📄 GeometryCompressionUtils.js
¶
📊 Analysis Summary¶
Metric | Count |
---|---|
🔧 Functions | 11 |
📦 Imports | 4 |
📊 Variables & Constants | 38 |
📚 Table of Contents¶
🛠️ File Location:¶
📂 examples/jsm/utils/GeometryCompressionUtils.js
📦 Imports¶
Name | Source |
---|---|
BufferAttribute |
three |
Matrix3 |
three |
Matrix4 |
three |
Vector3 |
three |
Variables & Constants¶
Name | Type | Kind | Value | Exported |
---|---|---|---|---|
normal |
any |
let/var | geometry.attributes.normal |
✗ |
array |
any |
let/var | normal.array |
✗ |
count |
any |
let/var | normal.count |
✗ |
result |
any |
let/var | *not shown* |
✗ |
position |
any |
let/var | geometry.attributes.position |
✗ |
array |
any |
let/var | position.array |
✗ |
encodingBytes |
2 |
let/var | 2 |
✗ |
quantized |
Uint8Array<any> \| Uint16Array<any> |
let/var | result.quantized |
✗ |
uvs |
any |
let/var | geometry.attributes.uv |
✗ |
range |
{ min: number; max: number; } |
let/var | { min: Infinity, max: - Infinity } |
✗ |
array |
any |
let/var | uvs.array |
✗ |
result |
any |
let/var | *not shown* |
✗ |
oct |
any |
let/var | *not shown* |
✗ |
dec |
any |
let/var | *not shown* |
✗ |
best |
any |
let/var | *not shown* |
✗ |
currentCos |
any |
let/var | *not shown* |
✗ |
bestCos |
any |
let/var | *not shown* |
✗ |
x |
number |
let/var | x0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) ) |
✗ |
y |
number |
let/var | y0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) ) |
✗ |
tempx |
number |
let/var | ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 ) |
✗ |
tempy |
number |
let/var | ( 1 - Math.abs( x ) ) * ( y >= 0 ? 1 : - 1 ) |
✗ |
diff |
number |
let/var | 1 - Math.abs( x ) - Math.abs( y ) |
✗ |
x |
any |
let/var | oct[ 0 ] |
✗ |
y |
any |
let/var | oct[ 1 ] |
✗ |
z |
number |
let/var | 1 - Math.abs( x ) - Math.abs( y ) |
✗ |
tmpx |
any |
let/var | x |
✗ |
quantized |
any |
let/var | *not shown* |
✗ |
segments |
any |
let/var | *not shown* |
✗ |
decodeMat |
any |
let/var | new Matrix4() |
✗ |
min |
Float32Array<ArrayBuffer> |
let/var | new Float32Array( 3 ) |
✗ |
max |
Float32Array<ArrayBuffer> |
let/var | new Float32Array( 3 ) |
✗ |
multiplier |
Float32Array<ArrayBuffer> |
let/var | new Float32Array( [ max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ... |
✗ |
quantized |
any |
let/var | *not shown* |
✗ |
segments |
any |
let/var | *not shown* |
✗ |
decodeMat |
any |
let/var | new Matrix3() |
✗ |
min |
Float32Array<ArrayBuffer> |
let/var | new Float32Array( 2 ) |
✗ |
max |
Float32Array<ArrayBuffer> |
let/var | new Float32Array( 2 ) |
✗ |
multiplier |
Float32Array<ArrayBuffer> |
let/var | new Float32Array( [ max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ... |
✗ |
Functions¶
compressNormals(geometry: BufferGeometry, encodeMethod: "DEFAULT" | "OCT1Byte" | "OCT2Byte" | "ANGLES"): void
¶
JSDoc:
/**
* Compressed the given geometry's `normal` attribute by the selected encode method.
*
* @param {BufferGeometry} geometry - The geometry whose normals should be compressed.
* @param {('DEFAULT'|'OCT1Byte'|'OCT2Byte'|'ANGLES')} encodeMethod - The compression method.
*/
Parameters:
geometry
BufferGeometry
encodeMethod
"DEFAULT" | "OCT1Byte" | "OCT2Byte" | "ANGLES"
Returns: void
Calls:
console.error
defaultEncode
geometry.setAttribute
octEncodeBest
anglesEncode
Internal Comments:
// TODO: Add 1 byte to the result, making the encoded length to be 4 bytes. (x3)
// It is not recommended to use 1-byte octahedron normals encoding unless you want to extremely reduce the memory usage (x3)
// As it makes vertex data not aligned to a 4 byte boundary which may harm some WebGL implementations and sometimes the normal distortion is visible (x3)
// Please refer to @zeux 's comments in https://github.com/mrdoob/three.js/pull/18208 (x3)
Code
function compressNormals( geometry, encodeMethod ) {
const normal = geometry.attributes.normal;
if ( ! normal ) {
console.error( 'THREE.GeometryCompressionUtils.compressNormals(): Geometry must contain normal attribute.' );
}
if ( normal.isPacked ) return;
if ( normal.itemSize != 3 ) {
console.error( 'THREE.GeometryCompressionUtils.compressNormals(): normal.itemSize is not 3, which cannot be encoded.' );
}
const array = normal.array;
const count = normal.count;
let result;
if ( encodeMethod == 'DEFAULT' ) {
// TODO: Add 1 byte to the result, making the encoded length to be 4 bytes.
result = new Uint8Array( count * 3 );
for ( let idx = 0; idx < array.length; idx += 3 ) {
const encoded = defaultEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 );
result[ idx + 0 ] = encoded[ 0 ];
result[ idx + 1 ] = encoded[ 1 ];
result[ idx + 2 ] = encoded[ 2 ];
}
geometry.setAttribute( 'normal', new BufferAttribute( result, 3, true ) );
geometry.attributes.normal.bytes = result.length * 1;
} else if ( encodeMethod == 'OCT1Byte' ) {
// It is not recommended to use 1-byte octahedron normals encoding unless you want to extremely reduce the memory usage
// As it makes vertex data not aligned to a 4 byte boundary which may harm some WebGL implementations and sometimes the normal distortion is visible
// Please refer to @zeux 's comments in https://github.com/mrdoob/three.js/pull/18208
result = new Int8Array( count * 2 );
for ( let idx = 0; idx < array.length; idx += 3 ) {
const encoded = octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 );
result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];
result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];
}
geometry.setAttribute( 'normal', new BufferAttribute( result, 2, true ) );
geometry.attributes.normal.bytes = result.length * 1;
} else if ( encodeMethod == 'OCT2Byte' ) {
result = new Int16Array( count * 2 );
for ( let idx = 0; idx < array.length; idx += 3 ) {
const encoded = octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 2 );
result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];
result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];
}
geometry.setAttribute( 'normal', new BufferAttribute( result, 2, true ) );
geometry.attributes.normal.bytes = result.length * 2;
} else if ( encodeMethod == 'ANGLES' ) {
result = new Uint16Array( count * 2 );
for ( let idx = 0; idx < array.length; idx += 3 ) {
const encoded = anglesEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ] );
result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];
result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];
}
geometry.setAttribute( 'normal', new BufferAttribute( result, 2, true ) );
geometry.attributes.normal.bytes = result.length * 2;
} else {
console.error( 'Unrecognized encoding method, should be `DEFAULT` or `ANGLES` or `OCT`. ' );
}
geometry.attributes.normal.needsUpdate = true;
geometry.attributes.normal.isPacked = true;
geometry.attributes.normal.packingMethod = encodeMethod;
}
compressPositions(geometry: BufferGeometry): void
¶
JSDoc:
/**
* Compressed the given geometry's `position` attribute.
*
* @param {BufferGeometry} geometry - The geometry whose position values should be compressed.
*/
Parameters:
geometry
BufferGeometry
Returns: void
Calls:
console.error
quantizedEncode
geometry.computeBoundingBox
geometry.computeBoundingSphere
geometry.setAttribute
Internal Comments:
Code
function compressPositions( geometry ) {
const position = geometry.attributes.position;
if ( ! position ) {
console.error( 'THREE.GeometryCompressionUtils.compressPositions(): Geometry must contain position attribute.' );
}
if ( position.isPacked ) return;
if ( position.itemSize != 3 ) {
console.error( 'THREE.GeometryCompressionUtils.compressPositions(): position.itemSize is not 3, which cannot be packed.' );
}
const array = position.array;
const encodingBytes = 2;
const result = quantizedEncode( array, encodingBytes );
const quantized = result.quantized;
// IMPORTANT: calculate original geometry bounding info first, before updating packed positions
if ( geometry.boundingBox == null ) geometry.computeBoundingBox();
if ( geometry.boundingSphere == null ) geometry.computeBoundingSphere();
geometry.setAttribute( 'position', new BufferAttribute( quantized, 3 ) );
geometry.attributes.position.isPacked = true;
geometry.attributes.position.needsUpdate = true;
geometry.attributes.position.bytes = quantized.length * encodingBytes;
}
compressUvs(geometry: BufferGeometry): void
¶
JSDoc:
/**
* Compressed the given geometry's `uv` attribute.
*
* @param {BufferGeometry} geometry - The geometry whose texture coordinates should be compressed.
*/
Parameters:
geometry
BufferGeometry
Returns: void
Calls:
console.error
Math.min
Math.max
defaultEncode
geometry.setAttribute
quantizedEncodeUV
Internal Comments:
Code
function compressUvs( geometry ) {
const uvs = geometry.attributes.uv;
if ( ! uvs ) {
console.error( 'THREE.GeometryCompressionUtils.compressUvs(): Geometry must contain uv attribute.' );
}
if ( uvs.isPacked ) return;
const range = { min: Infinity, max: - Infinity };
const array = uvs.array;
for ( let i = 0; i < array.length; i ++ ) {
range.min = Math.min( range.min, array[ i ] );
range.max = Math.max( range.max, array[ i ] );
}
let result;
if ( range.min >= - 1.0 && range.max <= 1.0 ) {
// use default encoding method
result = new Uint16Array( array.length );
for ( let i = 0; i < array.length; i += 2 ) {
const encoded = defaultEncode( array[ i ], array[ i + 1 ], 0, 2 );
result[ i ] = encoded[ 0 ];
result[ i + 1 ] = encoded[ 1 ];
}
geometry.setAttribute( 'uv', new BufferAttribute( result, 2, true ) );
geometry.attributes.uv.isPacked = true;
geometry.attributes.uv.needsUpdate = true;
geometry.attributes.uv.bytes = result.length * 2;
} else {
// use quantized encoding method
result = quantizedEncodeUV( array, 2 );
geometry.setAttribute( 'uv', new BufferAttribute( result.quantized, 2 ) );
geometry.attributes.uv.isPacked = true;
geometry.attributes.uv.needsUpdate = true;
geometry.attributes.uv.bytes = result.quantized.length * 2;
}
}
defaultEncode(x: any, y: any, z: any, bytes: any): Uint16Array<ArrayBuffer> | Uint8Array<ArrayBuffer>
¶
Parameters:
x
any
y
any
z
any
bytes
any
Returns: Uint16Array<ArrayBuffer> | Uint8Array<ArrayBuffer>
Calls:
Math.round
console.error
Code
function defaultEncode( x, y, z, bytes ) {
if ( bytes == 1 ) {
const tmpx = Math.round( ( x + 1 ) * 0.5 * 255 );
const tmpy = Math.round( ( y + 1 ) * 0.5 * 255 );
const tmpz = Math.round( ( z + 1 ) * 0.5 * 255 );
return new Uint8Array( [ tmpx, tmpy, tmpz ] );
} else if ( bytes == 2 ) {
const tmpx = Math.round( ( x + 1 ) * 0.5 * 65535 );
const tmpy = Math.round( ( y + 1 ) * 0.5 * 65535 );
const tmpz = Math.round( ( z + 1 ) * 0.5 * 65535 );
return new Uint16Array( [ tmpx, tmpy, tmpz ] );
} else {
console.error( 'number of bytes must be 1 or 2' );
}
}
anglesEncode(x: any, y: any, z: any): Uint16Array<ArrayBuffer>
¶
Parameters:
x
any
y
any
z
any
Returns: Uint16Array<ArrayBuffer>
Calls:
parseInt
Math.atan2
Code
octEncodeBest(x: any, y: any, z: any, bytes: any): Int8Array<ArrayBuffer> | Int16Array<ArrayBuffer>
¶
Parameters:
x
any
y
any
z
any
bytes
any
Returns: Int8Array<ArrayBuffer> | Int16Array<ArrayBuffer>
Calls:
octEncodeVec3
octDecodeVec2
dot
Math.abs
complex_call_8747
complex_call_8799
complex_call_8915
complex_call_8969
Math.sqrt
Internal Comments:
Code
function octEncodeBest( x, y, z, bytes ) {
let oct, dec, best, currentCos, bestCos;
// Test various combinations of ceil and floor
// to minimize rounding errors
best = oct = octEncodeVec3( x, y, z, 'floor', 'floor' );
dec = octDecodeVec2( oct );
bestCos = dot( x, y, z, dec );
oct = octEncodeVec3( x, y, z, 'ceil', 'floor' );
dec = octDecodeVec2( oct );
currentCos = dot( x, y, z, dec );
if ( currentCos > bestCos ) {
best = oct;
bestCos = currentCos;
}
oct = octEncodeVec3( x, y, z, 'floor', 'ceil' );
dec = octDecodeVec2( oct );
currentCos = dot( x, y, z, dec );
if ( currentCos > bestCos ) {
best = oct;
bestCos = currentCos;
}
oct = octEncodeVec3( x, y, z, 'ceil', 'ceil' );
dec = octDecodeVec2( oct );
currentCos = dot( x, y, z, dec );
if ( currentCos > bestCos ) {
best = oct;
}
return best;
function octEncodeVec3( x0, y0, z0, xfunc, yfunc ) {
let x = x0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );
let y = y0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );
if ( z < 0 ) {
const tempx = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );
const tempy = ( 1 - Math.abs( x ) ) * ( y >= 0 ? 1 : - 1 );
x = tempx;
y = tempy;
let diff = 1 - Math.abs( x ) - Math.abs( y );
if ( diff > 0 ) {
diff += 0.001;
x += x > 0 ? diff / 2 : - diff / 2;
y += y > 0 ? diff / 2 : - diff / 2;
}
}
if ( bytes == 1 ) {
return new Int8Array( [
Math[ xfunc ]( x * 127.5 + ( x < 0 ? 1 : 0 ) ),
Math[ yfunc ]( y * 127.5 + ( y < 0 ? 1 : 0 ) )
] );
}
if ( bytes == 2 ) {
return new Int16Array( [
Math[ xfunc ]( x * 32767.5 + ( x < 0 ? 1 : 0 ) ),
Math[ yfunc ]( y * 32767.5 + ( y < 0 ? 1 : 0 ) )
] );
}
}
function octDecodeVec2( oct ) {
let x = oct[ 0 ];
let y = oct[ 1 ];
if ( bytes == 1 ) {
x /= x < 0 ? 127 : 128;
y /= y < 0 ? 127 : 128;
} else if ( bytes == 2 ) {
x /= x < 0 ? 32767 : 32768;
y /= y < 0 ? 32767 : 32768;
}
const z = 1 - Math.abs( x ) - Math.abs( y );
if ( z < 0 ) {
const tmpx = x;
x = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );
y = ( 1 - Math.abs( tmpx ) ) * ( y >= 0 ? 1 : - 1 );
}
const length = Math.sqrt( x * x + y * y + z * z );
return [
x / length,
y / length,
z / length
];
}
function dot( x, y, z, vec3 ) {
return x * vec3[ 0 ] + y * vec3[ 1 ] + z * vec3[ 2 ];
}
}
octEncodeVec3(x0: any, y0: any, z0: any, xfunc: any, yfunc: any): Int8Array<ArrayBuffer> | Int16Array<ArrayBuffer>
¶
Parameters:
x0
any
y0
any
z0
any
xfunc
any
yfunc
any
Returns: Int8Array<ArrayBuffer> | Int16Array<ArrayBuffer>
Calls:
Math.abs
complex_call_8747
complex_call_8799
complex_call_8915
complex_call_8969
Code
function octEncodeVec3( x0, y0, z0, xfunc, yfunc ) {
let x = x0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );
let y = y0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );
if ( z < 0 ) {
const tempx = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );
const tempy = ( 1 - Math.abs( x ) ) * ( y >= 0 ? 1 : - 1 );
x = tempx;
y = tempy;
let diff = 1 - Math.abs( x ) - Math.abs( y );
if ( diff > 0 ) {
diff += 0.001;
x += x > 0 ? diff / 2 : - diff / 2;
y += y > 0 ? diff / 2 : - diff / 2;
}
}
if ( bytes == 1 ) {
return new Int8Array( [
Math[ xfunc ]( x * 127.5 + ( x < 0 ? 1 : 0 ) ),
Math[ yfunc ]( y * 127.5 + ( y < 0 ? 1 : 0 ) )
] );
}
if ( bytes == 2 ) {
return new Int16Array( [
Math[ xfunc ]( x * 32767.5 + ( x < 0 ? 1 : 0 ) ),
Math[ yfunc ]( y * 32767.5 + ( y < 0 ? 1 : 0 ) )
] );
}
}
octDecodeVec2(oct: any): number[]
¶
Parameters:
oct
any
Returns: number[]
Calls:
Math.abs
Math.sqrt
Code
function octDecodeVec2( oct ) {
let x = oct[ 0 ];
let y = oct[ 1 ];
if ( bytes == 1 ) {
x /= x < 0 ? 127 : 128;
y /= y < 0 ? 127 : 128;
} else if ( bytes == 2 ) {
x /= x < 0 ? 32767 : 32768;
y /= y < 0 ? 32767 : 32768;
}
const z = 1 - Math.abs( x ) - Math.abs( y );
if ( z < 0 ) {
const tmpx = x;
x = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );
y = ( 1 - Math.abs( tmpx ) ) * ( y >= 0 ? 1 : - 1 );
}
const length = Math.sqrt( x * x + y * y + z * z );
return [
x / length,
y / length,
z / length
];
}
dot(x: any, y: any, z: any, vec3: any): number
¶
Parameters:
x
any
y
any
z
any
vec3
any
Returns: number
quantizedEncode(array: any, bytes: any): { quantized: Uint8Array<any> | Uint16Array<any>; decodeMat: any; }
¶
Parameters:
array
any
bytes
any
Returns: { quantized: Uint8Array<any> | Uint16Array<any>; decodeMat: any; }
Calls:
console.error
Math.min
Math.max
decodeMat.scale
decodeMat.transpose
Math.floor
Code
function quantizedEncode( array, bytes ) {
let quantized, segments;
if ( bytes == 1 ) {
quantized = new Uint8Array( array.length );
segments = 255;
} else if ( bytes == 2 ) {
quantized = new Uint16Array( array.length );
segments = 65535;
} else {
console.error( 'number of bytes error! ' );
}
const decodeMat = new Matrix4();
const min = new Float32Array( 3 );
const max = new Float32Array( 3 );
min[ 0 ] = min[ 1 ] = min[ 2 ] = Number.MAX_VALUE;
max[ 0 ] = max[ 1 ] = max[ 2 ] = - Number.MAX_VALUE;
for ( let i = 0; i < array.length; i += 3 ) {
min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] );
min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] );
min[ 2 ] = Math.min( min[ 2 ], array[ i + 2 ] );
max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] );
max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] );
max[ 2 ] = Math.max( max[ 2 ], array[ i + 2 ] );
}
decodeMat.scale( new Vector3(
( max[ 0 ] - min[ 0 ] ) / segments,
( max[ 1 ] - min[ 1 ] ) / segments,
( max[ 2 ] - min[ 2 ] ) / segments
) );
decodeMat.elements[ 12 ] = min[ 0 ];
decodeMat.elements[ 13 ] = min[ 1 ];
decodeMat.elements[ 14 ] = min[ 2 ];
decodeMat.transpose();
const multiplier = new Float32Array( [
max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0,
max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0,
max[ 2 ] !== min[ 2 ] ? segments / ( max[ 2 ] - min[ 2 ] ) : 0
] );
for ( let i = 0; i < array.length; i += 3 ) {
quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] );
quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] );
quantized[ i + 2 ] = Math.floor( ( array[ i + 2 ] - min[ 2 ] ) * multiplier[ 2 ] );
}
return {
quantized: quantized,
decodeMat: decodeMat
};
}
quantizedEncodeUV(array: any, bytes: any): { quantized: Uint8Array<any> | Uint16Array<any>; decodeMat: any; }
¶
Parameters:
array
any
bytes
any
Returns: { quantized: Uint8Array<any> | Uint16Array<any>; decodeMat: any; }
Calls:
console.error
Math.min
Math.max
decodeMat.scale
decodeMat.transpose
Math.floor
Code
function quantizedEncodeUV( array, bytes ) {
let quantized, segments;
if ( bytes == 1 ) {
quantized = new Uint8Array( array.length );
segments = 255;
} else if ( bytes == 2 ) {
quantized = new Uint16Array( array.length );
segments = 65535;
} else {
console.error( 'number of bytes error! ' );
}
const decodeMat = new Matrix3();
const min = new Float32Array( 2 );
const max = new Float32Array( 2 );
min[ 0 ] = min[ 1 ] = Number.MAX_VALUE;
max[ 0 ] = max[ 1 ] = - Number.MAX_VALUE;
for ( let i = 0; i < array.length; i += 2 ) {
min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] );
min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] );
max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] );
max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] );
}
decodeMat.scale(
( max[ 0 ] - min[ 0 ] ) / segments,
( max[ 1 ] - min[ 1 ] ) / segments
);
decodeMat.elements[ 6 ] = min[ 0 ];
decodeMat.elements[ 7 ] = min[ 1 ];
decodeMat.transpose();
const multiplier = new Float32Array( [
max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0,
max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0
] );
for ( let i = 0; i < array.length; i += 2 ) {
quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] );
quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] );
}
return {
quantized: quantized,
decodeMat: decodeMat
};
}