOffsets = [];
                    let currentOffset = headerSize;
                    dataOffsets.push( currentOffset );

                    // Get the blocks sizes after the compression.
                    // There are three blocks before c-size-i, so we skip 3*numBytes
                    const cSizeStart = 3 * numBytes;

                    for ( let i = 0; i < blocks; i ++ ) {

                        let currentBlockSize = byteData[ i * numBytes + cSizeStart ];

                        for ( let j = 1; j < numBytes - 1; j ++ ) {

                            currentBlockSize = currentBlockSize | ( byteData[ i * numBytes + cSizeStart + j ] << ( j * dataPointSize ) );

                        }

                        currentOffset = currentOffset + currentBlockSize;
                        dataOffsets.push( currentOffset );

                    }

                    for ( let i = 0; i < dataOffsets.length - 1; i ++ ) {

                        const data = fflate.unzlibSync( byteData.slice( dataOffsets[ i ], dataOffsets[ i + 1 ] ) );
                        content = data.buffer;

                        if ( ele.attributes.type === 'Float32' ) {

                            content = new Float32Array( content );
                            txt = Float32Concat( txt, content );

                        } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {

                            content = new Int32Array( content );
                            txt = Int32Concat( txt, content );

                        }

                    }

                    delete ele[ '#text' ];

                    if ( ele.attributes.type === 'Int64' ) {

                        if ( ele.attributes.format === 'binary' ) {

                            txt = txt.filter( function ( el, idx ) {

                                if ( idx % 2 !== 1 ) return true;

                            } );

                        }

                    }

                } else {

                    if ( ele.attributes.format === 'binary' && ! compressed ) {

                        content = Base64toByteArray( ele[ '#text' ] );

                        //  VTP data for the uncompressed case has the following structure:
                        // [#bytes][DATA]
                        // where "[#bytes]" is an integer value specifying the number of bytes in the block of data following it.
                        content = content.slice( numBytes ).buffer;

                    } else {

                        if ( ele[ '#text' ] ) {

                            content = ele[ '#text' ].split( /\s+/ ).filter( function ( el ) {

                                if ( el !== '' ) return el;

                            } );

                        } else {

                            content = new Int32Array( 0 ).buffer;

                        }

                    }

                    delete ele[ '#text' ];

                    // Get the content and optimize it
                    if ( ele.attributes.type === 'Float32' ) {

                        txt = new Float32Array( content );

                    } else if ( ele.attributes.type === 'Int32' ) {

                        txt = new Int32Array( content );

                    } else if ( ele.attributes.type === 'Int64' ) {

                        txt = new Int32Array( content );

                        if ( ele.attributes.format === 'binary' ) {

                            txt = txt.filter( function ( el, idx ) {

                                if ( idx % 2 !== 1 ) return true;

                            } );

                        }

                    }

                } // endif ( ele.attributes.format === 'binary' && compressed )

                return txt;

            }

            // Main part
            // Get Dom
            const dom = new DOMParser().parseFromString( stringFile, 'application/xml' );

            // Get the doc
            const doc = dom.documentElement;
            // Convert to json
            const json = xmlToJson( doc );
            let points = [];
            let normals = [];
            let indices = [];

            if ( json.AppendedData ) {

                const appendedData = json.AppendedData[ '#text' ].slice( 1 );
                const piece = json.PolyData.Piece;

                const sections = [ 'PointData', 'CellData', 'Points', 'Verts', 'Lines', 'Strips', 'Polys' ];
                let sectionIndex = 0;

                const offsets = sections.map( s => {

                    const sect = piece[ s ];

                    if ( sect && sect.DataArray ) {

                        const arr = Array.isArray( sect.DataArray ) ? sect.DataArray : [ sect.DataArray ];

                        return arr.map( a => a.attributes.offset );

                    }

                    return [];

                } ).flat();

                for ( const sect of sections ) {

                    const section = piece[ sect ];

                    if ( section && section.DataArray ) {

                        if ( Array.isArray( section.DataArray ) ) {

                            for ( const sectionEle of section.DataArray ) {

                                sectionEle[ '#text' ] = appendedData.slice( offsets[ sectionIndex ], offsets[ sectionIndex + 1 ] );
                                sectionEle.attributes.format = 'binary';
                                sectionIndex ++;

                            }

                        } else {

                            section.DataArray[ '#text' ] = appendedData.slice( offsets[ sectionIndex ], offsets[ sectionIndex + 1 ] );
                            section.DataArray.attributes.format = 'binary';
                            sectionIndex ++;

                        }

                    }

                }

            }

            if ( json.PolyData ) {

                const piece = json.PolyData.Piece;
                const compressed = json.attributes.hasOwnProperty( 'compressor' );

                // Can be optimized
                // Loop through the sections
                const sections = [ 'PointData', 'Points', 'Strips', 'Polys' ];// +['CellData', 'Verts', 'Lines'];
                let sectionIndex = 0;
                const numberOfSections = sections.length;

                while ( sectionIndex < numberOfSections ) {

                    const section = piece[ sections[ sectionIndex ] ];

                    // If it has a DataArray in it

                    if ( section && section.DataArray ) {

                        // Depending on the number of DataArrays

                        let arr;

                        if ( Array.isArray( section.DataArray ) ) {

                            arr = section.DataArray;

                        } else {

                            arr = [ section.DataArray ];

                        }

                        let dataArrayIndex = 0;
                        const numberOfDataArrays = arr.length;

                        while ( dataArrayIndex < numberOfDataArrays ) {

                            // Parse the DataArray
                            if ( ( '#text' in arr[ dataArrayIndex ] ) && ( arr[ dataArrayIndex ][ '#text' ].length > 0 ) ) {

                                arr[ dataArrayIndex ].text = parseDataArray( arr[ dataArrayIndex ], compressed );

                            }

                            dataArrayIndex ++;

                        }

                        switch ( sections[ sectionIndex ] ) {

                            // if iti is point data
                            case 'PointData':

                                {

                                    const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );
                                    const normalsName = section.attributes.Normals;

                                    if ( numberOfPoints > 0 ) {

                                        for ( let i = 0, len = arr.length; i < len; i ++ ) {

                                            if ( normalsName === arr[ i ].attributes.Name ) {

                                                const components = arr[ i ].attributes.NumberOfComponents;
                                                normals = new Float32Array( numberOfPoints * components );
                                                normals.set( arr[ i ].text, 0 );

                                            }

                                        }

                                    }

                                }

                                break;

                            // if it is points
                            case 'Points':

                                {

                                    const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );

                                    if ( numberOfPoints > 0 ) {

                                        const components = section.DataArray.attributes.NumberOfComponents;
                                        points = new Float32Array( numberOfPoints * components );
                                        points.set( section.DataArray.text, 0 );

                                    }

                                }

                                break;

                            // if it is strips
                            case 'Strips':

                                {

                                    const numberOfStrips = parseInt( piece.attributes.NumberOfStrips );

                                    if ( numberOfStrips > 0 ) {

                                        const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
                                        const offset = new Int32Array( section.DataArray[ 1 ].text.length );
                                        connectivity.set( section.DataArray[ 0 ].text, 0 );
                                        offset.set( section.DataArray[ 1 ].text, 0 );

                                        const size = numberOfStrips + connectivity.length;
                                        indices = new Uint32Array( 3 * size - 9 * numberOfStrips );

                                        let indicesIndex = 0;

                                        for ( let i = 0, len = numberOfStrips; i < len; i ++ ) {

                                            const strip = [];

                                            for ( let s = 0, len1 = offset[ i ], len0 = 0; s < len1 - len0; s ++ ) {

                                                strip.push( connectivity[ s ] );

                                                if ( i > 0 ) len0 = offset[ i - 1 ];

                                            }

                                            for ( let j = 0, len1 = offset[ i ], len0 = 0; j < len1 - len0 - 2; j ++ ) {

                                                if ( j % 2 ) {

                                                    indices[ indicesIndex ++ ] = strip[ j ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 2 ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 1 ];

                                                } else {

                                                    indices[ indicesIndex ++ ] = strip[ j ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 1 ];
                                                    indices[ indicesIndex ++ ] = strip[ j + 2 ];

                                                }

                                                if ( i > 0 ) len0 = offset[ i - 1 ];

                                            }

                                        }

                                    }

                                }

                                break;

                            // if it is polys
                            case 'Polys':

                                {

                                    const numberOfPolys = parseInt( piece.attributes.NumberOfPolys );

                                    if ( numberOfPolys > 0 ) {

                                        const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
                                        const offset = new Int32Array( section.DataArray[ 1 ].text.length );
                                        connectivity.set( section.DataArray[ 0 ].text, 0 );
                                        offset.set( section.DataArray[ 1 ].text, 0 );

                                        const size = numberOfPolys + connectivity.length;
                                        indices = new Uint32Array( 3 * size - 9 * numberOfPolys );
                                        let indicesIndex = 0, connectivityIndex = 0;
                                        let i = 0, len0 = 0;
                                        const len = numberOfPolys;

                                        while ( i < len ) {

                                            const poly = [];
                                            let s = 0;
                                            const len1 = offset[ i ];

                                            while ( s < len1 - len0 ) {

                                                poly.push( connectivity[ connectivityIndex ++ ] );
                                                s ++;

                                            }

                                            let j = 1;

                                            while ( j < len1 - len0 - 1 ) {

                                                indices[ indicesIndex ++ ] = poly[ 0 ];
                                                indices[ indicesIndex ++ ] = poly[ j ];
                                                indices[ indicesIndex ++ ] = poly[ j + 1 ];
                                                j ++;

                                            }

                                            i ++;
                                            len0 = offset[ i - 1 ];

                                        }

                                    }

                                }

                                break;

                            default:
                                break;

                        }

                    }

                    sectionIndex ++;

                }

                const geometry = new BufferGeometry();
                geometry.setIndex( new BufferAttribute( indices, 1 ) );
                geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );

                if ( normals.length === points.length ) {

                    geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );

                }

                return geometry;

            } else {

                throw new Error( 'Unsupported DATASET type' );

            }

        }

        const textDecoder = new TextDecoder();

        // get the 5 first lines of the files to check if there is the key word binary
        const meta = textDecoder.decode( new Uint8Array( data, 0, 250 ) ).split( '\n' );

        if ( meta[ 0 ].indexOf( 'xml' ) !== - 1 ) {

            return parseXML( textDecoder.decode( data ) );

        } else if ( meta[ 2 ].includes( 'ASCII' ) ) {

            return parseASCII( textDecoder.decode( data ) );

        } else {

            return parseBinary( data );

        }

    }