Skip to content

⬅️ Back to Table of Contents

📄 GeometryUtils.js

📊 Analysis Summary

Metric Count
🔧 Functions 5
📦 Imports 1
📊 Variables & Constants 15

📚 Table of Contents

🛠️ File Location:

📂 examples/jsm/utils/GeometryUtils.js

📦 Imports

Name Source
Vector3 three

Variables & Constants

Name Type Kind Value Exported
half number let/var size / 2
vec_s any[] let/var [ new Vector3( center.x - half, center.y, center.z - half ), new Vector3( cen...
vec any[] let/var [ vec_s[ v0 ], vec_s[ v1 ], vec_s[ v2 ], vec_s[ v3 ] ]
half number let/var size / 2
vec_s any[] let/var [ new Vector3( center.x - half, center.y + half, center.z - half ), new Vecto...
vec any[] let/var [ vec_s[ v0 ], vec_s[ v1 ], vec_s[ v2 ], vec_s[ v3 ], vec_s[ v4 ], vec_s[ v5 ...
output any let/var *not shown*
input any let/var config.axiom
char any let/var input[ j ]
currX number let/var 0
currY number let/var 0
angle number let/var 0
path number[] let/var [ 0, 0, 0 ]
fractal any let/var config.fractal
char any let/var fractal[ i ]

Functions

hilbert2D(center: Vector3, size: number, iterations: number, v0: number, v1: number, v2: number, v3: number): Vector3[]

JSDoc:

/**
 * Generates 2D-Coordinates along a Hilbert curve.
 *
 * Based on work by: {@link http://www.openprocessing.org/sketch/15493}
 *
 * @param {Vector3} [center] - Center of Hilbert curve.
 * @param {number} [size=10] - Total width of Hilbert curve.
 * @param {number} [iterations=10] - Number of subdivisions.
 * @param {number} [v0=0] - Corner index -X, -Z.
 * @param {number} [v1=1] - Corner index -X, +Z.
 * @param {number} [v2=2] - Corner index +X, +Z.
 * @param {number} [v3=3] - Corner index +X, -Z.
 * @returns {Array<Vector3>} The Hilbert curve points.
 */

Parameters:

  • center Vector3
  • size number
  • iterations number
  • v0 number
  • v1 number
  • v2 number
  • v3 number

Returns: Vector3[]

Calls:

  • hilbert2D

Internal Comments:

// Recurse iterations
// Return complete Hilbert Curve.

Code
function hilbert2D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) {

    const half = size / 2;

    const vec_s = [
        new Vector3( center.x - half, center.y, center.z - half ),
        new Vector3( center.x - half, center.y, center.z + half ),
        new Vector3( center.x + half, center.y, center.z + half ),
        new Vector3( center.x + half, center.y, center.z - half )
    ];

    const vec = [
        vec_s[ v0 ],
        vec_s[ v1 ],
        vec_s[ v2 ],
        vec_s[ v3 ]
    ];

    // Recurse iterations
    if ( 0 <= -- iterations ) {

        return [
            ...hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ),
            ...hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ),
            ...hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ),
            ...hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 )
        ];

    }

    // Return complete Hilbert Curve.
    return vec;

}

hilbert3D(center: Vector3, size: number, iterations: number, v0: number, v1: number, v2: number, v3: number, v4: number, v5: number, v6: number, v7: number): Vector3[]

JSDoc:

/**
 * Generates 3D-Coordinates along a Hilbert curve.
 *
 * Based on work by: {@link https://openprocessing.org/user/5654}
 *
 * @param {Vector3} [center] - Center of Hilbert curve.
 * @param {number} [size=10] - Total width of Hilbert curve.
 * @param {number} [iterations=1] - Number of subdivisions.
 * @param {number} [v0=0] - Corner index -X, +Y, -Z.
 * @param {number} [v1=1] - Corner index -X, +Y, +Z.
 * @param {number} [v2=2] - Corner index -X, -Y, +Z.
 * @param {number} [v3=3] - Corner index -X, -Y, -Z.
 * @param {number} [v4=4] - Corner index +X, -Y, -Z.
 * @param {number} [v5=5] - Corner index +X, -Y, +Z.
 * @param {number} [v6=6] - Corner index +X, +Y, +Z.
 * @param {number} [v7=7] - Corner index +X, +Y, -Z.
 * @returns {Array<Vector3>}  - The Hilbert curve points.
 */

Parameters:

  • center Vector3
  • size number
  • iterations number
  • v0 number
  • v1 number
  • v2 number
  • v3 number
  • v4 number
  • v5 number
  • v6 number
  • v7 number

Returns: Vector3[]

Calls:

  • hilbert3D

Internal Comments:

// Default Vars (x2)
// Recurse iterations
// Return complete Hilbert Curve.

Code
function hilbert3D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) {

    // Default Vars
    const half = size / 2;

    const vec_s = [
        new Vector3( center.x - half, center.y + half, center.z - half ),
        new Vector3( center.x - half, center.y + half, center.z + half ),
        new Vector3( center.x - half, center.y - half, center.z + half ),
        new Vector3( center.x - half, center.y - half, center.z - half ),
        new Vector3( center.x + half, center.y - half, center.z - half ),
        new Vector3( center.x + half, center.y - half, center.z + half ),
        new Vector3( center.x + half, center.y + half, center.z + half ),
        new Vector3( center.x + half, center.y + half, center.z - half )
    ];

    const vec = [
        vec_s[ v0 ],
        vec_s[ v1 ],
        vec_s[ v2 ],
        vec_s[ v3 ],
        vec_s[ v4 ],
        vec_s[ v5 ],
        vec_s[ v6 ],
        vec_s[ v7 ]
    ];

    // Recurse iterations
    if ( -- iterations >= 0 ) {

        return [
            ...hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ),
            ...hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
            ...hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
            ...hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
            ...hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
            ...hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
            ...hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
            ...hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 )
        ];

    }

    // Return complete Hilbert Curve.
    return vec;

}

gosper(size: number): number[]

JSDoc:

/**
 * Generates a Gosper curve (lying in the XY plane).
 *
 * Reference: {@link https://gist.github.com/nitaku/6521802}
 *
 * @param {number} [size=1] - The size of a single gosper island.
 * @return {Array<number>} The gosper island points.
 */

Parameters:

  • size number

Returns: number[]

Calls:

  • Math.cos
  • Math.sin
  • path.push
  • fractalize
  • toPoints

Internal Comments:

// (x2)

Code
function gosper( size = 1 ) {

    function fractalize( config ) {

        let output;
        let input = config.axiom;

        for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {

            output = '';

            for ( let j = 0, jl = input.length; j < jl; j ++ ) {

                const char = input[ j ];

                if ( char in config.rules ) {

                    output += config.rules[ char ];

                } else {

                    output += char;

                }

            }

            input = output;

        }

        return output;

    }

    function toPoints( config ) {

        let currX = 0, currY = 0;
        let angle = 0;
        const path = [ 0, 0, 0 ];
        const fractal = config.fractal;

        for ( let i = 0, l = fractal.length; i < l; i ++ ) {

            const char = fractal[ i ];

            if ( char === '+' ) {

                angle += config.angle;

            } else if ( char === '-' ) {

                angle -= config.angle;

            } else if ( char === 'F' ) {

                currX += config.size * Math.cos( angle );
                currY += - config.size * Math.sin( angle );
                path.push( currX, currY, 0 );

            }

        }

        return path;

    }

    //

    const gosper = fractalize( {
        axiom: 'A',
        steps: 4,
        rules: {
            A: 'A+BF++BF-FA--FAFA-BF+',
            B: '-FA+BFBF++BF+FA--FA-B'
        }
    } );

    const points = toPoints( {
        fractal: gosper,
        size: size,
        angle: Math.PI / 3 // 60 degrees
    } );

    return points;

}

fractalize(config: any): string

Parameters:

  • config any

Returns: string

Code
function fractalize( config ) {

        let output;
        let input = config.axiom;

        for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {

            output = '';

            for ( let j = 0, jl = input.length; j < jl; j ++ ) {

                const char = input[ j ];

                if ( char in config.rules ) {

                    output += config.rules[ char ];

                } else {

                    output += char;

                }

            }

            input = output;

        }

        return output;

    }

toPoints(config: any): number[]

Parameters:

  • config any

Returns: number[]

Calls:

  • Math.cos
  • Math.sin
  • path.push
Code
function toPoints( config ) {

        let currX = 0, currY = 0;
        let angle = 0;
        const path = [ 0, 0, 0 ];
        const fractal = config.fractal;

        for ( let i = 0, l = fractal.length; i < l; i ++ ) {

            const char = fractal[ i ];

            if ( char === '+' ) {

                angle += config.angle;

            } else if ( char === '-' ) {

                angle -= config.angle;

            } else if ( char === 'F' ) {

                currX += config.size * Math.cos( angle );
                currY += - config.size * Math.sin( angle );
                path.push( currX, currY, 0 );

            }

        }

        return path;

    }