Skip to content

⬅️ Back to Table of Contents

📄 OutlinePass.js

📊 Analysis Summary

Metric Count
🔧 Functions 14
🧱 Classes 1
📦 Imports 16
📊 Variables & Constants 14

📚 Table of Contents

🛠️ File Location:

📂 examples/jsm/postprocessing/OutlinePass.js

📦 Imports

Name Source
AdditiveBlending three
Color three
DoubleSide three
HalfFloatType three
Matrix4 three
MeshDepthMaterial three
NoBlending three
RGBADepthPacking three
ShaderMaterial three
UniformsUtils three
Vector2 three
Vector3 three
WebGLRenderTarget three
Pass ./Pass.js
FullScreenQuad ./Pass.js
CopyShader ../shaders/CopyShader.js

Variables & Constants

Name Type Kind Value Exported
MAX_EDGE_THICKNESS 4 let/var 4
MAX_EDGE_GLOW 4 let/var 4
copyShader ShaderMaterial let/var CopyShader
type "perspective" \| "orthographic" let/var camera.isPerspectiveCamera ? 'perspective' : 'orthographic'
oldAutoClear any let/var renderer.autoClear
currentBackground any let/var this.renderScene.background
currentOverrideMaterial any let/var this.renderScene.overrideMaterial
scalar number let/var ( 1 + 0.25 ) / 2 + Math.cos( performance.now() * 0.01 / this.pulsePeriod ) * ...
cache Set<any> let/var this._selectionCache
selectedObject Object3D let/var this.selectedObjects[ i ]
cache Map<any, any> let/var this._visibilityCache
visibilityCache Map<any, any> let/var this._visibilityCache
selectionCache Set<any> let/var this._selectionCache
visibility any let/var object.visible

Functions

OutlinePass.dispose(): void

JSDoc:

/**
     * Frees the GPU-related resources allocated by this instance. Call this
     * method whenever the pass is no longer used in your app.
     */

Returns: void

Calls:

  • this.renderTargetMaskBuffer.dispose
  • this.renderTargetDepthBuffer.dispose
  • this.renderTargetMaskDownSampleBuffer.dispose
  • this.renderTargetBlurBuffer1.dispose
  • this.renderTargetBlurBuffer2.dispose
  • this.renderTargetEdgeBuffer1.dispose
  • this.renderTargetEdgeBuffer2.dispose
  • this.depthMaterial.dispose
  • this.prepareMaskMaterial.dispose
  • this.edgeDetectionMaterial.dispose
  • this.separableBlurMaterial1.dispose
  • this.separableBlurMaterial2.dispose
  • this.overlayMaterial.dispose
  • this.materialCopy.dispose
  • this._fsQuad.dispose
Code
dispose() {

        this.renderTargetMaskBuffer.dispose();
        this.renderTargetDepthBuffer.dispose();
        this.renderTargetMaskDownSampleBuffer.dispose();
        this.renderTargetBlurBuffer1.dispose();
        this.renderTargetBlurBuffer2.dispose();
        this.renderTargetEdgeBuffer1.dispose();
        this.renderTargetEdgeBuffer2.dispose();

        this.depthMaterial.dispose();
        this.prepareMaskMaterial.dispose();
        this.edgeDetectionMaterial.dispose();
        this.separableBlurMaterial1.dispose();
        this.separableBlurMaterial2.dispose();
        this.overlayMaterial.dispose();
        this.materialCopy.dispose();

        this._fsQuad.dispose();

    }

OutlinePass.setSize(width: number, height: number): void

JSDoc:

/**
     * Sets the size of the pass.
     *
     * @param {number} width - The width to set.
     * @param {number} height - The height to set.
     */

Parameters:

  • width number
  • height number

Returns: void

Calls:

  • this.renderTargetMaskBuffer.setSize
  • this.renderTargetDepthBuffer.setSize
  • Math.round
  • this.renderTargetMaskDownSampleBuffer.setSize
  • this.renderTargetBlurBuffer1.setSize
  • this.renderTargetEdgeBuffer1.setSize
  • this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set
  • this.renderTargetBlurBuffer2.setSize
  • this.renderTargetEdgeBuffer2.setSize
  • this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set
Code
setSize( width, height ) {

        this.renderTargetMaskBuffer.setSize( width, height );
        this.renderTargetDepthBuffer.setSize( width, height );

        let resx = Math.round( width / this.downSampleRatio );
        let resy = Math.round( height / this.downSampleRatio );
        this.renderTargetMaskDownSampleBuffer.setSize( resx, resy );
        this.renderTargetBlurBuffer1.setSize( resx, resy );
        this.renderTargetEdgeBuffer1.setSize( resx, resy );
        this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set( resx, resy );

        resx = Math.round( resx / 2 );
        resy = Math.round( resy / 2 );

        this.renderTargetBlurBuffer2.setSize( resx, resy );
        this.renderTargetEdgeBuffer2.setSize( resx, resy );

        this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set( resx, resy );

    }

OutlinePass.render(renderer: WebGLRenderer, writeBuffer: WebGLRenderTarget, readBuffer: WebGLRenderTarget, deltaTime: number, maskActive: boolean): void

JSDoc:

/**
     * Performs the Outline pass.
     *
     * @param {WebGLRenderer} renderer - The renderer.
     * @param {WebGLRenderTarget} writeBuffer - The write buffer. This buffer is intended as the rendering
     * destination for the pass.
     * @param {WebGLRenderTarget} readBuffer - The read buffer. The pass can access the result from the
     * previous pass from this buffer.
     * @param {number} deltaTime - The delta time in seconds.
     * @param {boolean} maskActive - Whether masking is active or not.
     */

Parameters:

  • renderer WebGLRenderer
  • writeBuffer WebGLRenderTarget
  • readBuffer WebGLRenderTarget
  • deltaTime number
  • maskActive boolean

Returns: void

Calls:

  • renderer.getClearColor
  • renderer.getClearAlpha
  • renderer.state.buffers.stencil.setTest
  • renderer.setClearColor
  • this._updateSelectionCache
  • this._changeVisibilityOfSelectedObjects
  • renderer.setRenderTarget
  • renderer.clear
  • renderer.render
  • this._visibilityCache.clear
  • this._updateTextureMatrix
  • this._changeVisibilityOfNonSelectedObjects
  • this.prepareMaskMaterial.uniforms[ 'cameraNearFar' ].value.set
  • this._selectionCache.clear
  • this._fsQuad.render
  • this.tempPulseColor1.copy
  • this.tempPulseColor2.copy
  • Math.cos
  • performance.now
  • this.tempPulseColor1.multiplyScalar
  • this.tempPulseColor2.multiplyScalar
  • this.edgeDetectionMaterial.uniforms[ 'texSize' ].value.set

Internal Comments:

// Make selected objects invisible (x4)
// 1. Draw Non Selected objects in the depth buffer (x5)
// Make selected objects visible (x4)
// Update Texture Matrix for Depth compare (x4)
// Make non selected objects invisible, and draw only the selected objects, by comparing the depth buffer of non selected objects (x4)
// 2. Downsample to Half resolution (x5)
// 3. Apply Edge Detection Pass (x5)
// 4. Apply Blur on Half res (x5)
// Apply Blur on quarter res (x5)
// Blend it additively over the input texture (x5)

Code
render( renderer, writeBuffer, readBuffer, deltaTime, maskActive ) {

        if ( this.selectedObjects.length > 0 ) {

            renderer.getClearColor( this._oldClearColor );
            this.oldClearAlpha = renderer.getClearAlpha();
            const oldAutoClear = renderer.autoClear;

            renderer.autoClear = false;

            if ( maskActive ) renderer.state.buffers.stencil.setTest( false );

            renderer.setClearColor( 0xffffff, 1 );

            this._updateSelectionCache();

            // Make selected objects invisible
            this._changeVisibilityOfSelectedObjects( false );

            const currentBackground = this.renderScene.background;
            const currentOverrideMaterial = this.renderScene.overrideMaterial;
            this.renderScene.background = null;

            // 1. Draw Non Selected objects in the depth buffer
            this.renderScene.overrideMaterial = this.depthMaterial;
            renderer.setRenderTarget( this.renderTargetDepthBuffer );
            renderer.clear();
            renderer.render( this.renderScene, this.renderCamera );

            // Make selected objects visible
            this._changeVisibilityOfSelectedObjects( true );
            this._visibilityCache.clear();

            // Update Texture Matrix for Depth compare
            this._updateTextureMatrix();

            // Make non selected objects invisible, and draw only the selected objects, by comparing the depth buffer of non selected objects
            this._changeVisibilityOfNonSelectedObjects( false );
            this.renderScene.overrideMaterial = this.prepareMaskMaterial;
            this.prepareMaskMaterial.uniforms[ 'cameraNearFar' ].value.set( this.renderCamera.near, this.renderCamera.far );
            this.prepareMaskMaterial.uniforms[ 'depthTexture' ].value = this.renderTargetDepthBuffer.texture;
            this.prepareMaskMaterial.uniforms[ 'textureMatrix' ].value = this.textureMatrix;
            renderer.setRenderTarget( this.renderTargetMaskBuffer );
            renderer.clear();
            renderer.render( this.renderScene, this.renderCamera );
            this._changeVisibilityOfNonSelectedObjects( true );
            this._visibilityCache.clear();
            this._selectionCache.clear();

            this.renderScene.background = currentBackground;
            this.renderScene.overrideMaterial = currentOverrideMaterial;

            // 2. Downsample to Half resolution
            this._fsQuad.material = this.materialCopy;
            this.copyUniforms[ 'tDiffuse' ].value = this.renderTargetMaskBuffer.texture;
            renderer.setRenderTarget( this.renderTargetMaskDownSampleBuffer );
            renderer.clear();
            this._fsQuad.render( renderer );

            this.tempPulseColor1.copy( this.visibleEdgeColor );
            this.tempPulseColor2.copy( this.hiddenEdgeColor );

            if ( this.pulsePeriod > 0 ) {

                const scalar = ( 1 + 0.25 ) / 2 + Math.cos( performance.now() * 0.01 / this.pulsePeriod ) * ( 1.0 - 0.25 ) / 2;
                this.tempPulseColor1.multiplyScalar( scalar );
                this.tempPulseColor2.multiplyScalar( scalar );

            }

            // 3. Apply Edge Detection Pass
            this._fsQuad.material = this.edgeDetectionMaterial;
            this.edgeDetectionMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskDownSampleBuffer.texture;
            this.edgeDetectionMaterial.uniforms[ 'texSize' ].value.set( this.renderTargetMaskDownSampleBuffer.width, this.renderTargetMaskDownSampleBuffer.height );
            this.edgeDetectionMaterial.uniforms[ 'visibleEdgeColor' ].value = this.tempPulseColor1;
            this.edgeDetectionMaterial.uniforms[ 'hiddenEdgeColor' ].value = this.tempPulseColor2;
            renderer.setRenderTarget( this.renderTargetEdgeBuffer1 );
            renderer.clear();
            this._fsQuad.render( renderer );

            // 4. Apply Blur on Half res
            this._fsQuad.material = this.separableBlurMaterial1;
            this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture;
            this.separableBlurMaterial1.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionX;
            this.separableBlurMaterial1.uniforms[ 'kernelRadius' ].value = this.edgeThickness;
            renderer.setRenderTarget( this.renderTargetBlurBuffer1 );
            renderer.clear();
            this._fsQuad.render( renderer );
            this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer1.texture;
            this.separableBlurMaterial1.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionY;
            renderer.setRenderTarget( this.renderTargetEdgeBuffer1 );
            renderer.clear();
            this._fsQuad.render( renderer );

            // Apply Blur on quarter res
            this._fsQuad.material = this.separableBlurMaterial2;
            this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture;
            this.separableBlurMaterial2.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionX;
            renderer.setRenderTarget( this.renderTargetBlurBuffer2 );
            renderer.clear();
            this._fsQuad.render( renderer );
            this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer2.texture;
            this.separableBlurMaterial2.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionY;
            renderer.setRenderTarget( this.renderTargetEdgeBuffer2 );
            renderer.clear();
            this._fsQuad.render( renderer );

            // Blend it additively over the input texture
            this._fsQuad.material = this.overlayMaterial;
            this.overlayMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskBuffer.texture;
            this.overlayMaterial.uniforms[ 'edgeTexture1' ].value = this.renderTargetEdgeBuffer1.texture;
            this.overlayMaterial.uniforms[ 'edgeTexture2' ].value = this.renderTargetEdgeBuffer2.texture;
            this.overlayMaterial.uniforms[ 'patternTexture' ].value = this.patternTexture;
            this.overlayMaterial.uniforms[ 'edgeStrength' ].value = this.edgeStrength;
            this.overlayMaterial.uniforms[ 'edgeGlow' ].value = this.edgeGlow;
            this.overlayMaterial.uniforms[ 'usePatternTexture' ].value = this.usePatternTexture;


            if ( maskActive ) renderer.state.buffers.stencil.setTest( true );

            renderer.setRenderTarget( readBuffer );
            this._fsQuad.render( renderer );

            renderer.setClearColor( this._oldClearColor, this.oldClearAlpha );
            renderer.autoClear = oldAutoClear;

        }

        if ( this.renderToScreen ) {

            this._fsQuad.material = this.materialCopy;
            this.copyUniforms[ 'tDiffuse' ].value = readBuffer.texture;
            renderer.setRenderTarget( null );
            this._fsQuad.render( renderer );

        }

    }

OutlinePass._updateSelectionCache(): void

Returns: void

Calls:

  • cache.add
  • cache.clear
  • selectedObject.traverse
Code
_updateSelectionCache() {

        const cache = this._selectionCache;

        function gatherSelectedMeshesCallBack( object ) {

            if ( object.isMesh ) cache.add( object );

        }

        cache.clear();

        for ( let i = 0; i < this.selectedObjects.length; i ++ ) {

            const selectedObject = this.selectedObjects[ i ];
            selectedObject.traverse( gatherSelectedMeshesCallBack );

        }

    }

OutlinePass._changeVisibilityOfSelectedObjects(bVisible: any): void

Parameters:

  • bVisible any

Returns: void

Calls:

  • cache.get
  • cache.set
Code
_changeVisibilityOfSelectedObjects( bVisible ) {

        const cache = this._visibilityCache;

        for ( const mesh of this._selectionCache ) {

            if ( bVisible === true ) {

                mesh.visible = cache.get( mesh );

            } else {

                cache.set( mesh, mesh.visible );
                mesh.visible = bVisible;

            }

        }

    }

OutlinePass._changeVisibilityOfNonSelectedObjects(bVisible: any): void

Parameters:

  • bVisible any

Returns: void

Calls:

  • visibilityCache.get
  • visibilityCache.set
  • selectionCache.has
  • this.renderScene.traverse

Internal Comments:

// the visibility of points and lines is always set to false in order to
// not affect the outline computation
// only meshes and sprites are supported by OutlinePass

Code
_changeVisibilityOfNonSelectedObjects( bVisible ) {

        const visibilityCache = this._visibilityCache;
        const selectionCache = this._selectionCache;

        function VisibilityChangeCallBack( object ) {

            if ( object.isPoints || object.isLine || object.isLine2 ) {

                // the visibility of points and lines is always set to false in order to
                // not affect the outline computation

                if ( bVisible === true ) {

                    object.visible = visibilityCache.get( object ); // restore

                } else {

                    visibilityCache.set( object, object.visible );
                    object.visible = bVisible;

                }

            } else if ( object.isMesh || object.isSprite) {

                // only meshes and sprites are supported by OutlinePass

                if ( ! selectionCache.has( object ) ) {

                    const visibility = object.visible;

                    if ( bVisible === false || visibilityCache.get( object ) === true ) {

                        object.visible = bVisible;

                    }

                    visibilityCache.set( object, visibility );

                }

            }

        }

        this.renderScene.traverse( VisibilityChangeCallBack );

    }

OutlinePass._updateTextureMatrix(): void

Returns: void

Calls:

  • this.textureMatrix.set
  • this.textureMatrix.multiply
Code
_updateTextureMatrix() {

        this.textureMatrix.set( 0.5, 0.0, 0.0, 0.5,
            0.0, 0.5, 0.0, 0.5,
            0.0, 0.0, 0.5, 0.5,
            0.0, 0.0, 0.0, 1.0 );
        this.textureMatrix.multiply( this.renderCamera.projectionMatrix );
        this.textureMatrix.multiply( this.renderCamera.matrixWorldInverse );

    }

OutlinePass._getPrepareMaskMaterial(): any

Returns: any

Code
_getPrepareMaskMaterial() {

        return new ShaderMaterial( {

            uniforms: {
                'depthTexture': { value: null },
                'cameraNearFar': { value: new Vector2( 0.5, 0.5 ) },
                'textureMatrix': { value: null }
            },

            vertexShader:
                `#include <batching_pars_vertex>
                #include <morphtarget_pars_vertex>
                #include <skinning_pars_vertex>

                varying vec4 projTexCoord;
                varying vec4 vPosition;
                uniform mat4 textureMatrix;

                void main() {

                    #include <batching_vertex>
                    #include <skinbase_vertex>
                    #include <begin_vertex>
                    #include <morphtarget_vertex>
                    #include <skinning_vertex>
                    #include <project_vertex>

                    vPosition = mvPosition;

                    vec4 worldPosition = vec4( transformed, 1.0 );

                    #ifdef USE_INSTANCING

                        worldPosition = instanceMatrix * worldPosition;

                    #endif

                    worldPosition = modelMatrix * worldPosition;

                    projTexCoord = textureMatrix * worldPosition;

                }`,

            fragmentShader:
                `#include <packing>
                varying vec4 vPosition;
                varying vec4 projTexCoord;
                uniform sampler2D depthTexture;
                uniform vec2 cameraNearFar;

                void main() {

                    float depth = unpackRGBAToDepth(texture2DProj( depthTexture, projTexCoord ));
                    float viewZ = - DEPTH_TO_VIEW_Z( depth, cameraNearFar.x, cameraNearFar.y );
                    float depthTest = (-vPosition.z > viewZ) ? 1.0 : 0.0;
                    gl_FragColor = vec4(0.0, depthTest, 1.0, 1.0);

                }`

        } );

    }

OutlinePass._getEdgeDetectionMaterial(): any

Returns: any

Code
_getEdgeDetectionMaterial() {

        return new ShaderMaterial( {

            uniforms: {
                'maskTexture': { value: null },
                'texSize': { value: new Vector2( 0.5, 0.5 ) },
                'visibleEdgeColor': { value: new Vector3( 1.0, 1.0, 1.0 ) },
                'hiddenEdgeColor': { value: new Vector3( 1.0, 1.0, 1.0 ) },
            },

            vertexShader:
                `varying vec2 vUv;

                void main() {
                    vUv = uv;
                    gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
                }`,

            fragmentShader:
                `varying vec2 vUv;

                uniform sampler2D maskTexture;
                uniform vec2 texSize;
                uniform vec3 visibleEdgeColor;
                uniform vec3 hiddenEdgeColor;

                void main() {
                    vec2 invSize = 1.0 / texSize;
                    vec4 uvOffset = vec4(1.0, 0.0, 0.0, 1.0) * vec4(invSize, invSize);
                    vec4 c1 = texture2D( maskTexture, vUv + uvOffset.xy);
                    vec4 c2 = texture2D( maskTexture, vUv - uvOffset.xy);
                    vec4 c3 = texture2D( maskTexture, vUv + uvOffset.yw);
                    vec4 c4 = texture2D( maskTexture, vUv - uvOffset.yw);
                    float diff1 = (c1.r - c2.r)*0.5;
                    float diff2 = (c3.r - c4.r)*0.5;
                    float d = length( vec2(diff1, diff2) );
                    float a1 = min(c1.g, c2.g);
                    float a2 = min(c3.g, c4.g);
                    float visibilityFactor = min(a1, a2);
                    vec3 edgeColor = 1.0 - visibilityFactor > 0.001 ? visibleEdgeColor : hiddenEdgeColor;
                    gl_FragColor = vec4(edgeColor, 1.0) * vec4(d);
                }`
        } );

    }

OutlinePass._getSeparableBlurMaterial(maxRadius: any): any

Parameters:

  • maxRadius any

Returns: any

Code
_getSeparableBlurMaterial( maxRadius ) {

        return new ShaderMaterial( {

            defines: {
                'MAX_RADIUS': maxRadius,
            },

            uniforms: {
                'colorTexture': { value: null },
                'texSize': { value: new Vector2( 0.5, 0.5 ) },
                'direction': { value: new Vector2( 0.5, 0.5 ) },
                'kernelRadius': { value: 1.0 }
            },

            vertexShader:
                `varying vec2 vUv;

                void main() {
                    vUv = uv;
                    gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
                }`,

            fragmentShader:
                `#include <common>
                varying vec2 vUv;
                uniform sampler2D colorTexture;
                uniform vec2 texSize;
                uniform vec2 direction;
                uniform float kernelRadius;

                float gaussianPdf(in float x, in float sigma) {
                    return 0.39894 * exp( -0.5 * x * x/( sigma * sigma))/sigma;
                }

                void main() {
                    vec2 invSize = 1.0 / texSize;
                    float sigma = kernelRadius/2.0;
                    float weightSum = gaussianPdf(0.0, sigma);
                    vec4 diffuseSum = texture2D( colorTexture, vUv) * weightSum;
                    vec2 delta = direction * invSize * kernelRadius/float(MAX_RADIUS);
                    vec2 uvOffset = delta;
                    for( int i = 1; i <= MAX_RADIUS; i ++ ) {
                        float x = kernelRadius * float(i) / float(MAX_RADIUS);
                        float w = gaussianPdf(x, sigma);
                        vec4 sample1 = texture2D( colorTexture, vUv + uvOffset);
                        vec4 sample2 = texture2D( colorTexture, vUv - uvOffset);
                        diffuseSum += ((sample1 + sample2) * w);
                        weightSum += (2.0 * w);
                        uvOffset += delta;
                    }
                    gl_FragColor = diffuseSum/weightSum;
                }`
        } );

    }

OutlinePass._getOverlayMaterial(): any

Returns: any

Code
_getOverlayMaterial() {

        return new ShaderMaterial( {

            uniforms: {
                'maskTexture': { value: null },
                'edgeTexture1': { value: null },
                'edgeTexture2': { value: null },
                'patternTexture': { value: null },
                'edgeStrength': { value: 1.0 },
                'edgeGlow': { value: 1.0 },
                'usePatternTexture': { value: 0.0 }
            },

            vertexShader:
                `varying vec2 vUv;

                void main() {
                    vUv = uv;
                    gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
                }`,

            fragmentShader:
                `varying vec2 vUv;

                uniform sampler2D maskTexture;
                uniform sampler2D edgeTexture1;
                uniform sampler2D edgeTexture2;
                uniform sampler2D patternTexture;
                uniform float edgeStrength;
                uniform float edgeGlow;
                uniform bool usePatternTexture;

                void main() {
                    vec4 edgeValue1 = texture2D(edgeTexture1, vUv);
                    vec4 edgeValue2 = texture2D(edgeTexture2, vUv);
                    vec4 maskColor = texture2D(maskTexture, vUv);
                    vec4 patternColor = texture2D(patternTexture, 6.0 * vUv);
                    float visibilityFactor = 1.0 - maskColor.g > 0.0 ? 1.0 : 0.5;
                    vec4 edgeValue = edgeValue1 + edgeValue2 * edgeGlow;
                    vec4 finalColor = edgeStrength * maskColor.r * edgeValue;
                    if(usePatternTexture)
                        finalColor += + visibilityFactor * (1.0 - maskColor.r) * (1.0 - patternColor.r);
                    gl_FragColor = finalColor;
                }`,
            blending: AdditiveBlending,
            depthTest: false,
            depthWrite: false,
            transparent: true
        } );

    }

replaceDepthToViewZ(string: any, camera: any): any

Parameters:

  • string any
  • camera any

Returns: any

Calls:

  • string.replace
Code
function replaceDepthToViewZ( string, camera ) {

            const type = camera.isPerspectiveCamera ? 'perspective' : 'orthographic';

            return string.replace( /DEPTH_TO_VIEW_Z/g, type + 'DepthToViewZ' );

        }

gatherSelectedMeshesCallBack(object: any): void

Parameters:

  • object any

Returns: void

Calls:

  • cache.add
Code
function gatherSelectedMeshesCallBack( object ) {

            if ( object.isMesh ) cache.add( object );

        }

VisibilityChangeCallBack(object: any): void

Parameters:

  • object any

Returns: void

Calls:

  • visibilityCache.get
  • visibilityCache.set
  • selectionCache.has

Internal Comments:

// the visibility of points and lines is always set to false in order to
// not affect the outline computation
// only meshes and sprites are supported by OutlinePass

Code
function VisibilityChangeCallBack( object ) {

            if ( object.isPoints || object.isLine || object.isLine2 ) {

                // the visibility of points and lines is always set to false in order to
                // not affect the outline computation

                if ( bVisible === true ) {

                    object.visible = visibilityCache.get( object ); // restore

                } else {

                    visibilityCache.set( object, object.visible );
                    object.visible = bVisible;

                }

            } else if ( object.isMesh || object.isSprite) {

                // only meshes and sprites are supported by OutlinePass

                if ( ! selectionCache.has( object ) ) {

                    const visibility = object.visible;

                    if ( bVisible === false || visibilityCache.get( object ) === true ) {

                        object.visible = bVisible;

                    }

                    visibilityCache.set( object, visibility );

                }

            }

        }

Classes

OutlinePass

Class Code
class OutlinePass extends Pass {

    /**
     * Constructs a new outline pass.
     *
     * @param {Vector2} [resolution] - The effect's resolution.
     * @param {Scene} scene - The scene to render.
     * @param {Camera} camera - The camera.
     * @param {Array<Object3D>} [selectedObjects] - The selected 3D objects that should receive an outline.
     *
     */
    constructor( resolution, scene, camera, selectedObjects ) {

        super();

        /**
         * The scene to render.
         *
         * @type {Object}
         */
        this.renderScene = scene;

        /**
         * The camera.
         *
         * @type {Object}
         */
        this.renderCamera = camera;

        /**
         * The selected 3D objects that should receive an outline.
         *
         * @type {Array<Object3D>}
         */
        this.selectedObjects = selectedObjects !== undefined ? selectedObjects : [];

        /**
         * The visible edge color.
         *
         * @type {Color}
         * @default (1,1,1)
         */
        this.visibleEdgeColor = new Color( 1, 1, 1 );

        /**
         * The hidden edge color.
         *
         * @type {Color}
         * @default (0.1,0.04,0.02)
         */
        this.hiddenEdgeColor = new Color( 0.1, 0.04, 0.02 );

        /**
         * Can be used for an animated glow/pulse effect.
         *
         * @type {number}
         * @default 0
         */
        this.edgeGlow = 0.0;

        /**
         * Whether to use a pattern texture for to highlight selected
         * 3D objects or not.
         *
         * @type {boolean}
         * @default false
         */
        this.usePatternTexture = false;

        /**
         * Can be used to highlight selected 3D objects. Requires to set
         * {@link OutlinePass#usePatternTexture} to `true`.
         *
         * @type {?Texture}
         * @default null
         */
        this.patternTexture = null;

        /**
         * The edge thickness.
         *
         * @type {number}
         * @default 1
         */
        this.edgeThickness = 1.0;

        /**
         * The edge strength.
         *
         * @type {number}
         * @default 3
         */
        this.edgeStrength = 3.0;

        /**
         * The downsample ratio. The effect can be rendered in a much
         * lower resolution than the beauty pass.
         *
         * @type {number}
         * @default 2
         */
        this.downSampleRatio = 2;

        /**
         * The pulse period.
         *
         * @type {number}
         * @default 0
         */
        this.pulsePeriod = 0;

        this._visibilityCache = new Map();
        this._selectionCache = new Set();

        /**
         * The effect's resolution.
         *
         * @type {Vector2}
         * @default (256,256)
         */
        this.resolution = ( resolution !== undefined ) ? new Vector2( resolution.x, resolution.y ) : new Vector2( 256, 256 );

        const resx = Math.round( this.resolution.x / this.downSampleRatio );
        const resy = Math.round( this.resolution.y / this.downSampleRatio );

        this.renderTargetMaskBuffer = new WebGLRenderTarget( this.resolution.x, this.resolution.y );
        this.renderTargetMaskBuffer.texture.name = 'OutlinePass.mask';
        this.renderTargetMaskBuffer.texture.generateMipmaps = false;

        this.depthMaterial = new MeshDepthMaterial();
        this.depthMaterial.side = DoubleSide;
        this.depthMaterial.depthPacking = RGBADepthPacking;
        this.depthMaterial.blending = NoBlending;

        this.prepareMaskMaterial = this._getPrepareMaskMaterial();
        this.prepareMaskMaterial.side = DoubleSide;
        this.prepareMaskMaterial.fragmentShader = replaceDepthToViewZ( this.prepareMaskMaterial.fragmentShader, this.renderCamera );

        this.renderTargetDepthBuffer = new WebGLRenderTarget( this.resolution.x, this.resolution.y, { type: HalfFloatType } );
        this.renderTargetDepthBuffer.texture.name = 'OutlinePass.depth';
        this.renderTargetDepthBuffer.texture.generateMipmaps = false;

        this.renderTargetMaskDownSampleBuffer = new WebGLRenderTarget( resx, resy, { type: HalfFloatType } );
        this.renderTargetMaskDownSampleBuffer.texture.name = 'OutlinePass.depthDownSample';
        this.renderTargetMaskDownSampleBuffer.texture.generateMipmaps = false;

        this.renderTargetBlurBuffer1 = new WebGLRenderTarget( resx, resy, { type: HalfFloatType } );
        this.renderTargetBlurBuffer1.texture.name = 'OutlinePass.blur1';
        this.renderTargetBlurBuffer1.texture.generateMipmaps = false;
        this.renderTargetBlurBuffer2 = new WebGLRenderTarget( Math.round( resx / 2 ), Math.round( resy / 2 ), { type: HalfFloatType } );
        this.renderTargetBlurBuffer2.texture.name = 'OutlinePass.blur2';
        this.renderTargetBlurBuffer2.texture.generateMipmaps = false;

        this.edgeDetectionMaterial = this._getEdgeDetectionMaterial();
        this.renderTargetEdgeBuffer1 = new WebGLRenderTarget( resx, resy, { type: HalfFloatType } );
        this.renderTargetEdgeBuffer1.texture.name = 'OutlinePass.edge1';
        this.renderTargetEdgeBuffer1.texture.generateMipmaps = false;
        this.renderTargetEdgeBuffer2 = new WebGLRenderTarget( Math.round( resx / 2 ), Math.round( resy / 2 ), { type: HalfFloatType } );
        this.renderTargetEdgeBuffer2.texture.name = 'OutlinePass.edge2';
        this.renderTargetEdgeBuffer2.texture.generateMipmaps = false;

        const MAX_EDGE_THICKNESS = 4;
        const MAX_EDGE_GLOW = 4;

        this.separableBlurMaterial1 = this._getSeparableBlurMaterial( MAX_EDGE_THICKNESS );
        this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set( resx, resy );
        this.separableBlurMaterial1.uniforms[ 'kernelRadius' ].value = 1;
        this.separableBlurMaterial2 = this._getSeparableBlurMaterial( MAX_EDGE_GLOW );
        this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set( Math.round( resx / 2 ), Math.round( resy / 2 ) );
        this.separableBlurMaterial2.uniforms[ 'kernelRadius' ].value = MAX_EDGE_GLOW;

        // Overlay material
        this.overlayMaterial = this._getOverlayMaterial();

        // copy material

        const copyShader = CopyShader;

        this.copyUniforms = UniformsUtils.clone( copyShader.uniforms );

        this.materialCopy = new ShaderMaterial( {
            uniforms: this.copyUniforms,
            vertexShader: copyShader.vertexShader,
            fragmentShader: copyShader.fragmentShader,
            blending: NoBlending,
            depthTest: false,
            depthWrite: false
        } );

        this.enabled = true;
        this.needsSwap = false;

        this._oldClearColor = new Color();
        this.oldClearAlpha = 1;

        this._fsQuad = new FullScreenQuad( null );

        this.tempPulseColor1 = new Color();
        this.tempPulseColor2 = new Color();
        this.textureMatrix = new Matrix4();

        function replaceDepthToViewZ( string, camera ) {

            const type = camera.isPerspectiveCamera ? 'perspective' : 'orthographic';

            return string.replace( /DEPTH_TO_VIEW_Z/g, type + 'DepthToViewZ' );

        }

    }

    /**
     * Frees the GPU-related resources allocated by this instance. Call this
     * method whenever the pass is no longer used in your app.
     */
    dispose() {

        this.renderTargetMaskBuffer.dispose();
        this.renderTargetDepthBuffer.dispose();
        this.renderTargetMaskDownSampleBuffer.dispose();
        this.renderTargetBlurBuffer1.dispose();
        this.renderTargetBlurBuffer2.dispose();
        this.renderTargetEdgeBuffer1.dispose();
        this.renderTargetEdgeBuffer2.dispose();

        this.depthMaterial.dispose();
        this.prepareMaskMaterial.dispose();
        this.edgeDetectionMaterial.dispose();
        this.separableBlurMaterial1.dispose();
        this.separableBlurMaterial2.dispose();
        this.overlayMaterial.dispose();
        this.materialCopy.dispose();

        this._fsQuad.dispose();

    }

    /**
     * Sets the size of the pass.
     *
     * @param {number} width - The width to set.
     * @param {number} height - The height to set.
     */
    setSize( width, height ) {

        this.renderTargetMaskBuffer.setSize( width, height );
        this.renderTargetDepthBuffer.setSize( width, height );

        let resx = Math.round( width / this.downSampleRatio );
        let resy = Math.round( height / this.downSampleRatio );
        this.renderTargetMaskDownSampleBuffer.setSize( resx, resy );
        this.renderTargetBlurBuffer1.setSize( resx, resy );
        this.renderTargetEdgeBuffer1.setSize( resx, resy );
        this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set( resx, resy );

        resx = Math.round( resx / 2 );
        resy = Math.round( resy / 2 );

        this.renderTargetBlurBuffer2.setSize( resx, resy );
        this.renderTargetEdgeBuffer2.setSize( resx, resy );

        this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set( resx, resy );

    }

    /**
     * Performs the Outline pass.
     *
     * @param {WebGLRenderer} renderer - The renderer.
     * @param {WebGLRenderTarget} writeBuffer - The write buffer. This buffer is intended as the rendering
     * destination for the pass.
     * @param {WebGLRenderTarget} readBuffer - The read buffer. The pass can access the result from the
     * previous pass from this buffer.
     * @param {number} deltaTime - The delta time in seconds.
     * @param {boolean} maskActive - Whether masking is active or not.
     */
    render( renderer, writeBuffer, readBuffer, deltaTime, maskActive ) {

        if ( this.selectedObjects.length > 0 ) {

            renderer.getClearColor( this._oldClearColor );
            this.oldClearAlpha = renderer.getClearAlpha();
            const oldAutoClear = renderer.autoClear;

            renderer.autoClear = false;

            if ( maskActive ) renderer.state.buffers.stencil.setTest( false );

            renderer.setClearColor( 0xffffff, 1 );

            this._updateSelectionCache();

            // Make selected objects invisible
            this._changeVisibilityOfSelectedObjects( false );

            const currentBackground = this.renderScene.background;
            const currentOverrideMaterial = this.renderScene.overrideMaterial;
            this.renderScene.background = null;

            // 1. Draw Non Selected objects in the depth buffer
            this.renderScene.overrideMaterial = this.depthMaterial;
            renderer.setRenderTarget( this.renderTargetDepthBuffer );
            renderer.clear();
            renderer.render( this.renderScene, this.renderCamera );

            // Make selected objects visible
            this._changeVisibilityOfSelectedObjects( true );
            this._visibilityCache.clear();

            // Update Texture Matrix for Depth compare
            this._updateTextureMatrix();

            // Make non selected objects invisible, and draw only the selected objects, by comparing the depth buffer of non selected objects
            this._changeVisibilityOfNonSelectedObjects( false );
            this.renderScene.overrideMaterial = this.prepareMaskMaterial;
            this.prepareMaskMaterial.uniforms[ 'cameraNearFar' ].value.set( this.renderCamera.near, this.renderCamera.far );
            this.prepareMaskMaterial.uniforms[ 'depthTexture' ].value = this.renderTargetDepthBuffer.texture;
            this.prepareMaskMaterial.uniforms[ 'textureMatrix' ].value = this.textureMatrix;
            renderer.setRenderTarget( this.renderTargetMaskBuffer );
            renderer.clear();
            renderer.render( this.renderScene, this.renderCamera );
            this._changeVisibilityOfNonSelectedObjects( true );
            this._visibilityCache.clear();
            this._selectionCache.clear();

            this.renderScene.background = currentBackground;
            this.renderScene.overrideMaterial = currentOverrideMaterial;

            // 2. Downsample to Half resolution
            this._fsQuad.material = this.materialCopy;
            this.copyUniforms[ 'tDiffuse' ].value = this.renderTargetMaskBuffer.texture;
            renderer.setRenderTarget( this.renderTargetMaskDownSampleBuffer );
            renderer.clear();
            this._fsQuad.render( renderer );

            this.tempPulseColor1.copy( this.visibleEdgeColor );
            this.tempPulseColor2.copy( this.hiddenEdgeColor );

            if ( this.pulsePeriod > 0 ) {

                const scalar = ( 1 + 0.25 ) / 2 + Math.cos( performance.now() * 0.01 / this.pulsePeriod ) * ( 1.0 - 0.25 ) / 2;
                this.tempPulseColor1.multiplyScalar( scalar );
                this.tempPulseColor2.multiplyScalar( scalar );

            }

            // 3. Apply Edge Detection Pass
            this._fsQuad.material = this.edgeDetectionMaterial;
            this.edgeDetectionMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskDownSampleBuffer.texture;
            this.edgeDetectionMaterial.uniforms[ 'texSize' ].value.set( this.renderTargetMaskDownSampleBuffer.width, this.renderTargetMaskDownSampleBuffer.height );
            this.edgeDetectionMaterial.uniforms[ 'visibleEdgeColor' ].value = this.tempPulseColor1;
            this.edgeDetectionMaterial.uniforms[ 'hiddenEdgeColor' ].value = this.tempPulseColor2;
            renderer.setRenderTarget( this.renderTargetEdgeBuffer1 );
            renderer.clear();
            this._fsQuad.render( renderer );

            // 4. Apply Blur on Half res
            this._fsQuad.material = this.separableBlurMaterial1;
            this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture;
            this.separableBlurMaterial1.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionX;
            this.separableBlurMaterial1.uniforms[ 'kernelRadius' ].value = this.edgeThickness;
            renderer.setRenderTarget( this.renderTargetBlurBuffer1 );
            renderer.clear();
            this._fsQuad.render( renderer );
            this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer1.texture;
            this.separableBlurMaterial1.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionY;
            renderer.setRenderTarget( this.renderTargetEdgeBuffer1 );
            renderer.clear();
            this._fsQuad.render( renderer );

            // Apply Blur on quarter res
            this._fsQuad.material = this.separableBlurMaterial2;
            this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture;
            this.separableBlurMaterial2.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionX;
            renderer.setRenderTarget( this.renderTargetBlurBuffer2 );
            renderer.clear();
            this._fsQuad.render( renderer );
            this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer2.texture;
            this.separableBlurMaterial2.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionY;
            renderer.setRenderTarget( this.renderTargetEdgeBuffer2 );
            renderer.clear();
            this._fsQuad.render( renderer );

            // Blend it additively over the input texture
            this._fsQuad.material = this.overlayMaterial;
            this.overlayMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskBuffer.texture;
            this.overlayMaterial.uniforms[ 'edgeTexture1' ].value = this.renderTargetEdgeBuffer1.texture;
            this.overlayMaterial.uniforms[ 'edgeTexture2' ].value = this.renderTargetEdgeBuffer2.texture;
            this.overlayMaterial.uniforms[ 'patternTexture' ].value = this.patternTexture;
            this.overlayMaterial.uniforms[ 'edgeStrength' ].value = this.edgeStrength;
            this.overlayMaterial.uniforms[ 'edgeGlow' ].value = this.edgeGlow;
            this.overlayMaterial.uniforms[ 'usePatternTexture' ].value = this.usePatternTexture;


            if ( maskActive ) renderer.state.buffers.stencil.setTest( true );

            renderer.setRenderTarget( readBuffer );
            this._fsQuad.render( renderer );

            renderer.setClearColor( this._oldClearColor, this.oldClearAlpha );
            renderer.autoClear = oldAutoClear;

        }

        if ( this.renderToScreen ) {

            this._fsQuad.material = this.materialCopy;
            this.copyUniforms[ 'tDiffuse' ].value = readBuffer.texture;
            renderer.setRenderTarget( null );
            this._fsQuad.render( renderer );

        }

    }

    // internals

    _updateSelectionCache() {

        const cache = this._selectionCache;

        function gatherSelectedMeshesCallBack( object ) {

            if ( object.isMesh ) cache.add( object );

        }

        cache.clear();

        for ( let i = 0; i < this.selectedObjects.length; i ++ ) {

            const selectedObject = this.selectedObjects[ i ];
            selectedObject.traverse( gatherSelectedMeshesCallBack );

        }

    }

    _changeVisibilityOfSelectedObjects( bVisible ) {

        const cache = this._visibilityCache;

        for ( const mesh of this._selectionCache ) {

            if ( bVisible === true ) {

                mesh.visible = cache.get( mesh );

            } else {

                cache.set( mesh, mesh.visible );
                mesh.visible = bVisible;

            }

        }

    }

    _changeVisibilityOfNonSelectedObjects( bVisible ) {

        const visibilityCache = this._visibilityCache;
        const selectionCache = this._selectionCache;

        function VisibilityChangeCallBack( object ) {

            if ( object.isPoints || object.isLine || object.isLine2 ) {

                // the visibility of points and lines is always set to false in order to
                // not affect the outline computation

                if ( bVisible === true ) {

                    object.visible = visibilityCache.get( object ); // restore

                } else {

                    visibilityCache.set( object, object.visible );
                    object.visible = bVisible;

                }

            } else if ( object.isMesh || object.isSprite) {

                // only meshes and sprites are supported by OutlinePass

                if ( ! selectionCache.has( object ) ) {

                    const visibility = object.visible;

                    if ( bVisible === false || visibilityCache.get( object ) === true ) {

                        object.visible = bVisible;

                    }

                    visibilityCache.set( object, visibility );

                }

            }

        }

        this.renderScene.traverse( VisibilityChangeCallBack );

    }

    _updateTextureMatrix() {

        this.textureMatrix.set( 0.5, 0.0, 0.0, 0.5,
            0.0, 0.5, 0.0, 0.5,
            0.0, 0.0, 0.5, 0.5,
            0.0, 0.0, 0.0, 1.0 );
        this.textureMatrix.multiply( this.renderCamera.projectionMatrix );
        this.textureMatrix.multiply( this.renderCamera.matrixWorldInverse );

    }

    _getPrepareMaskMaterial() {

        return new ShaderMaterial( {

            uniforms: {
                'depthTexture': { value: null },
                'cameraNearFar': { value: new Vector2( 0.5, 0.5 ) },
                'textureMatrix': { value: null }
            },

            vertexShader:
                `#include <batching_pars_vertex>
                #include <morphtarget_pars_vertex>
                #include <skinning_pars_vertex>

                varying vec4 projTexCoord;
                varying vec4 vPosition;
                uniform mat4 textureMatrix;

                void main() {

                    #include <batching_vertex>
                    #include <skinbase_vertex>
                    #include <begin_vertex>
                    #include <morphtarget_vertex>
                    #include <skinning_vertex>
                    #include <project_vertex>

                    vPosition = mvPosition;

                    vec4 worldPosition = vec4( transformed, 1.0 );

                    #ifdef USE_INSTANCING

                        worldPosition = instanceMatrix * worldPosition;

                    #endif

                    worldPosition = modelMatrix * worldPosition;

                    projTexCoord = textureMatrix * worldPosition;

                }`,

            fragmentShader:
                `#include <packing>
                varying vec4 vPosition;
                varying vec4 projTexCoord;
                uniform sampler2D depthTexture;
                uniform vec2 cameraNearFar;

                void main() {

                    float depth = unpackRGBAToDepth(texture2DProj( depthTexture, projTexCoord ));
                    float viewZ = - DEPTH_TO_VIEW_Z( depth, cameraNearFar.x, cameraNearFar.y );
                    float depthTest = (-vPosition.z > viewZ) ? 1.0 : 0.0;
                    gl_FragColor = vec4(0.0, depthTest, 1.0, 1.0);

                }`

        } );

    }

    _getEdgeDetectionMaterial() {

        return new ShaderMaterial( {

            uniforms: {
                'maskTexture': { value: null },
                'texSize': { value: new Vector2( 0.5, 0.5 ) },
                'visibleEdgeColor': { value: new Vector3( 1.0, 1.0, 1.0 ) },
                'hiddenEdgeColor': { value: new Vector3( 1.0, 1.0, 1.0 ) },
            },

            vertexShader:
                `varying vec2 vUv;

                void main() {
                    vUv = uv;
                    gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
                }`,

            fragmentShader:
                `varying vec2 vUv;

                uniform sampler2D maskTexture;
                uniform vec2 texSize;
                uniform vec3 visibleEdgeColor;
                uniform vec3 hiddenEdgeColor;

                void main() {
                    vec2 invSize = 1.0 / texSize;
                    vec4 uvOffset = vec4(1.0, 0.0, 0.0, 1.0) * vec4(invSize, invSize);
                    vec4 c1 = texture2D( maskTexture, vUv + uvOffset.xy);
                    vec4 c2 = texture2D( maskTexture, vUv - uvOffset.xy);
                    vec4 c3 = texture2D( maskTexture, vUv + uvOffset.yw);
                    vec4 c4 = texture2D( maskTexture, vUv - uvOffset.yw);
                    float diff1 = (c1.r - c2.r)*0.5;
                    float diff2 = (c3.r - c4.r)*0.5;
                    float d = length( vec2(diff1, diff2) );
                    float a1 = min(c1.g, c2.g);
                    float a2 = min(c3.g, c4.g);
                    float visibilityFactor = min(a1, a2);
                    vec3 edgeColor = 1.0 - visibilityFactor > 0.001 ? visibleEdgeColor : hiddenEdgeColor;
                    gl_FragColor = vec4(edgeColor, 1.0) * vec4(d);
                }`
        } );

    }

    _getSeparableBlurMaterial( maxRadius ) {

        return new ShaderMaterial( {

            defines: {
                'MAX_RADIUS': maxRadius,
            },

            uniforms: {
                'colorTexture': { value: null },
                'texSize': { value: new Vector2( 0.5, 0.5 ) },
                'direction': { value: new Vector2( 0.5, 0.5 ) },
                'kernelRadius': { value: 1.0 }
            },

            vertexShader:
                `varying vec2 vUv;

                void main() {
                    vUv = uv;
                    gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
                }`,

            fragmentShader:
                `#include <common>
                varying vec2 vUv;
                uniform sampler2D colorTexture;
                uniform vec2 texSize;
                uniform vec2 direction;
                uniform float kernelRadius;

                float gaussianPdf(in float x, in float sigma) {
                    return 0.39894 * exp( -0.5 * x * x/( sigma * sigma))/sigma;
                }

                void main() {
                    vec2 invSize = 1.0 / texSize;
                    float sigma = kernelRadius/2.0;
                    float weightSum = gaussianPdf(0.0, sigma);
                    vec4 diffuseSum = texture2D( colorTexture, vUv) * weightSum;
                    vec2 delta = direction * invSize * kernelRadius/float(MAX_RADIUS);
                    vec2 uvOffset = delta;
                    for( int i = 1; i <= MAX_RADIUS; i ++ ) {
                        float x = kernelRadius * float(i) / float(MAX_RADIUS);
                        float w = gaussianPdf(x, sigma);
                        vec4 sample1 = texture2D( colorTexture, vUv + uvOffset);
                        vec4 sample2 = texture2D( colorTexture, vUv - uvOffset);
                        diffuseSum += ((sample1 + sample2) * w);
                        weightSum += (2.0 * w);
                        uvOffset += delta;
                    }
                    gl_FragColor = diffuseSum/weightSum;
                }`
        } );

    }

    _getOverlayMaterial() {

        return new ShaderMaterial( {

            uniforms: {
                'maskTexture': { value: null },
                'edgeTexture1': { value: null },
                'edgeTexture2': { value: null },
                'patternTexture': { value: null },
                'edgeStrength': { value: 1.0 },
                'edgeGlow': { value: 1.0 },
                'usePatternTexture': { value: 0.0 }
            },

            vertexShader:
                `varying vec2 vUv;

                void main() {
                    vUv = uv;
                    gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
                }`,

            fragmentShader:
                `varying vec2 vUv;

                uniform sampler2D maskTexture;
                uniform sampler2D edgeTexture1;
                uniform sampler2D edgeTexture2;
                uniform sampler2D patternTexture;
                uniform float edgeStrength;
                uniform float edgeGlow;
                uniform bool usePatternTexture;

                void main() {
                    vec4 edgeValue1 = texture2D(edgeTexture1, vUv);
                    vec4 edgeValue2 = texture2D(edgeTexture2, vUv);
                    vec4 maskColor = texture2D(maskTexture, vUv);
                    vec4 patternColor = texture2D(patternTexture, 6.0 * vUv);
                    float visibilityFactor = 1.0 - maskColor.g > 0.0 ? 1.0 : 0.5;
                    vec4 edgeValue = edgeValue1 + edgeValue2 * edgeGlow;
                    vec4 finalColor = edgeStrength * maskColor.r * edgeValue;
                    if(usePatternTexture)
                        finalColor += + visibilityFactor * (1.0 - maskColor.r) * (1.0 - patternColor.r);
                    gl_FragColor = finalColor;
                }`,
            blending: AdditiveBlending,
            depthTest: false,
            depthWrite: false,
            transparent: true
        } );

    }

}

Methods

dispose(): void
Code
dispose() {

        this.renderTargetMaskBuffer.dispose();
        this.renderTargetDepthBuffer.dispose();
        this.renderTargetMaskDownSampleBuffer.dispose();
        this.renderTargetBlurBuffer1.dispose();
        this.renderTargetBlurBuffer2.dispose();
        this.renderTargetEdgeBuffer1.dispose();
        this.renderTargetEdgeBuffer2.dispose();

        this.depthMaterial.dispose();
        this.prepareMaskMaterial.dispose();
        this.edgeDetectionMaterial.dispose();
        this.separableBlurMaterial1.dispose();
        this.separableBlurMaterial2.dispose();
        this.overlayMaterial.dispose();
        this.materialCopy.dispose();

        this._fsQuad.dispose();

    }
setSize(width: number, height: number): void
Code
setSize( width, height ) {

        this.renderTargetMaskBuffer.setSize( width, height );
        this.renderTargetDepthBuffer.setSize( width, height );

        let resx = Math.round( width / this.downSampleRatio );
        let resy = Math.round( height / this.downSampleRatio );
        this.renderTargetMaskDownSampleBuffer.setSize( resx, resy );
        this.renderTargetBlurBuffer1.setSize( resx, resy );
        this.renderTargetEdgeBuffer1.setSize( resx, resy );
        this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set( resx, resy );

        resx = Math.round( resx / 2 );
        resy = Math.round( resy / 2 );

        this.renderTargetBlurBuffer2.setSize( resx, resy );
        this.renderTargetEdgeBuffer2.setSize( resx, resy );

        this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set( resx, resy );

    }
render(renderer: WebGLRenderer, writeBuffer: WebGLRenderTarget, readBuffer: WebGLRenderTarget, deltaTime: number, maskActive: boolean): void
Code
render( renderer, writeBuffer, readBuffer, deltaTime, maskActive ) {

        if ( this.selectedObjects.length > 0 ) {

            renderer.getClearColor( this._oldClearColor );
            this.oldClearAlpha = renderer.getClearAlpha();
            const oldAutoClear = renderer.autoClear;

            renderer.autoClear = false;

            if ( maskActive ) renderer.state.buffers.stencil.setTest( false );

            renderer.setClearColor( 0xffffff, 1 );

            this._updateSelectionCache();

            // Make selected objects invisible
            this._changeVisibilityOfSelectedObjects( false );

            const currentBackground = this.renderScene.background;
            const currentOverrideMaterial = this.renderScene.overrideMaterial;
            this.renderScene.background = null;

            // 1. Draw Non Selected objects in the depth buffer
            this.renderScene.overrideMaterial = this.depthMaterial;
            renderer.setRenderTarget( this.renderTargetDepthBuffer );
            renderer.clear();
            renderer.render( this.renderScene, this.renderCamera );

            // Make selected objects visible
            this._changeVisibilityOfSelectedObjects( true );
            this._visibilityCache.clear();

            // Update Texture Matrix for Depth compare
            this._updateTextureMatrix();

            // Make non selected objects invisible, and draw only the selected objects, by comparing the depth buffer of non selected objects
            this._changeVisibilityOfNonSelectedObjects( false );
            this.renderScene.overrideMaterial = this.prepareMaskMaterial;
            this.prepareMaskMaterial.uniforms[ 'cameraNearFar' ].value.set( this.renderCamera.near, this.renderCamera.far );
            this.prepareMaskMaterial.uniforms[ 'depthTexture' ].value = this.renderTargetDepthBuffer.texture;
            this.prepareMaskMaterial.uniforms[ 'textureMatrix' ].value = this.textureMatrix;
            renderer.setRenderTarget( this.renderTargetMaskBuffer );
            renderer.clear();
            renderer.render( this.renderScene, this.renderCamera );
            this._changeVisibilityOfNonSelectedObjects( true );
            this._visibilityCache.clear();
            this._selectionCache.clear();

            this.renderScene.background = currentBackground;
            this.renderScene.overrideMaterial = currentOverrideMaterial;

            // 2. Downsample to Half resolution
            this._fsQuad.material = this.materialCopy;
            this.copyUniforms[ 'tDiffuse' ].value = this.renderTargetMaskBuffer.texture;
            renderer.setRenderTarget( this.renderTargetMaskDownSampleBuffer );
            renderer.clear();
            this._fsQuad.render( renderer );

            this.tempPulseColor1.copy( this.visibleEdgeColor );
            this.tempPulseColor2.copy( this.hiddenEdgeColor );

            if ( this.pulsePeriod > 0 ) {

                const scalar = ( 1 + 0.25 ) / 2 + Math.cos( performance.now() * 0.01 / this.pulsePeriod ) * ( 1.0 - 0.25 ) / 2;
                this.tempPulseColor1.multiplyScalar( scalar );
                this.tempPulseColor2.multiplyScalar( scalar );

            }

            // 3. Apply Edge Detection Pass
            this._fsQuad.material = this.edgeDetectionMaterial;
            this.edgeDetectionMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskDownSampleBuffer.texture;
            this.edgeDetectionMaterial.uniforms[ 'texSize' ].value.set( this.renderTargetMaskDownSampleBuffer.width, this.renderTargetMaskDownSampleBuffer.height );
            this.edgeDetectionMaterial.uniforms[ 'visibleEdgeColor' ].value = this.tempPulseColor1;
            this.edgeDetectionMaterial.uniforms[ 'hiddenEdgeColor' ].value = this.tempPulseColor2;
            renderer.setRenderTarget( this.renderTargetEdgeBuffer1 );
            renderer.clear();
            this._fsQuad.render( renderer );

            // 4. Apply Blur on Half res
            this._fsQuad.material = this.separableBlurMaterial1;
            this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture;
            this.separableBlurMaterial1.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionX;
            this.separableBlurMaterial1.uniforms[ 'kernelRadius' ].value = this.edgeThickness;
            renderer.setRenderTarget( this.renderTargetBlurBuffer1 );
            renderer.clear();
            this._fsQuad.render( renderer );
            this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer1.texture;
            this.separableBlurMaterial1.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionY;
            renderer.setRenderTarget( this.renderTargetEdgeBuffer1 );
            renderer.clear();
            this._fsQuad.render( renderer );

            // Apply Blur on quarter res
            this._fsQuad.material = this.separableBlurMaterial2;
            this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture;
            this.separableBlurMaterial2.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionX;
            renderer.setRenderTarget( this.renderTargetBlurBuffer2 );
            renderer.clear();
            this._fsQuad.render( renderer );
            this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer2.texture;
            this.separableBlurMaterial2.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionY;
            renderer.setRenderTarget( this.renderTargetEdgeBuffer2 );
            renderer.clear();
            this._fsQuad.render( renderer );

            // Blend it additively over the input texture
            this._fsQuad.material = this.overlayMaterial;
            this.overlayMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskBuffer.texture;
            this.overlayMaterial.uniforms[ 'edgeTexture1' ].value = this.renderTargetEdgeBuffer1.texture;
            this.overlayMaterial.uniforms[ 'edgeTexture2' ].value = this.renderTargetEdgeBuffer2.texture;
            this.overlayMaterial.uniforms[ 'patternTexture' ].value = this.patternTexture;
            this.overlayMaterial.uniforms[ 'edgeStrength' ].value = this.edgeStrength;
            this.overlayMaterial.uniforms[ 'edgeGlow' ].value = this.edgeGlow;
            this.overlayMaterial.uniforms[ 'usePatternTexture' ].value = this.usePatternTexture;


            if ( maskActive ) renderer.state.buffers.stencil.setTest( true );

            renderer.setRenderTarget( readBuffer );
            this._fsQuad.render( renderer );

            renderer.setClearColor( this._oldClearColor, this.oldClearAlpha );
            renderer.autoClear = oldAutoClear;

        }

        if ( this.renderToScreen ) {

            this._fsQuad.material = this.materialCopy;
            this.copyUniforms[ 'tDiffuse' ].value = readBuffer.texture;
            renderer.setRenderTarget( null );
            this._fsQuad.render( renderer );

        }

    }
_updateSelectionCache(): void
Code
_updateSelectionCache() {

        const cache = this._selectionCache;

        function gatherSelectedMeshesCallBack( object ) {

            if ( object.isMesh ) cache.add( object );

        }

        cache.clear();

        for ( let i = 0; i < this.selectedObjects.length; i ++ ) {

            const selectedObject = this.selectedObjects[ i ];
            selectedObject.traverse( gatherSelectedMeshesCallBack );

        }

    }
_changeVisibilityOfSelectedObjects(bVisible: any): void
Code
_changeVisibilityOfSelectedObjects( bVisible ) {

        const cache = this._visibilityCache;

        for ( const mesh of this._selectionCache ) {

            if ( bVisible === true ) {

                mesh.visible = cache.get( mesh );

            } else {

                cache.set( mesh, mesh.visible );
                mesh.visible = bVisible;

            }

        }

    }
_changeVisibilityOfNonSelectedObjects(bVisible: any): void
Code
_changeVisibilityOfNonSelectedObjects( bVisible ) {

        const visibilityCache = this._visibilityCache;
        const selectionCache = this._selectionCache;

        function VisibilityChangeCallBack( object ) {

            if ( object.isPoints || object.isLine || object.isLine2 ) {

                // the visibility of points and lines is always set to false in order to
                // not affect the outline computation

                if ( bVisible === true ) {

                    object.visible = visibilityCache.get( object ); // restore

                } else {

                    visibilityCache.set( object, object.visible );
                    object.visible = bVisible;

                }

            } else if ( object.isMesh || object.isSprite) {

                // only meshes and sprites are supported by OutlinePass

                if ( ! selectionCache.has( object ) ) {

                    const visibility = object.visible;

                    if ( bVisible === false || visibilityCache.get( object ) === true ) {

                        object.visible = bVisible;

                    }

                    visibilityCache.set( object, visibility );

                }

            }

        }

        this.renderScene.traverse( VisibilityChangeCallBack );

    }
_updateTextureMatrix(): void
Code
_updateTextureMatrix() {

        this.textureMatrix.set( 0.5, 0.0, 0.0, 0.5,
            0.0, 0.5, 0.0, 0.5,
            0.0, 0.0, 0.5, 0.5,
            0.0, 0.0, 0.0, 1.0 );
        this.textureMatrix.multiply( this.renderCamera.projectionMatrix );
        this.textureMatrix.multiply( this.renderCamera.matrixWorldInverse );

    }
_getPrepareMaskMaterial(): any
Code
_getPrepareMaskMaterial() {

        return new ShaderMaterial( {

            uniforms: {
                'depthTexture': { value: null },
                'cameraNearFar': { value: new Vector2( 0.5, 0.5 ) },
                'textureMatrix': { value: null }
            },

            vertexShader:
                `#include <batching_pars_vertex>
                #include <morphtarget_pars_vertex>
                #include <skinning_pars_vertex>

                varying vec4 projTexCoord;
                varying vec4 vPosition;
                uniform mat4 textureMatrix;

                void main() {

                    #include <batching_vertex>
                    #include <skinbase_vertex>
                    #include <begin_vertex>
                    #include <morphtarget_vertex>
                    #include <skinning_vertex>
                    #include <project_vertex>

                    vPosition = mvPosition;

                    vec4 worldPosition = vec4( transformed, 1.0 );

                    #ifdef USE_INSTANCING

                        worldPosition = instanceMatrix * worldPosition;

                    #endif

                    worldPosition = modelMatrix * worldPosition;

                    projTexCoord = textureMatrix * worldPosition;

                }`,

            fragmentShader:
                `#include <packing>
                varying vec4 vPosition;
                varying vec4 projTexCoord;
                uniform sampler2D depthTexture;
                uniform vec2 cameraNearFar;

                void main() {

                    float depth = unpackRGBAToDepth(texture2DProj( depthTexture, projTexCoord ));
                    float viewZ = - DEPTH_TO_VIEW_Z( depth, cameraNearFar.x, cameraNearFar.y );
                    float depthTest = (-vPosition.z > viewZ) ? 1.0 : 0.0;
                    gl_FragColor = vec4(0.0, depthTest, 1.0, 1.0);

                }`

        } );

    }
_getEdgeDetectionMaterial(): any
Code
_getEdgeDetectionMaterial() {

        return new ShaderMaterial( {

            uniforms: {
                'maskTexture': { value: null },
                'texSize': { value: new Vector2( 0.5, 0.5 ) },
                'visibleEdgeColor': { value: new Vector3( 1.0, 1.0, 1.0 ) },
                'hiddenEdgeColor': { value: new Vector3( 1.0, 1.0, 1.0 ) },
            },

            vertexShader:
                `varying vec2 vUv;

                void main() {
                    vUv = uv;
                    gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
                }`,

            fragmentShader:
                `varying vec2 vUv;

                uniform sampler2D maskTexture;
                uniform vec2 texSize;
                uniform vec3 visibleEdgeColor;
                uniform vec3 hiddenEdgeColor;

                void main() {
                    vec2 invSize = 1.0 / texSize;
                    vec4 uvOffset = vec4(1.0, 0.0, 0.0, 1.0) * vec4(invSize, invSize);
                    vec4 c1 = texture2D( maskTexture, vUv + uvOffset.xy);
                    vec4 c2 = texture2D( maskTexture, vUv - uvOffset.xy);
                    vec4 c3 = texture2D( maskTexture, vUv + uvOffset.yw);
                    vec4 c4 = texture2D( maskTexture, vUv - uvOffset.yw);
                    float diff1 = (c1.r - c2.r)*0.5;
                    float diff2 = (c3.r - c4.r)*0.5;
                    float d = length( vec2(diff1, diff2) );
                    float a1 = min(c1.g, c2.g);
                    float a2 = min(c3.g, c4.g);
                    float visibilityFactor = min(a1, a2);
                    vec3 edgeColor = 1.0 - visibilityFactor > 0.001 ? visibleEdgeColor : hiddenEdgeColor;
                    gl_FragColor = vec4(edgeColor, 1.0) * vec4(d);
                }`
        } );

    }
_getSeparableBlurMaterial(maxRadius: any): any
Code
_getSeparableBlurMaterial( maxRadius ) {

        return new ShaderMaterial( {

            defines: {
                'MAX_RADIUS': maxRadius,
            },

            uniforms: {
                'colorTexture': { value: null },
                'texSize': { value: new Vector2( 0.5, 0.5 ) },
                'direction': { value: new Vector2( 0.5, 0.5 ) },
                'kernelRadius': { value: 1.0 }
            },

            vertexShader:
                `varying vec2 vUv;

                void main() {
                    vUv = uv;
                    gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
                }`,

            fragmentShader:
                `#include <common>
                varying vec2 vUv;
                uniform sampler2D colorTexture;
                uniform vec2 texSize;
                uniform vec2 direction;
                uniform float kernelRadius;

                float gaussianPdf(in float x, in float sigma) {
                    return 0.39894 * exp( -0.5 * x * x/( sigma * sigma))/sigma;
                }

                void main() {
                    vec2 invSize = 1.0 / texSize;
                    float sigma = kernelRadius/2.0;
                    float weightSum = gaussianPdf(0.0, sigma);
                    vec4 diffuseSum = texture2D( colorTexture, vUv) * weightSum;
                    vec2 delta = direction * invSize * kernelRadius/float(MAX_RADIUS);
                    vec2 uvOffset = delta;
                    for( int i = 1; i <= MAX_RADIUS; i ++ ) {
                        float x = kernelRadius * float(i) / float(MAX_RADIUS);
                        float w = gaussianPdf(x, sigma);
                        vec4 sample1 = texture2D( colorTexture, vUv + uvOffset);
                        vec4 sample2 = texture2D( colorTexture, vUv - uvOffset);
                        diffuseSum += ((sample1 + sample2) * w);
                        weightSum += (2.0 * w);
                        uvOffset += delta;
                    }
                    gl_FragColor = diffuseSum/weightSum;
                }`
        } );

    }
_getOverlayMaterial(): any
Code
_getOverlayMaterial() {

        return new ShaderMaterial( {

            uniforms: {
                'maskTexture': { value: null },
                'edgeTexture1': { value: null },
                'edgeTexture2': { value: null },
                'patternTexture': { value: null },
                'edgeStrength': { value: 1.0 },
                'edgeGlow': { value: 1.0 },
                'usePatternTexture': { value: 0.0 }
            },

            vertexShader:
                `varying vec2 vUv;

                void main() {
                    vUv = uv;
                    gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
                }`,

            fragmentShader:
                `varying vec2 vUv;

                uniform sampler2D maskTexture;
                uniform sampler2D edgeTexture1;
                uniform sampler2D edgeTexture2;
                uniform sampler2D patternTexture;
                uniform float edgeStrength;
                uniform float edgeGlow;
                uniform bool usePatternTexture;

                void main() {
                    vec4 edgeValue1 = texture2D(edgeTexture1, vUv);
                    vec4 edgeValue2 = texture2D(edgeTexture2, vUv);
                    vec4 maskColor = texture2D(maskTexture, vUv);
                    vec4 patternColor = texture2D(patternTexture, 6.0 * vUv);
                    float visibilityFactor = 1.0 - maskColor.g > 0.0 ? 1.0 : 0.5;
                    vec4 edgeValue = edgeValue1 + edgeValue2 * edgeGlow;
                    vec4 finalColor = edgeStrength * maskColor.r * edgeValue;
                    if(usePatternTexture)
                        finalColor += + visibilityFactor * (1.0 - maskColor.r) * (1.0 - patternColor.r);
                    gl_FragColor = finalColor;
                }`,
            blending: AdditiveBlending,
            depthTest: false,
            depthWrite: false,
            transparent: true
        } );

    }