📄 ConvexObjectBreaker.js
¶
📊 Analysis Summary¶
Metric | Count |
---|---|
🔧 Functions | 9 |
🧱 Classes | 1 |
📦 Imports | 5 |
📊 Variables & Constants | 55 |
📚 Table of Contents¶
🛠️ File Location:¶
📂 examples/jsm/misc/ConvexObjectBreaker.js
📦 Imports¶
Name | Source |
---|---|
Line3 |
three |
Mesh |
three |
Plane |
three |
Vector3 |
three |
ConvexGeometry |
../geometries/ConvexGeometry.js |
Variables & Constants¶
Name | Type | Kind | Value | Exported |
---|---|---|---|---|
_v1 |
any |
let/var | new Vector3() |
✗ |
n |
number |
let/var | 30 * 30 |
✗ |
userData |
any |
let/var | object.userData |
✗ |
debris |
any[] |
let/var | [] |
✗ |
tempPlane1 |
any |
let/var | this.tempPlane1 |
✗ |
tempPlane2 |
any |
let/var | this.tempPlane2 |
✗ |
maxTotalIterations |
number |
let/var | maxRandomIterations + maxRadialIterations |
✗ |
scope |
this |
let/var | this |
✗ |
angle |
number |
let/var | Math.PI |
✗ |
obj1 |
any |
let/var | scope.tempResultObjects.object1 |
✗ |
obj2 |
any |
let/var | scope.tempResultObjects.object2 |
✗ |
geometry |
any |
let/var | object.geometry |
✗ |
coords |
any |
let/var | geometry.attributes.position.array |
✗ |
normals |
any |
let/var | geometry.attributes.normal.array |
✗ |
numPoints |
number |
let/var | coords.length / 3 |
✗ |
numFaces |
number |
let/var | numPoints / 3 |
✗ |
idx |
any |
let/var | faceIdx * 3 + vert |
✗ |
points1 |
any[] |
let/var | [] |
✗ |
points2 |
any[] |
let/var | [] |
✗ |
delta |
number |
let/var | this.smallDelta |
✗ |
numPointPairs |
number |
let/var | numPoints * numPoints |
✗ |
p0 |
any |
let/var | this.tempVector3_P0 |
✗ |
p1 |
any |
let/var | this.tempVector3_P1 |
✗ |
n0 |
any |
let/var | this.tempVector3_N0 |
✗ |
n1 |
any |
let/var | this.tempVector3_N1 |
✗ |
coplanar |
boolean |
let/var | 1 - n0.dot( n1 ) < delta |
✗ |
localPlane |
any |
let/var | this.tempPlane_Cut |
✗ |
i0 |
any |
let/var | segment === 0 ? va : ( segment === 1 ? vb : vc ) |
✗ |
i1 |
any |
let/var | segment === 0 ? vb : ( segment === 1 ? vc : va ) |
✗ |
segmentState |
boolean |
let/var | this.segments[ i0 * numPoints + i1 ] |
✗ |
mark0 |
number |
let/var | 0 |
✗ |
mark1 |
number |
let/var | 0 |
✗ |
intersection |
any |
let/var | new Vector3() |
✗ |
newMass |
number |
let/var | object.userData.mass * 0.5 |
✗ |
radius1 |
number |
let/var | 0 |
✗ |
numPoints1 |
number |
let/var | points1.length |
✗ |
p |
any |
let/var | points1[ i ] |
✗ |
radius2 |
number |
let/var | 0 |
✗ |
numPoints2 |
number |
let/var | points2.length |
✗ |
p |
any |
let/var | points2[ i ] |
✗ |
object1 |
any |
let/var | null |
✗ |
object2 |
any |
let/var | null |
✗ |
numObjects |
number |
let/var | 0 |
✗ |
x |
any |
let/var | v.x |
✗ |
y |
any |
let/var | v.y |
✗ |
z |
any |
let/var | v.z |
✗ |
e |
any |
let/var | m.elements |
✗ |
x |
any |
let/var | v.x |
✗ |
y |
any |
let/var | v.y |
✗ |
z |
any |
let/var | v.z |
✗ |
e |
any |
let/var | m.elements |
✗ |
x |
any |
let/var | v.x |
✗ |
y |
any |
let/var | v.y |
✗ |
z |
any |
let/var | v.z |
✗ |
e |
any |
let/var | m.elements |
✗ |
Functions¶
ConvexObjectBreaker.prepareBreakableObject(object: Object3D, mass: number, velocity: Vector3, angularVelocity: Vector3, breakable: boolean): void
¶
JSDoc:
/**
* Must be called for all 3D objects that should be breakable.
*
* @param {Object3D} object - The 3D object. It must have a convex geometry.
* @param {number} mass - The 3D object's mass in kg. Must be greater than `0`.
* @param {Vector3} velocity - The 3D object's velocity.
* @param {Vector3} angularVelocity - The 3D object's angular velocity.
* @param {boolean} breakable - Whether the 3D object is breakable or not.
*/
Parameters:
object
Object3D
mass
number
velocity
Vector3
angularVelocity
Vector3
breakable
boolean
Returns: void
Calls:
velocity.clone
angularVelocity.clone
Internal Comments:
// object is a Object3d (normally a Mesh), must have a buffer geometry, and it must be convex. (x2)
// Its material property is propagated to its children (sub-pieces) (x2)
// mass must be > 0 (x2)
Code
prepareBreakableObject( object, mass, velocity, angularVelocity, breakable ) {
// object is a Object3d (normally a Mesh), must have a buffer geometry, and it must be convex.
// Its material property is propagated to its children (sub-pieces)
// mass must be > 0
const userData = object.userData;
userData.mass = mass;
userData.velocity = velocity.clone();
userData.angularVelocity = angularVelocity.clone();
userData.breakable = breakable;
}
ConvexObjectBreaker.subdivideByImpact(object: Object3D, pointOfImpact: Vector3, normal: Vector3, maxRadialIterations: number, maxRandomIterations: number): Object3D[]
¶
JSDoc:
/**
* Subdivides the given 3D object into pieces by an impact (meaning another object hits
* the given 3D object at a certain surface point).
*
* @param {Object3D} object - The 3D object to subdivide.
* @param {Vector3} pointOfImpact - The point of impact.
* @param {Vector3} normal - The impact normal.
* @param {number} maxRadialIterations - Iterations for radial cuts.
* @param {number} maxRandomIterations - Max random iterations for not-radial cuts.
* @return {Array<Object3D>} The array of pieces.
*/
Parameters:
object
Object3D
pointOfImpact
Vector3
normal
Vector3
maxRadialIterations
number
maxRandomIterations
number
Returns: Object3D[]
Calls:
this.tempVector3.addVectors
tempPlane1.setFromCoplanarPoints
Math.random
debris.push
tempPlane2.normal.copy
scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add
tempPlane2.setFromCoplanarPoints
scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add
scope.tempVector3_3.copy( normal ).add
scope.cutByPlane
subdivideRadial
Internal Comments:
// Rotate tempPlane2 at impact point around normal axis and the angle (x11)
// Rotate tempPlane2 at object position around normal axis and the angle (x11)
// Perform the cut (x4)
Code
subdivideByImpact( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations ) {
const debris = [];
const tempPlane1 = this.tempPlane1;
const tempPlane2 = this.tempPlane2;
this.tempVector3.addVectors( pointOfImpact, normal );
tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 );
const maxTotalIterations = maxRandomIterations + maxRadialIterations;
const scope = this;
function subdivideRadial( subObject, startAngle, endAngle, numIterations ) {
if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) {
debris.push( subObject );
return;
}
let angle = Math.PI;
if ( numIterations === 0 ) {
tempPlane2.normal.copy( tempPlane1.normal );
tempPlane2.constant = tempPlane1.constant;
} else {
if ( numIterations <= maxRadialIterations ) {
angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle;
// Rotate tempPlane2 at impact point around normal axis and the angle
scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact );
tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 );
} else {
angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI;
// Rotate tempPlane2 at object position around normal axis and the angle
scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position );
scope.tempVector3_3.copy( normal ).add( subObject.position );
tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 );
}
}
// Perform the cut
scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects );
const obj1 = scope.tempResultObjects.object1;
const obj2 = scope.tempResultObjects.object2;
if ( obj1 ) {
subdivideRadial( obj1, startAngle, angle, numIterations + 1 );
}
if ( obj2 ) {
subdivideRadial( obj2, angle, endAngle, numIterations + 1 );
}
}
subdivideRadial( object, 0, 2 * Math.PI, 0 );
return debris;
}
ConvexObjectBreaker.cutByPlane(object: Object3D, plane: Plane, output: { object1: Mesh; object2: Mesh; }): number
¶
JSDoc:
/**
* Subdivides the given 3D object into pieces by a plane.
*
* @param {Object3D} object - The 3D object to subdivide.
* @param {Plane} plane - The plane to cut the 3D object.
* @param {{object1:?Mesh,object2:?Mesh}} output - An object that stores the pieces.
* @return {number} The number of pieces.
*/
Parameters:
object
Object3D
plane
Plane
output
{ object1: Mesh; object2: Mesh; }
Returns: number
Calls:
geometry.getIndex
getVertexIndex
n0.set
n1.set
n0.dot
object.updateMatrix
ConvexObjectBreaker.transformPlaneToLocalSpace
p0.set
p1.set
localPlane.distanceToPoint
points2.push
p0.clone
points1.push
p1.clone
this.tempLine1.start.copy
this.tempLine1.end.copy
localPlane.intersectLine
console.error
intersection.clone
this.tempCM1.set
this.tempCM1.add
this.tempCM1.divideScalar
p.sub
Math.max
this.tempCM2.set
this.tempCM2.add
this.tempCM2.divideScalar
object1.position.copy
object1.quaternion.copy
this.prepareBreakableObject
object2.position.copy
object2.quaternion.copy
Internal Comments:
// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut. (x2)
// object2 can be null if the plane doesn't cut the object. (x2)
// object1 can be null only in case of internal error (x2)
// Returned value is number of pieces, 0 for error. (x2)
// vert = 0, 1 or 2. (x2)
// Reset segments mark (x2)
// Iterate through the faces to mark edges shared by coplanar faces
// Assuming all 3 vertices have the same normal (x8)
// Transform the plane to object local space (x2)
// Iterate through the faces adding points to both pieces
// Mark segment as processed (also inverted segment) (x5)
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point (x4)
// Intersection of segment with the plane (x6)
// Shouldn't happen (x4)
// Calculate debris mass (very fast and imprecise): (x2)
// Calculate debris Center of Mass (again fast and imprecise) (x5)
Code
cutByPlane( object, plane, output ) {
// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
// object2 can be null if the plane doesn't cut the object.
// object1 can be null only in case of internal error
// Returned value is number of pieces, 0 for error.
const geometry = object.geometry;
const coords = geometry.attributes.position.array;
const normals = geometry.attributes.normal.array;
const numPoints = coords.length / 3;
let numFaces = numPoints / 3;
let indices = geometry.getIndex();
if ( indices ) {
indices = indices.array;
numFaces = indices.length / 3;
}
function getVertexIndex( faceIdx, vert ) {
// vert = 0, 1 or 2.
const idx = faceIdx * 3 + vert;
return indices ? indices[ idx ] : idx;
}
const points1 = [];
const points2 = [];
const delta = this.smallDelta;
// Reset segments mark
const numPointPairs = numPoints * numPoints;
for ( let i = 0; i < numPointPairs; i ++ ) this.segments[ i ] = false;
const p0 = this.tempVector3_P0;
const p1 = this.tempVector3_P1;
const n0 = this.tempVector3_N0;
const n1 = this.tempVector3_N1;
// Iterate through the faces to mark edges shared by coplanar faces
for ( let i = 0; i < numFaces - 1; i ++ ) {
const a1 = getVertexIndex( i, 0 );
const b1 = getVertexIndex( i, 1 );
const c1 = getVertexIndex( i, 2 );
// Assuming all 3 vertices have the same normal
n0.set( normals[ a1 ], normals[ a1 ] + 1, normals[ a1 ] + 2 );
for ( let j = i + 1; j < numFaces; j ++ ) {
const a2 = getVertexIndex( j, 0 );
const b2 = getVertexIndex( j, 1 );
const c2 = getVertexIndex( j, 2 );
// Assuming all 3 vertices have the same normal
n1.set( normals[ a2 ], normals[ a2 ] + 1, normals[ a2 ] + 2 );
const coplanar = 1 - n0.dot( n1 ) < delta;
if ( coplanar ) {
if ( a1 === a2 || a1 === b2 || a1 === c2 ) {
if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
this.segments[ a1 * numPoints + b1 ] = true;
this.segments[ b1 * numPoints + a1 ] = true;
} else {
this.segments[ c1 * numPoints + a1 ] = true;
this.segments[ a1 * numPoints + c1 ] = true;
}
} else if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
this.segments[ c1 * numPoints + b1 ] = true;
this.segments[ b1 * numPoints + c1 ] = true;
}
}
}
}
// Transform the plane to object local space
const localPlane = this.tempPlane_Cut;
object.updateMatrix();
ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane );
// Iterate through the faces adding points to both pieces
for ( let i = 0; i < numFaces; i ++ ) {
const va = getVertexIndex( i, 0 );
const vb = getVertexIndex( i, 1 );
const vc = getVertexIndex( i, 2 );
for ( let segment = 0; segment < 3; segment ++ ) {
const i0 = segment === 0 ? va : ( segment === 1 ? vb : vc );
const i1 = segment === 0 ? vb : ( segment === 1 ? vc : va );
const segmentState = this.segments[ i0 * numPoints + i1 ];
if ( segmentState ) continue; // The segment already has been processed in another face
// Mark segment as processed (also inverted segment)
this.segments[ i0 * numPoints + i1 ] = true;
this.segments[ i1 * numPoints + i0 ] = true;
p0.set( coords[ 3 * i0 ], coords[ 3 * i0 + 1 ], coords[ 3 * i0 + 2 ] );
p1.set( coords[ 3 * i1 ], coords[ 3 * i1 + 1 ], coords[ 3 * i1 + 2 ] );
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
let mark0 = 0;
let d = localPlane.distanceToPoint( p0 );
if ( d > delta ) {
mark0 = 2;
points2.push( p0.clone() );
} else if ( d < - delta ) {
mark0 = 1;
points1.push( p0.clone() );
} else {
mark0 = 3;
points1.push( p0.clone() );
points2.push( p0.clone() );
}
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
let mark1 = 0;
d = localPlane.distanceToPoint( p1 );
if ( d > delta ) {
mark1 = 2;
points2.push( p1.clone() );
} else if ( d < - delta ) {
mark1 = 1;
points1.push( p1.clone() );
} else {
mark1 = 3;
points1.push( p1.clone() );
points2.push( p1.clone() );
}
if ( ( mark0 === 1 && mark1 === 2 ) || ( mark0 === 2 && mark1 === 1 ) ) {
// Intersection of segment with the plane
this.tempLine1.start.copy( p0 );
this.tempLine1.end.copy( p1 );
let intersection = new Vector3();
intersection = localPlane.intersectLine( this.tempLine1, intersection );
if ( intersection === null ) {
// Shouldn't happen
console.error( 'Internal error: segment does not intersect plane.' );
output.segmentedObject1 = null;
output.segmentedObject2 = null;
return 0;
}
points1.push( intersection );
points2.push( intersection.clone() );
}
}
}
// Calculate debris mass (very fast and imprecise):
const newMass = object.userData.mass * 0.5;
// Calculate debris Center of Mass (again fast and imprecise)
this.tempCM1.set( 0, 0, 0 );
let radius1 = 0;
const numPoints1 = points1.length;
if ( numPoints1 > 0 ) {
for ( let i = 0; i < numPoints1; i ++ ) this.tempCM1.add( points1[ i ] );
this.tempCM1.divideScalar( numPoints1 );
for ( let i = 0; i < numPoints1; i ++ ) {
const p = points1[ i ];
p.sub( this.tempCM1 );
radius1 = Math.max( radius1, p.x, p.y, p.z );
}
this.tempCM1.add( object.position );
}
this.tempCM2.set( 0, 0, 0 );
let radius2 = 0;
const numPoints2 = points2.length;
if ( numPoints2 > 0 ) {
for ( let i = 0; i < numPoints2; i ++ ) this.tempCM2.add( points2[ i ] );
this.tempCM2.divideScalar( numPoints2 );
for ( let i = 0; i < numPoints2; i ++ ) {
const p = points2[ i ];
p.sub( this.tempCM2 );
radius2 = Math.max( radius2, p.x, p.y, p.z );
}
this.tempCM2.add( object.position );
}
let object1 = null;
let object2 = null;
let numObjects = 0;
if ( numPoints1 > 4 ) {
object1 = new Mesh( new ConvexGeometry( points1 ), object.material );
object1.position.copy( this.tempCM1 );
object1.quaternion.copy( object.quaternion );
this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak );
numObjects ++;
}
if ( numPoints2 > 4 ) {
object2 = new Mesh( new ConvexGeometry( points2 ), object.material );
object2.position.copy( this.tempCM2 );
object2.quaternion.copy( object.quaternion );
this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak );
numObjects ++;
}
output.object1 = object1;
output.object2 = object2;
return numObjects;
}
ConvexObjectBreaker.transformFreeVector(v: any, m: any): any
¶
Parameters:
v
any
m
any
Returns: any
Internal Comments:
// input: (x2)
// vector interpreted as a free vector (x2)
// THREE.Matrix4 orthogonal matrix (matrix without scale) (x2)
Code
static transformFreeVector( v, m ) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
return v;
}
ConvexObjectBreaker.transformFreeVectorInverse(v: any, m: any): any
¶
Parameters:
v
any
m
any
Returns: any
Internal Comments:
// input: (x2)
// vector interpreted as a free vector (x2)
// THREE.Matrix4 orthogonal matrix (matrix without scale) (x2)
Code
static transformFreeVectorInverse( v, m ) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z;
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z;
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z;
return v;
}
ConvexObjectBreaker.transformTiedVectorInverse(v: any, m: any): any
¶
Parameters:
v
any
m
any
Returns: any
Internal Comments:
// input: (x2)
// vector interpreted as a tied (ordinary) vector (x2)
// THREE.Matrix4 orthogonal matrix (matrix without scale) (x2)
Code
static transformTiedVectorInverse( v, m ) {
// input:
// vector interpreted as a tied (ordinary) vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ];
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ];
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ];
return v;
}
ConvexObjectBreaker.transformPlaneToLocalSpace(plane: any, m: any, resultPlane: any): void
¶
Parameters:
plane
any
m
any
resultPlane
any
Returns: void
Calls:
resultPlane.normal.copy
ConvexObjectBreaker.transformTiedVectorInverse
plane.coplanarPoint
ConvexObjectBreaker.transformFreeVectorInverse
referencePoint.dot
Internal Comments:
Code
static transformPlaneToLocalSpace( plane, m, resultPlane ) {
resultPlane.normal.copy( plane.normal );
resultPlane.constant = plane.constant;
const referencePoint = ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( _v1 ), m );
ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m );
// recalculate constant (like in setFromNormalAndCoplanarPoint)
resultPlane.constant = - referencePoint.dot( resultPlane.normal );
}
subdivideRadial(subObject: any, startAngle: any, endAngle: any, numIterations: any): void
¶
Parameters:
subObject
any
startAngle
any
endAngle
any
numIterations
any
Returns: void
Calls:
Math.random
debris.push
tempPlane2.normal.copy
scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add
tempPlane2.setFromCoplanarPoints
scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add
scope.tempVector3_3.copy( normal ).add
scope.cutByPlane
subdivideRadial
Internal Comments:
// Rotate tempPlane2 at impact point around normal axis and the angle (x11)
// Rotate tempPlane2 at object position around normal axis and the angle (x11)
// Perform the cut (x4)
Code
function subdivideRadial( subObject, startAngle, endAngle, numIterations ) {
if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) {
debris.push( subObject );
return;
}
let angle = Math.PI;
if ( numIterations === 0 ) {
tempPlane2.normal.copy( tempPlane1.normal );
tempPlane2.constant = tempPlane1.constant;
} else {
if ( numIterations <= maxRadialIterations ) {
angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle;
// Rotate tempPlane2 at impact point around normal axis and the angle
scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact );
tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 );
} else {
angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI;
// Rotate tempPlane2 at object position around normal axis and the angle
scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position );
scope.tempVector3_3.copy( normal ).add( subObject.position );
tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 );
}
}
// Perform the cut
scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects );
const obj1 = scope.tempResultObjects.object1;
const obj2 = scope.tempResultObjects.object2;
if ( obj1 ) {
subdivideRadial( obj1, startAngle, angle, numIterations + 1 );
}
if ( obj2 ) {
subdivideRadial( obj2, angle, endAngle, numIterations + 1 );
}
}
getVertexIndex(faceIdx: any, vert: any): any
¶
Parameters:
faceIdx
any
vert
any
Returns: any
Internal Comments:
Code
Classes¶
ConvexObjectBreaker
¶
Class Code
class ConvexObjectBreaker {
/**
* Constructs a new convex object breaker.
*
* @param {number} [minSizeForBreak=1.4] - Min size a debris can have to break.
* @param {number} [smallDelta=0.0001] - Max distance to consider that a point belongs to a plane.
*/
constructor( minSizeForBreak = 1.4, smallDelta = 0.0001 ) {
this.minSizeForBreak = minSizeForBreak;
this.smallDelta = smallDelta;
this.tempLine1 = new Line3();
this.tempPlane1 = new Plane();
this.tempPlane2 = new Plane();
this.tempPlane_Cut = new Plane();
this.tempCM1 = new Vector3();
this.tempCM2 = new Vector3();
this.tempVector3 = new Vector3();
this.tempVector3_2 = new Vector3();
this.tempVector3_3 = new Vector3();
this.tempVector3_P0 = new Vector3();
this.tempVector3_P1 = new Vector3();
this.tempVector3_P2 = new Vector3();
this.tempVector3_N0 = new Vector3();
this.tempVector3_N1 = new Vector3();
this.tempVector3_AB = new Vector3();
this.tempVector3_CB = new Vector3();
this.tempResultObjects = { object1: null, object2: null };
this.segments = [];
const n = 30 * 30;
for ( let i = 0; i < n; i ++ ) this.segments[ i ] = false;
}
/**
* Must be called for all 3D objects that should be breakable.
*
* @param {Object3D} object - The 3D object. It must have a convex geometry.
* @param {number} mass - The 3D object's mass in kg. Must be greater than `0`.
* @param {Vector3} velocity - The 3D object's velocity.
* @param {Vector3} angularVelocity - The 3D object's angular velocity.
* @param {boolean} breakable - Whether the 3D object is breakable or not.
*/
prepareBreakableObject( object, mass, velocity, angularVelocity, breakable ) {
// object is a Object3d (normally a Mesh), must have a buffer geometry, and it must be convex.
// Its material property is propagated to its children (sub-pieces)
// mass must be > 0
const userData = object.userData;
userData.mass = mass;
userData.velocity = velocity.clone();
userData.angularVelocity = angularVelocity.clone();
userData.breakable = breakable;
}
/**
* Subdivides the given 3D object into pieces by an impact (meaning another object hits
* the given 3D object at a certain surface point).
*
* @param {Object3D} object - The 3D object to subdivide.
* @param {Vector3} pointOfImpact - The point of impact.
* @param {Vector3} normal - The impact normal.
* @param {number} maxRadialIterations - Iterations for radial cuts.
* @param {number} maxRandomIterations - Max random iterations for not-radial cuts.
* @return {Array<Object3D>} The array of pieces.
*/
subdivideByImpact( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations ) {
const debris = [];
const tempPlane1 = this.tempPlane1;
const tempPlane2 = this.tempPlane2;
this.tempVector3.addVectors( pointOfImpact, normal );
tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 );
const maxTotalIterations = maxRandomIterations + maxRadialIterations;
const scope = this;
function subdivideRadial( subObject, startAngle, endAngle, numIterations ) {
if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) {
debris.push( subObject );
return;
}
let angle = Math.PI;
if ( numIterations === 0 ) {
tempPlane2.normal.copy( tempPlane1.normal );
tempPlane2.constant = tempPlane1.constant;
} else {
if ( numIterations <= maxRadialIterations ) {
angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle;
// Rotate tempPlane2 at impact point around normal axis and the angle
scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact );
tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 );
} else {
angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI;
// Rotate tempPlane2 at object position around normal axis and the angle
scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position );
scope.tempVector3_3.copy( normal ).add( subObject.position );
tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 );
}
}
// Perform the cut
scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects );
const obj1 = scope.tempResultObjects.object1;
const obj2 = scope.tempResultObjects.object2;
if ( obj1 ) {
subdivideRadial( obj1, startAngle, angle, numIterations + 1 );
}
if ( obj2 ) {
subdivideRadial( obj2, angle, endAngle, numIterations + 1 );
}
}
subdivideRadial( object, 0, 2 * Math.PI, 0 );
return debris;
}
/**
* Subdivides the given 3D object into pieces by a plane.
*
* @param {Object3D} object - The 3D object to subdivide.
* @param {Plane} plane - The plane to cut the 3D object.
* @param {{object1:?Mesh,object2:?Mesh}} output - An object that stores the pieces.
* @return {number} The number of pieces.
*/
cutByPlane( object, plane, output ) {
// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
// object2 can be null if the plane doesn't cut the object.
// object1 can be null only in case of internal error
// Returned value is number of pieces, 0 for error.
const geometry = object.geometry;
const coords = geometry.attributes.position.array;
const normals = geometry.attributes.normal.array;
const numPoints = coords.length / 3;
let numFaces = numPoints / 3;
let indices = geometry.getIndex();
if ( indices ) {
indices = indices.array;
numFaces = indices.length / 3;
}
function getVertexIndex( faceIdx, vert ) {
// vert = 0, 1 or 2.
const idx = faceIdx * 3 + vert;
return indices ? indices[ idx ] : idx;
}
const points1 = [];
const points2 = [];
const delta = this.smallDelta;
// Reset segments mark
const numPointPairs = numPoints * numPoints;
for ( let i = 0; i < numPointPairs; i ++ ) this.segments[ i ] = false;
const p0 = this.tempVector3_P0;
const p1 = this.tempVector3_P1;
const n0 = this.tempVector3_N0;
const n1 = this.tempVector3_N1;
// Iterate through the faces to mark edges shared by coplanar faces
for ( let i = 0; i < numFaces - 1; i ++ ) {
const a1 = getVertexIndex( i, 0 );
const b1 = getVertexIndex( i, 1 );
const c1 = getVertexIndex( i, 2 );
// Assuming all 3 vertices have the same normal
n0.set( normals[ a1 ], normals[ a1 ] + 1, normals[ a1 ] + 2 );
for ( let j = i + 1; j < numFaces; j ++ ) {
const a2 = getVertexIndex( j, 0 );
const b2 = getVertexIndex( j, 1 );
const c2 = getVertexIndex( j, 2 );
// Assuming all 3 vertices have the same normal
n1.set( normals[ a2 ], normals[ a2 ] + 1, normals[ a2 ] + 2 );
const coplanar = 1 - n0.dot( n1 ) < delta;
if ( coplanar ) {
if ( a1 === a2 || a1 === b2 || a1 === c2 ) {
if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
this.segments[ a1 * numPoints + b1 ] = true;
this.segments[ b1 * numPoints + a1 ] = true;
} else {
this.segments[ c1 * numPoints + a1 ] = true;
this.segments[ a1 * numPoints + c1 ] = true;
}
} else if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
this.segments[ c1 * numPoints + b1 ] = true;
this.segments[ b1 * numPoints + c1 ] = true;
}
}
}
}
// Transform the plane to object local space
const localPlane = this.tempPlane_Cut;
object.updateMatrix();
ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane );
// Iterate through the faces adding points to both pieces
for ( let i = 0; i < numFaces; i ++ ) {
const va = getVertexIndex( i, 0 );
const vb = getVertexIndex( i, 1 );
const vc = getVertexIndex( i, 2 );
for ( let segment = 0; segment < 3; segment ++ ) {
const i0 = segment === 0 ? va : ( segment === 1 ? vb : vc );
const i1 = segment === 0 ? vb : ( segment === 1 ? vc : va );
const segmentState = this.segments[ i0 * numPoints + i1 ];
if ( segmentState ) continue; // The segment already has been processed in another face
// Mark segment as processed (also inverted segment)
this.segments[ i0 * numPoints + i1 ] = true;
this.segments[ i1 * numPoints + i0 ] = true;
p0.set( coords[ 3 * i0 ], coords[ 3 * i0 + 1 ], coords[ 3 * i0 + 2 ] );
p1.set( coords[ 3 * i1 ], coords[ 3 * i1 + 1 ], coords[ 3 * i1 + 2 ] );
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
let mark0 = 0;
let d = localPlane.distanceToPoint( p0 );
if ( d > delta ) {
mark0 = 2;
points2.push( p0.clone() );
} else if ( d < - delta ) {
mark0 = 1;
points1.push( p0.clone() );
} else {
mark0 = 3;
points1.push( p0.clone() );
points2.push( p0.clone() );
}
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
let mark1 = 0;
d = localPlane.distanceToPoint( p1 );
if ( d > delta ) {
mark1 = 2;
points2.push( p1.clone() );
} else if ( d < - delta ) {
mark1 = 1;
points1.push( p1.clone() );
} else {
mark1 = 3;
points1.push( p1.clone() );
points2.push( p1.clone() );
}
if ( ( mark0 === 1 && mark1 === 2 ) || ( mark0 === 2 && mark1 === 1 ) ) {
// Intersection of segment with the plane
this.tempLine1.start.copy( p0 );
this.tempLine1.end.copy( p1 );
let intersection = new Vector3();
intersection = localPlane.intersectLine( this.tempLine1, intersection );
if ( intersection === null ) {
// Shouldn't happen
console.error( 'Internal error: segment does not intersect plane.' );
output.segmentedObject1 = null;
output.segmentedObject2 = null;
return 0;
}
points1.push( intersection );
points2.push( intersection.clone() );
}
}
}
// Calculate debris mass (very fast and imprecise):
const newMass = object.userData.mass * 0.5;
// Calculate debris Center of Mass (again fast and imprecise)
this.tempCM1.set( 0, 0, 0 );
let radius1 = 0;
const numPoints1 = points1.length;
if ( numPoints1 > 0 ) {
for ( let i = 0; i < numPoints1; i ++ ) this.tempCM1.add( points1[ i ] );
this.tempCM1.divideScalar( numPoints1 );
for ( let i = 0; i < numPoints1; i ++ ) {
const p = points1[ i ];
p.sub( this.tempCM1 );
radius1 = Math.max( radius1, p.x, p.y, p.z );
}
this.tempCM1.add( object.position );
}
this.tempCM2.set( 0, 0, 0 );
let radius2 = 0;
const numPoints2 = points2.length;
if ( numPoints2 > 0 ) {
for ( let i = 0; i < numPoints2; i ++ ) this.tempCM2.add( points2[ i ] );
this.tempCM2.divideScalar( numPoints2 );
for ( let i = 0; i < numPoints2; i ++ ) {
const p = points2[ i ];
p.sub( this.tempCM2 );
radius2 = Math.max( radius2, p.x, p.y, p.z );
}
this.tempCM2.add( object.position );
}
let object1 = null;
let object2 = null;
let numObjects = 0;
if ( numPoints1 > 4 ) {
object1 = new Mesh( new ConvexGeometry( points1 ), object.material );
object1.position.copy( this.tempCM1 );
object1.quaternion.copy( object.quaternion );
this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak );
numObjects ++;
}
if ( numPoints2 > 4 ) {
object2 = new Mesh( new ConvexGeometry( points2 ), object.material );
object2.position.copy( this.tempCM2 );
object2.quaternion.copy( object.quaternion );
this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak );
numObjects ++;
}
output.object1 = object1;
output.object2 = object2;
return numObjects;
}
// internal helpers
static transformFreeVector( v, m ) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
return v;
}
static transformFreeVectorInverse( v, m ) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z;
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z;
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z;
return v;
}
static transformTiedVectorInverse( v, m ) {
// input:
// vector interpreted as a tied (ordinary) vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ];
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ];
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ];
return v;
}
static transformPlaneToLocalSpace( plane, m, resultPlane ) {
resultPlane.normal.copy( plane.normal );
resultPlane.constant = plane.constant;
const referencePoint = ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( _v1 ), m );
ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m );
// recalculate constant (like in setFromNormalAndCoplanarPoint)
resultPlane.constant = - referencePoint.dot( resultPlane.normal );
}
}
Methods¶
prepareBreakableObject(object: Object3D, mass: number, velocity: Vector3, angularVelocity: Vector3, breakable: boolean): void
¶
Code
prepareBreakableObject( object, mass, velocity, angularVelocity, breakable ) {
// object is a Object3d (normally a Mesh), must have a buffer geometry, and it must be convex.
// Its material property is propagated to its children (sub-pieces)
// mass must be > 0
const userData = object.userData;
userData.mass = mass;
userData.velocity = velocity.clone();
userData.angularVelocity = angularVelocity.clone();
userData.breakable = breakable;
}
subdivideByImpact(object: Object3D, pointOfImpact: Vector3, normal: Vector3, maxRadialIterations: number, maxRandomIterations: number): Object3D[]
¶
Code
subdivideByImpact( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations ) {
const debris = [];
const tempPlane1 = this.tempPlane1;
const tempPlane2 = this.tempPlane2;
this.tempVector3.addVectors( pointOfImpact, normal );
tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 );
const maxTotalIterations = maxRandomIterations + maxRadialIterations;
const scope = this;
function subdivideRadial( subObject, startAngle, endAngle, numIterations ) {
if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) {
debris.push( subObject );
return;
}
let angle = Math.PI;
if ( numIterations === 0 ) {
tempPlane2.normal.copy( tempPlane1.normal );
tempPlane2.constant = tempPlane1.constant;
} else {
if ( numIterations <= maxRadialIterations ) {
angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle;
// Rotate tempPlane2 at impact point around normal axis and the angle
scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact );
tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 );
} else {
angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI;
// Rotate tempPlane2 at object position around normal axis and the angle
scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position );
scope.tempVector3_3.copy( normal ).add( subObject.position );
tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 );
}
}
// Perform the cut
scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects );
const obj1 = scope.tempResultObjects.object1;
const obj2 = scope.tempResultObjects.object2;
if ( obj1 ) {
subdivideRadial( obj1, startAngle, angle, numIterations + 1 );
}
if ( obj2 ) {
subdivideRadial( obj2, angle, endAngle, numIterations + 1 );
}
}
subdivideRadial( object, 0, 2 * Math.PI, 0 );
return debris;
}
cutByPlane(object: Object3D, plane: Plane, output: { object1: Mesh; object2: Mesh; }): number
¶
Code
cutByPlane( object, plane, output ) {
// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
// object2 can be null if the plane doesn't cut the object.
// object1 can be null only in case of internal error
// Returned value is number of pieces, 0 for error.
const geometry = object.geometry;
const coords = geometry.attributes.position.array;
const normals = geometry.attributes.normal.array;
const numPoints = coords.length / 3;
let numFaces = numPoints / 3;
let indices = geometry.getIndex();
if ( indices ) {
indices = indices.array;
numFaces = indices.length / 3;
}
function getVertexIndex( faceIdx, vert ) {
// vert = 0, 1 or 2.
const idx = faceIdx * 3 + vert;
return indices ? indices[ idx ] : idx;
}
const points1 = [];
const points2 = [];
const delta = this.smallDelta;
// Reset segments mark
const numPointPairs = numPoints * numPoints;
for ( let i = 0; i < numPointPairs; i ++ ) this.segments[ i ] = false;
const p0 = this.tempVector3_P0;
const p1 = this.tempVector3_P1;
const n0 = this.tempVector3_N0;
const n1 = this.tempVector3_N1;
// Iterate through the faces to mark edges shared by coplanar faces
for ( let i = 0; i < numFaces - 1; i ++ ) {
const a1 = getVertexIndex( i, 0 );
const b1 = getVertexIndex( i, 1 );
const c1 = getVertexIndex( i, 2 );
// Assuming all 3 vertices have the same normal
n0.set( normals[ a1 ], normals[ a1 ] + 1, normals[ a1 ] + 2 );
for ( let j = i + 1; j < numFaces; j ++ ) {
const a2 = getVertexIndex( j, 0 );
const b2 = getVertexIndex( j, 1 );
const c2 = getVertexIndex( j, 2 );
// Assuming all 3 vertices have the same normal
n1.set( normals[ a2 ], normals[ a2 ] + 1, normals[ a2 ] + 2 );
const coplanar = 1 - n0.dot( n1 ) < delta;
if ( coplanar ) {
if ( a1 === a2 || a1 === b2 || a1 === c2 ) {
if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
this.segments[ a1 * numPoints + b1 ] = true;
this.segments[ b1 * numPoints + a1 ] = true;
} else {
this.segments[ c1 * numPoints + a1 ] = true;
this.segments[ a1 * numPoints + c1 ] = true;
}
} else if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
this.segments[ c1 * numPoints + b1 ] = true;
this.segments[ b1 * numPoints + c1 ] = true;
}
}
}
}
// Transform the plane to object local space
const localPlane = this.tempPlane_Cut;
object.updateMatrix();
ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane );
// Iterate through the faces adding points to both pieces
for ( let i = 0; i < numFaces; i ++ ) {
const va = getVertexIndex( i, 0 );
const vb = getVertexIndex( i, 1 );
const vc = getVertexIndex( i, 2 );
for ( let segment = 0; segment < 3; segment ++ ) {
const i0 = segment === 0 ? va : ( segment === 1 ? vb : vc );
const i1 = segment === 0 ? vb : ( segment === 1 ? vc : va );
const segmentState = this.segments[ i0 * numPoints + i1 ];
if ( segmentState ) continue; // The segment already has been processed in another face
// Mark segment as processed (also inverted segment)
this.segments[ i0 * numPoints + i1 ] = true;
this.segments[ i1 * numPoints + i0 ] = true;
p0.set( coords[ 3 * i0 ], coords[ 3 * i0 + 1 ], coords[ 3 * i0 + 2 ] );
p1.set( coords[ 3 * i1 ], coords[ 3 * i1 + 1 ], coords[ 3 * i1 + 2 ] );
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
let mark0 = 0;
let d = localPlane.distanceToPoint( p0 );
if ( d > delta ) {
mark0 = 2;
points2.push( p0.clone() );
} else if ( d < - delta ) {
mark0 = 1;
points1.push( p0.clone() );
} else {
mark0 = 3;
points1.push( p0.clone() );
points2.push( p0.clone() );
}
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
let mark1 = 0;
d = localPlane.distanceToPoint( p1 );
if ( d > delta ) {
mark1 = 2;
points2.push( p1.clone() );
} else if ( d < - delta ) {
mark1 = 1;
points1.push( p1.clone() );
} else {
mark1 = 3;
points1.push( p1.clone() );
points2.push( p1.clone() );
}
if ( ( mark0 === 1 && mark1 === 2 ) || ( mark0 === 2 && mark1 === 1 ) ) {
// Intersection of segment with the plane
this.tempLine1.start.copy( p0 );
this.tempLine1.end.copy( p1 );
let intersection = new Vector3();
intersection = localPlane.intersectLine( this.tempLine1, intersection );
if ( intersection === null ) {
// Shouldn't happen
console.error( 'Internal error: segment does not intersect plane.' );
output.segmentedObject1 = null;
output.segmentedObject2 = null;
return 0;
}
points1.push( intersection );
points2.push( intersection.clone() );
}
}
}
// Calculate debris mass (very fast and imprecise):
const newMass = object.userData.mass * 0.5;
// Calculate debris Center of Mass (again fast and imprecise)
this.tempCM1.set( 0, 0, 0 );
let radius1 = 0;
const numPoints1 = points1.length;
if ( numPoints1 > 0 ) {
for ( let i = 0; i < numPoints1; i ++ ) this.tempCM1.add( points1[ i ] );
this.tempCM1.divideScalar( numPoints1 );
for ( let i = 0; i < numPoints1; i ++ ) {
const p = points1[ i ];
p.sub( this.tempCM1 );
radius1 = Math.max( radius1, p.x, p.y, p.z );
}
this.tempCM1.add( object.position );
}
this.tempCM2.set( 0, 0, 0 );
let radius2 = 0;
const numPoints2 = points2.length;
if ( numPoints2 > 0 ) {
for ( let i = 0; i < numPoints2; i ++ ) this.tempCM2.add( points2[ i ] );
this.tempCM2.divideScalar( numPoints2 );
for ( let i = 0; i < numPoints2; i ++ ) {
const p = points2[ i ];
p.sub( this.tempCM2 );
radius2 = Math.max( radius2, p.x, p.y, p.z );
}
this.tempCM2.add( object.position );
}
let object1 = null;
let object2 = null;
let numObjects = 0;
if ( numPoints1 > 4 ) {
object1 = new Mesh( new ConvexGeometry( points1 ), object.material );
object1.position.copy( this.tempCM1 );
object1.quaternion.copy( object.quaternion );
this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak );
numObjects ++;
}
if ( numPoints2 > 4 ) {
object2 = new Mesh( new ConvexGeometry( points2 ), object.material );
object2.position.copy( this.tempCM2 );
object2.quaternion.copy( object.quaternion );
this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak );
numObjects ++;
}
output.object1 = object1;
output.object2 = object2;
return numObjects;
}
transformFreeVector(v: any, m: any): any
¶
Code
static transformFreeVector( v, m ) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
return v;
}
transformFreeVectorInverse(v: any, m: any): any
¶
Code
static transformFreeVectorInverse( v, m ) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z;
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z;
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z;
return v;
}
transformTiedVectorInverse(v: any, m: any): any
¶
Code
static transformTiedVectorInverse( v, m ) {
// input:
// vector interpreted as a tied (ordinary) vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ];
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ];
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ];
return v;
}
transformPlaneToLocalSpace(plane: any, m: any, resultPlane: any): void
¶
Code
static transformPlaneToLocalSpace( plane, m, resultPlane ) {
resultPlane.normal.copy( plane.normal );
resultPlane.constant = plane.constant;
const referencePoint = ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( _v1 ), m );
ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m );
// recalculate constant (like in setFromNormalAndCoplanarPoint)
resultPlane.constant = - referencePoint.dot( resultPlane.normal );
}