Skip to content

⬅️ Back to Table of Contents

📄 LensflareNode.js

📊 Analysis Summary

Metric Count
🔧 Functions 6
🧱 Classes 1
📦 Imports 23
📊 Variables & Constants 4

📚 Table of Contents

🛠️ File Location:

📂 examples/jsm/tsl/display/LensflareNode.js

📦 Imports

Name Source
RenderTarget three/webgpu
Vector2 three/webgpu
TempNode three/webgpu
NodeUpdateType three/webgpu
QuadMesh three/webgpu
RendererUtils three/webgpu
NodeMaterial three/webgpu
convertToTexture three/tsl
nodeObject three/tsl
Fn three/tsl
passTexture three/tsl
uv three/tsl
vec2 three/tsl
vec3 three/tsl
vec4 three/tsl
max three/tsl
float three/tsl
sub three/tsl
int three/tsl
Loop three/tsl
fract three/tsl
pow three/tsl
distance three/tsl

Variables & Constants

Name Type Kind Value Exported
_quadMesh any let/var new QuadMesh()
_size any let/var new Vector2()
_rendererState any let/var *not shown*
sample any let/var this.textureNode.sample( sampleUv ).rgb

Functions

LensflareNode.getTextureNode(): PassTextureNode

JSDoc:

/**
     * Returns the result of the effect as a texture node.
     *
     * @return {PassTextureNode} A texture node that represents the result of the effect.
     */

Returns: PassTextureNode

Code
getTextureNode() {

        return this._textureNode;

    }

LensflareNode.setSize(width: number, height: number): void

JSDoc:

/**
     * Sets the size of the effect.
     *
     * @param {number} width - The width of the effect.
     * @param {number} height - The height of the effect.
     */

Parameters:

  • width number
  • height number

Returns: void

Calls:

  • Math.round
  • this._renderTarget.setSize
Code
setSize( width, height ) {

        const resx = Math.round( width / this.downSampleRatio );
        const resy = Math.round( height / this.downSampleRatio );

        this._renderTarget.setSize( resx, resy );

    }

LensflareNode.updateBefore(frame: NodeFrame): void

JSDoc:

/**
     * This method is used to render the effect once per frame.
     *
     * @param {NodeFrame} frame - The current node frame.
     */

Parameters:

  • frame NodeFrame

Returns: void

Calls:

  • renderer.getDrawingBufferSize
  • this.setSize
  • RendererUtils.resetRendererState
  • renderer.setMRT
  • renderer.setRenderTarget
  • _quadMesh.render
  • RendererUtils.restoreRendererState

Internal Comments:

// clear (x4)
// lensflare (x4)
// restore (x4)

Code
updateBefore( frame ) {

        const { renderer } = frame;

        const size = renderer.getDrawingBufferSize( _size );
        this.setSize( size.width, size.height );

        _rendererState = RendererUtils.resetRendererState( renderer, _rendererState );

        _quadMesh.material = this._material;

        // clear

        renderer.setMRT( null );

        // lensflare

        renderer.setRenderTarget( this._renderTarget );
        _quadMesh.render( renderer );

        // restore

        RendererUtils.restoreRendererState( renderer, _rendererState );

    }

LensflareNode.setup(builder: NodeBuilder): PassTextureNode

JSDoc:

/**
     * This method is used to setup the effect's TSL code.
     *
     * @param {NodeBuilder} builder - The current node builder.
     * @return {PassTextureNode}
     */

Parameters:

  • builder NodeBuilder

Returns: PassTextureNode

Calls:

  • Fn (from three/tsl)
  • uv().oneMinus().toVar
  • sub( vec2( 0.5 ), texCoord ).mul( this.ghostSpacingNode ).toVar
  • vec4().toVar
  • Loop (from three/tsl)
  • int (from three/tsl)
  • fract( texCoord.add( ghostVec.mul( float( i ) ) ) ).toVar
  • distance (from three/tsl)
  • vec2 (from three/tsl)
  • pow (from three/tsl)
  • d.oneMinus
  • this.textureNode.sample
  • max( sample.sub( this.thresholdNode ), vec3( 0 ) ).mul
  • result.addAssign
  • sample.mul
  • lensflare().context
  • builder.getSharedContext

Internal Comments:

// flip uvs so lens flare pivot around the image center (x2)
// ghosts are positioned along this vector (x2)
// sample ghosts (x2)
// use fract() to ensure that the texture coordinates wrap around (x2)
// reduce contributions from samples at the screen edge (x2)
// accumulate (x2)

Code
setup( builder ) {

        const lensflare = Fn( () => {

            // flip uvs so lens flare pivot around the image center

            const texCoord = uv().oneMinus().toVar();

            // ghosts are positioned along this vector

            const ghostVec = sub( vec2( 0.5 ), texCoord ).mul( this.ghostSpacingNode ).toVar();

            // sample ghosts

            const result = vec4().toVar();

            Loop( { start: int( 0 ), end: int( this.ghostSamplesNode ), type: 'int', condition: '<' }, ( { i } ) => {

                // use fract() to ensure that the texture coordinates wrap around

                const sampleUv = fract( texCoord.add( ghostVec.mul( float( i ) ) ) ).toVar();

                // reduce contributions from samples at the screen edge

                const d = distance( sampleUv, vec2( 0.5 ) );
                const weight = pow( d.oneMinus(), this.ghostAttenuationFactorNode );

                // accumulate

                let sample = this.textureNode.sample( sampleUv ).rgb;

                sample = max( sample.sub( this.thresholdNode ), vec3( 0 ) ).mul( this.ghostTintNode );

                result.addAssign( sample.mul( weight ) );

            } );

            return result;

        } );

        this._material.fragmentNode = lensflare().context( builder.getSharedContext() );
        this._material.needsUpdate = true;

        return this._textureNode;

    }

LensflareNode.dispose(): void

JSDoc:

/**
     * Frees internal resources. This method should be called
     * when the effect is no longer required.
     */

Returns: void

Calls:

  • this._renderTarget.dispose
  • this._material.dispose
Code
dispose() {

        this._renderTarget.dispose();
        this._material.dispose();

    }

lensflare(node: TextureNode, params: { ghostTint?: any; threshold?: any; ghostSamples?: any; ghostSpacing?: any; ghostAttenuationFactor?: any; downSampleRatio?: number; }): LensflareNode

Parameters:

  • node TextureNode
  • params { ghostTint?: any; threshold?: any; ghostSamples?: any; ghostSpacing?: any; ghostAttenuationFactor?: any; downSampleRatio?: number; }

Returns: LensflareNode

Calls:

  • nodeObject (from three/tsl)
Code
( node, params ) => nodeObject( new LensflareNode( convertToTexture( node ), params ) )

Classes

LensflareNode

Class Code
class LensflareNode extends TempNode {

    static get type() {

        return 'LensflareNode';

    }

    /**
     * Constructs a new lens flare node.
     *
     * @param {TextureNode} textureNode - The texture node that represents the scene's bloom.
     * @param {Object} params - The parameter object for configuring the effect.
     * @param {Node<vec3> | Color} [params.ghostTint=vec3(1, 1, 1)] - Defines the tint of the flare/ghosts.
     * @param {Node<float> | number} [params.threshold=float(0.5)] - Controls the size and strength of the effect. A higher threshold results in smaller flares.
     * @param {Node<float> | number} [params.ghostSamples=float(4)] - Represents the number of flares/ghosts per bright spot which pivot around the center.
     * @param {Node<float> | number} [params.ghostSpacing=float(0.25)] - Defines the spacing of the flares/ghosts.
     * @param {Node<float> | number} [params.ghostAttenuationFactor=float(25)] - Defines the attenuation factor of flares/ghosts.
     * @param {number} [params.downSampleRatio=4] - Defines how downsampling since the effect is usually not rendered at full resolution.
     */
    constructor( textureNode, params = {} ) {

        super( 'vec4' );

        /**
         * The texture node that represents the scene's bloom.
         *
         * @type {TextureNode}
         */
        this.textureNode = textureNode;

        const {
            ghostTint = vec3( 1, 1, 1 ),
            threshold = float( 0.5 ),
            ghostSamples = float( 4 ),
            ghostSpacing = float( 0.25 ),
            ghostAttenuationFactor = float( 25 ),
            downSampleRatio = 4
        } = params;

        /**
         * Defines the tint of the flare/ghosts.
         *
         * @type {Node<vec3>}
         */
        this.ghostTintNode = nodeObject( ghostTint );

        /**
         * Controls the size and strength of the effect. A higher threshold results in smaller flares.
         *
         * @type {Node<float>}
         */
        this.thresholdNode = nodeObject( threshold );

        /**
         * Represents the number of flares/ghosts per bright spot which pivot around the center.
         *
         * @type {Node<float>}
         */
        this.ghostSamplesNode = nodeObject( ghostSamples );

        /**
         * Defines the spacing of the flares/ghosts.
         *
         * @type {Node<float>}
         */
        this.ghostSpacingNode = nodeObject( ghostSpacing );

        /**
         * Defines the attenuation factor of flares/ghosts.
         *
         * @type {Node<float>}
         */
        this.ghostAttenuationFactorNode = nodeObject( ghostAttenuationFactor );

        /**
         * Defines how downsampling since the effect is usually not rendered at full resolution.
         *
         * @type {number}
         */
        this.downSampleRatio = downSampleRatio;

        /**
         * The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node renders
         * its effect once per frame in `updateBefore()`.
         *
         * @type {string}
         * @default 'frame'
         */
        this.updateBeforeType = NodeUpdateType.FRAME;

        /**
         * The internal render target of the effect.
         *
         * @private
         * @type {RenderTarget}
         */
        this._renderTarget = new RenderTarget( 1, 1, { depthBuffer: false } );
        this._renderTarget.texture.name = 'LensflareNode';

        /**
         * The node material that holds the effect's TSL code.
         *
         * @private
         * @type {NodeMaterial}
         */
        this._material = new NodeMaterial();
        this._material.name = 'LensflareNode';

        /**
         * The result of the effect is represented as a separate texture node.
         *
         * @private
         * @type {PassTextureNode}
         */
        this._textureNode = passTexture( this, this._renderTarget.texture );

    }

    /**
     * Returns the result of the effect as a texture node.
     *
     * @return {PassTextureNode} A texture node that represents the result of the effect.
     */
    getTextureNode() {

        return this._textureNode;

    }

    /**
     * Sets the size of the effect.
     *
     * @param {number} width - The width of the effect.
     * @param {number} height - The height of the effect.
     */
    setSize( width, height ) {

        const resx = Math.round( width / this.downSampleRatio );
        const resy = Math.round( height / this.downSampleRatio );

        this._renderTarget.setSize( resx, resy );

    }

    /**
     * This method is used to render the effect once per frame.
     *
     * @param {NodeFrame} frame - The current node frame.
     */
    updateBefore( frame ) {

        const { renderer } = frame;

        const size = renderer.getDrawingBufferSize( _size );
        this.setSize( size.width, size.height );

        _rendererState = RendererUtils.resetRendererState( renderer, _rendererState );

        _quadMesh.material = this._material;

        // clear

        renderer.setMRT( null );

        // lensflare

        renderer.setRenderTarget( this._renderTarget );
        _quadMesh.render( renderer );

        // restore

        RendererUtils.restoreRendererState( renderer, _rendererState );

    }

    /**
     * This method is used to setup the effect's TSL code.
     *
     * @param {NodeBuilder} builder - The current node builder.
     * @return {PassTextureNode}
     */
    setup( builder ) {

        const lensflare = Fn( () => {

            // flip uvs so lens flare pivot around the image center

            const texCoord = uv().oneMinus().toVar();

            // ghosts are positioned along this vector

            const ghostVec = sub( vec2( 0.5 ), texCoord ).mul( this.ghostSpacingNode ).toVar();

            // sample ghosts

            const result = vec4().toVar();

            Loop( { start: int( 0 ), end: int( this.ghostSamplesNode ), type: 'int', condition: '<' }, ( { i } ) => {

                // use fract() to ensure that the texture coordinates wrap around

                const sampleUv = fract( texCoord.add( ghostVec.mul( float( i ) ) ) ).toVar();

                // reduce contributions from samples at the screen edge

                const d = distance( sampleUv, vec2( 0.5 ) );
                const weight = pow( d.oneMinus(), this.ghostAttenuationFactorNode );

                // accumulate

                let sample = this.textureNode.sample( sampleUv ).rgb;

                sample = max( sample.sub( this.thresholdNode ), vec3( 0 ) ).mul( this.ghostTintNode );

                result.addAssign( sample.mul( weight ) );

            } );

            return result;

        } );

        this._material.fragmentNode = lensflare().context( builder.getSharedContext() );
        this._material.needsUpdate = true;

        return this._textureNode;

    }

    /**
     * Frees internal resources. This method should be called
     * when the effect is no longer required.
     */
    dispose() {

        this._renderTarget.dispose();
        this._material.dispose();

    }

}

Methods

getTextureNode(): PassTextureNode
Code
getTextureNode() {

        return this._textureNode;

    }
setSize(width: number, height: number): void
Code
setSize( width, height ) {

        const resx = Math.round( width / this.downSampleRatio );
        const resy = Math.round( height / this.downSampleRatio );

        this._renderTarget.setSize( resx, resy );

    }
updateBefore(frame: NodeFrame): void
Code
updateBefore( frame ) {

        const { renderer } = frame;

        const size = renderer.getDrawingBufferSize( _size );
        this.setSize( size.width, size.height );

        _rendererState = RendererUtils.resetRendererState( renderer, _rendererState );

        _quadMesh.material = this._material;

        // clear

        renderer.setMRT( null );

        // lensflare

        renderer.setRenderTarget( this._renderTarget );
        _quadMesh.render( renderer );

        // restore

        RendererUtils.restoreRendererState( renderer, _rendererState );

    }
setup(builder: NodeBuilder): PassTextureNode
Code
setup( builder ) {

        const lensflare = Fn( () => {

            // flip uvs so lens flare pivot around the image center

            const texCoord = uv().oneMinus().toVar();

            // ghosts are positioned along this vector

            const ghostVec = sub( vec2( 0.5 ), texCoord ).mul( this.ghostSpacingNode ).toVar();

            // sample ghosts

            const result = vec4().toVar();

            Loop( { start: int( 0 ), end: int( this.ghostSamplesNode ), type: 'int', condition: '<' }, ( { i } ) => {

                // use fract() to ensure that the texture coordinates wrap around

                const sampleUv = fract( texCoord.add( ghostVec.mul( float( i ) ) ) ).toVar();

                // reduce contributions from samples at the screen edge

                const d = distance( sampleUv, vec2( 0.5 ) );
                const weight = pow( d.oneMinus(), this.ghostAttenuationFactorNode );

                // accumulate

                let sample = this.textureNode.sample( sampleUv ).rgb;

                sample = max( sample.sub( this.thresholdNode ), vec3( 0 ) ).mul( this.ghostTintNode );

                result.addAssign( sample.mul( weight ) );

            } );

            return result;

        } );

        this._material.fragmentNode = lensflare().context( builder.getSharedContext() );
        this._material.needsUpdate = true;

        return this._textureNode;

    }
dispose(): void
Code
dispose() {

        this._renderTarget.dispose();
        this._material.dispose();

    }