Skip to content

⬅️ Back to Table of Contents

📄 Line3.js

📊 Analysis Summary

Metric Count
🔧 Functions 13
🧱 Classes 1
📦 Imports 2
📊 Variables & Constants 16

📚 Table of Contents

🛠️ File Location:

📂 src/math/Line3.js

📦 Imports

Name Source
Vector3 ./Vector3.js
clamp ./MathUtils.js

Variables & Constants

Name Type Kind Value Exported
_startP Vector3 let/var new Vector3()
_startEnd Vector3 let/var new Vector3()
_d1 Vector3 let/var new Vector3()
_d2 Vector3 let/var new Vector3()
_r Vector3 let/var new Vector3()
_c1 Vector3 let/var new Vector3()
_c2 Vector3 let/var new Vector3()
t number let/var startEnd_startP / startEnd2
EPSILON number let/var 1e-8 * 1e-8
s any let/var *not shown*
t any let/var *not shown*
p1 Vector3 let/var this.start
p2 Vector3 let/var line.start
q1 Vector3 let/var this.end
q2 Vector3 let/var line.end
denom number let/var a * e - b * b

Functions

Line3.set(start: Vector3, end: Vector3): Line3

JSDoc:

/**
     * Sets the start and end values by copying the given vectors.
     *
     * @param {Vector3} start - The start point.
     * @param {Vector3} end - The end point.
     * @return {Line3} A reference to this line segment.
     */

Parameters:

  • start Vector3
  • end Vector3

Returns: Line3

Calls:

  • this.start.copy
  • this.end.copy
Code
set( start, end ) {

        this.start.copy( start );
        this.end.copy( end );

        return this;

    }

Line3.copy(line: Line3): Line3

JSDoc:

/**
     * Copies the values of the given line segment to this instance.
     *
     * @param {Line3} line - The line segment to copy.
     * @return {Line3} A reference to this line segment.
     */

Parameters:

  • line Line3

Returns: Line3

Calls:

  • this.start.copy
  • this.end.copy
Code
copy( line ) {

        this.start.copy( line.start );
        this.end.copy( line.end );

        return this;

    }

Line3.getCenter(target: Vector3): Vector3

JSDoc:

/**
     * Returns the center of the line segment.
     *
     * @param {Vector3} target - The target vector that is used to store the method's result.
     * @return {Vector3} The center point.
     */

Parameters:

  • target Vector3

Returns: Vector3

Calls:

  • target.addVectors( this.start, this.end ).multiplyScalar
Code
getCenter( target ) {

        return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 );

    }

Line3.delta(target: Vector3): Vector3

JSDoc:

/**
     * Returns the delta vector of the line segment's start and end point.
     *
     * @param {Vector3} target - The target vector that is used to store the method's result.
     * @return {Vector3} The delta vector.
     */

Parameters:

  • target Vector3

Returns: Vector3

Calls:

  • target.subVectors
Code
delta( target ) {

        return target.subVectors( this.end, this.start );

    }

Line3.distanceSq(): number

JSDoc:

/**
     * Returns the squared Euclidean distance between the line' start and end point.
     *
     * @return {number} The squared Euclidean distance.
     */

Returns: number

Calls:

  • this.start.distanceToSquared
Code
distanceSq() {

        return this.start.distanceToSquared( this.end );

    }

Line3.distance(): number

JSDoc:

/**
     * Returns the Euclidean distance between the line' start and end point.
     *
     * @return {number} The Euclidean distance.
     */

Returns: number

Calls:

  • this.start.distanceTo
Code
distance() {

        return this.start.distanceTo( this.end );

    }

Line3.at(t: number, target: Vector3): Vector3

JSDoc:

/**
     * Returns a vector at a certain position along the line segment.
     *
     * @param {number} t - A value between `[0,1]` to represent a position along the line segment.
     * @param {Vector3} target - The target vector that is used to store the method's result.
     * @return {Vector3} The delta vector.
     */

Parameters:

  • t number
  • target Vector3

Returns: Vector3

Calls:

  • this.delta( target ).multiplyScalar( t ).add
Code
at( t, target ) {

        return this.delta( target ).multiplyScalar( t ).add( this.start );

    }

Line3.closestPointToPointParameter(point: Vector3, clampToLine: boolean): number

JSDoc:

/**
     * Returns a point parameter based on the closest point as projected on the line segment.
     *
     * @param {Vector3} point - The point for which to return a point parameter.
     * @param {boolean} clampToLine - Whether to clamp the result to the range `[0,1]` or not.
     * @return {number} The point parameter.
     */

Parameters:

  • point Vector3
  • clampToLine boolean

Returns: number

Calls:

  • _startP.subVectors
  • _startEnd.subVectors
  • _startEnd.dot
  • clamp (from ./MathUtils.js)
Code
closestPointToPointParameter( point, clampToLine ) {

        _startP.subVectors( point, this.start );
        _startEnd.subVectors( this.end, this.start );

        const startEnd2 = _startEnd.dot( _startEnd );
        const startEnd_startP = _startEnd.dot( _startP );

        let t = startEnd_startP / startEnd2;

        if ( clampToLine ) {

            t = clamp( t, 0, 1 );

        }

        return t;

    }

Line3.closestPointToPoint(point: Vector3, clampToLine: boolean, target: Vector3): Vector3

JSDoc:

/**
     * Returns the closest point on the line for a given point.
     *
     * @param {Vector3} point - The point to compute the closest point on the line for.
     * @param {boolean} clampToLine - Whether to clamp the result to the range `[0,1]` or not.
     * @param {Vector3} target - The target vector that is used to store the method's result.
     * @return {Vector3} The closest point on the line.
     */

Parameters:

  • point Vector3
  • clampToLine boolean
  • target Vector3

Returns: Vector3

Calls:

  • this.closestPointToPointParameter
  • this.delta( target ).multiplyScalar( t ).add
Code
closestPointToPoint( point, clampToLine, target ) {

        const t = this.closestPointToPointParameter( point, clampToLine );

        return this.delta( target ).multiplyScalar( t ).add( this.start );

    }

Line3.distanceSqToLine3(line: Line3, c1: Vector3, c2: Vector3): number

JSDoc:

/**
     * Returns the closest squared distance between this line segment and the given one.
     *
     * @param {Line3} line - The line segment to compute the closest squared distance to.
     * @param {Vector3} [c1] - The closest point on this line segment.
     * @param {Vector3} [c2] - The closest point on the given line segment.
     * @return {number} The squared distance between this line segment and the given one.
     */

Parameters:

  • line Line3
  • c1 Vector3
  • c2 Vector3

Returns: number

Calls:

  • _d1.subVectors
  • _d2.subVectors
  • _r.subVectors
  • _d1.dot
  • _d2.dot
  • c1.copy
  • c2.copy
  • c1.sub
  • c1.dot
  • clamp (from ./MathUtils.js)
  • c1.copy( p1 ).add
  • _d1.multiplyScalar
  • c2.copy( p2 ).add
  • _d2.multiplyScalar

Internal Comments:

// from Real-Time Collision Detection by Christer Ericson, chapter 5.1.9 (x2)
// Computes closest points C1 and C2 of S1(s)=P1+s*(Q1-P1) and (x2)
// S2(t)=P2+t*(Q2-P2), returning s and t. Function result is squared (x2)
// distance between between S1(s) and S2(t) (x2)
// Check if either or both segments degenerate into points
// Both segments degenerate into points (x4)
// First segment degenerates into a point (x3)
// Second segment degenerates into a point (x3)
// The general nondegenerate case starts here (x2)
// If segments not parallel, compute closest point on L1 to L2 and
// clamp to segment S1. Else pick arbitrary s (here 0)
// Compute point on L2 closest to S1(s) using (x3)
// t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e (x3)
// If t in [0,1] done. Else clamp t, recompute s for the new value
// of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
// and clamp s to [0, 1]

Code
distanceSqToLine3( line, c1 = _c1, c2 = _c2 ) {

        // from Real-Time Collision Detection by Christer Ericson, chapter 5.1.9

        // Computes closest points C1 and C2 of S1(s)=P1+s*(Q1-P1) and
        // S2(t)=P2+t*(Q2-P2), returning s and t. Function result is squared
        // distance between between S1(s) and S2(t)

        const EPSILON = 1e-8 * 1e-8; // must be squared since we compare squared length
        let s, t;

        const p1 = this.start;
        const p2 = line.start;
        const q1 = this.end;
        const q2 = line.end;

        _d1.subVectors( q1, p1 ); // Direction vector of segment S1
        _d2.subVectors( q2, p2 ); // Direction vector of segment S2
        _r.subVectors( p1, p2 );

        const a = _d1.dot( _d1 ); // Squared length of segment S1, always nonnegative
        const e = _d2.dot( _d2 ); // Squared length of segment S2, always nonnegative
        const f = _d2.dot( _r );

        // Check if either or both segments degenerate into points

        if ( a <= EPSILON && e <= EPSILON ) {

            // Both segments degenerate into points

            c1.copy( p1 );
            c2.copy( p2 );

            c1.sub( c2 );

            return c1.dot( c1 );

        }

        if ( a <= EPSILON ) {

            // First segment degenerates into a point

            s = 0;
            t = f / e; // s = 0 => t = (b*s + f) / e = f / e
            t = clamp( t, 0, 1 );


        } else {

            const c = _d1.dot( _r );

            if ( e <= EPSILON ) {

                // Second segment degenerates into a point

                t = 0;
                s = clamp( - c / a, 0, 1 ); // t = 0 => s = (b*t - c) / a = -c / a

            } else {

                // The general nondegenerate case starts here

                const b = _d1.dot( _d2 );
                const denom = a * e - b * b; // Always nonnegative

                // If segments not parallel, compute closest point on L1 to L2 and
                // clamp to segment S1. Else pick arbitrary s (here 0)

                if ( denom !== 0 ) {

                    s = clamp( ( b * f - c * e ) / denom, 0, 1 );

                } else {

                    s = 0;

                }

                // Compute point on L2 closest to S1(s) using
                // t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e

                t = ( b * s + f ) / e;

                // If t in [0,1] done. Else clamp t, recompute s for the new value
                // of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
                // and clamp s to [0, 1]

                if ( t < 0 ) {

                    t = 0.;
                    s = clamp( - c / a, 0, 1 );

                } else if ( t > 1 ) {

                    t = 1;
                    s = clamp( ( b - c ) / a, 0, 1 );

                }

            }

        }

        c1.copy( p1 ).add( _d1.multiplyScalar( s ) );
        c2.copy( p2 ).add( _d2.multiplyScalar( t ) );

        c1.sub( c2 );

        return c1.dot( c1 );

    }

Line3.applyMatrix4(matrix: Matrix4): Line3

JSDoc:

/**
     * Applies a 4x4 transformation matrix to this line segment.
     *
     * @param {Matrix4} matrix - The transformation matrix.
     * @return {Line3} A reference to this line segment.
     */

Parameters:

  • matrix Matrix4

Returns: Line3

Calls:

  • this.start.applyMatrix4
  • this.end.applyMatrix4
Code
applyMatrix4( matrix ) {

        this.start.applyMatrix4( matrix );
        this.end.applyMatrix4( matrix );

        return this;

    }

Line3.equals(line: Line3): boolean

JSDoc:

/**
     * Returns `true` if this line segment is equal with the given one.
     *
     * @param {Line3} line - The line segment to test for equality.
     * @return {boolean} Whether this line segment is equal with the given one.
     */

Parameters:

  • line Line3

Returns: boolean

Calls:

  • line.start.equals
  • line.end.equals
Code
equals( line ) {

        return line.start.equals( this.start ) && line.end.equals( this.end );

    }

Line3.clone(): Line3

JSDoc:

/**
     * Returns a new line segment with copied values from this instance.
     *
     * @return {Line3} A clone of this instance.
     */

Returns: Line3

Calls:

  • new this.constructor().copy
Code
clone() {

        return new this.constructor().copy( this );

    }

Classes

Line3

Class Code
class Line3 {

    /**
     * Constructs a new line segment.
     *
     * @param {Vector3} [start=(0,0,0)] - Start of the line segment.
     * @param {Vector3} [end=(0,0,0)] - End of the line segment.
     */
    constructor( start = new Vector3(), end = new Vector3() ) {

        /**
         * Start of the line segment.
         *
         * @type {Vector3}
         */
        this.start = start;

        /**
         * End of the line segment.
         *
         * @type {Vector3}
         */
        this.end = end;

    }

    /**
     * Sets the start and end values by copying the given vectors.
     *
     * @param {Vector3} start - The start point.
     * @param {Vector3} end - The end point.
     * @return {Line3} A reference to this line segment.
     */
    set( start, end ) {

        this.start.copy( start );
        this.end.copy( end );

        return this;

    }

    /**
     * Copies the values of the given line segment to this instance.
     *
     * @param {Line3} line - The line segment to copy.
     * @return {Line3} A reference to this line segment.
     */
    copy( line ) {

        this.start.copy( line.start );
        this.end.copy( line.end );

        return this;

    }

    /**
     * Returns the center of the line segment.
     *
     * @param {Vector3} target - The target vector that is used to store the method's result.
     * @return {Vector3} The center point.
     */
    getCenter( target ) {

        return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 );

    }

    /**
     * Returns the delta vector of the line segment's start and end point.
     *
     * @param {Vector3} target - The target vector that is used to store the method's result.
     * @return {Vector3} The delta vector.
     */
    delta( target ) {

        return target.subVectors( this.end, this.start );

    }

    /**
     * Returns the squared Euclidean distance between the line' start and end point.
     *
     * @return {number} The squared Euclidean distance.
     */
    distanceSq() {

        return this.start.distanceToSquared( this.end );

    }

    /**
     * Returns the Euclidean distance between the line' start and end point.
     *
     * @return {number} The Euclidean distance.
     */
    distance() {

        return this.start.distanceTo( this.end );

    }

    /**
     * Returns a vector at a certain position along the line segment.
     *
     * @param {number} t - A value between `[0,1]` to represent a position along the line segment.
     * @param {Vector3} target - The target vector that is used to store the method's result.
     * @return {Vector3} The delta vector.
     */
    at( t, target ) {

        return this.delta( target ).multiplyScalar( t ).add( this.start );

    }

    /**
     * Returns a point parameter based on the closest point as projected on the line segment.
     *
     * @param {Vector3} point - The point for which to return a point parameter.
     * @param {boolean} clampToLine - Whether to clamp the result to the range `[0,1]` or not.
     * @return {number} The point parameter.
     */
    closestPointToPointParameter( point, clampToLine ) {

        _startP.subVectors( point, this.start );
        _startEnd.subVectors( this.end, this.start );

        const startEnd2 = _startEnd.dot( _startEnd );
        const startEnd_startP = _startEnd.dot( _startP );

        let t = startEnd_startP / startEnd2;

        if ( clampToLine ) {

            t = clamp( t, 0, 1 );

        }

        return t;

    }

    /**
     * Returns the closest point on the line for a given point.
     *
     * @param {Vector3} point - The point to compute the closest point on the line for.
     * @param {boolean} clampToLine - Whether to clamp the result to the range `[0,1]` or not.
     * @param {Vector3} target - The target vector that is used to store the method's result.
     * @return {Vector3} The closest point on the line.
     */
    closestPointToPoint( point, clampToLine, target ) {

        const t = this.closestPointToPointParameter( point, clampToLine );

        return this.delta( target ).multiplyScalar( t ).add( this.start );

    }

    /**
     * Returns the closest squared distance between this line segment and the given one.
     *
     * @param {Line3} line - The line segment to compute the closest squared distance to.
     * @param {Vector3} [c1] - The closest point on this line segment.
     * @param {Vector3} [c2] - The closest point on the given line segment.
     * @return {number} The squared distance between this line segment and the given one.
     */
    distanceSqToLine3( line, c1 = _c1, c2 = _c2 ) {

        // from Real-Time Collision Detection by Christer Ericson, chapter 5.1.9

        // Computes closest points C1 and C2 of S1(s)=P1+s*(Q1-P1) and
        // S2(t)=P2+t*(Q2-P2), returning s and t. Function result is squared
        // distance between between S1(s) and S2(t)

        const EPSILON = 1e-8 * 1e-8; // must be squared since we compare squared length
        let s, t;

        const p1 = this.start;
        const p2 = line.start;
        const q1 = this.end;
        const q2 = line.end;

        _d1.subVectors( q1, p1 ); // Direction vector of segment S1
        _d2.subVectors( q2, p2 ); // Direction vector of segment S2
        _r.subVectors( p1, p2 );

        const a = _d1.dot( _d1 ); // Squared length of segment S1, always nonnegative
        const e = _d2.dot( _d2 ); // Squared length of segment S2, always nonnegative
        const f = _d2.dot( _r );

        // Check if either or both segments degenerate into points

        if ( a <= EPSILON && e <= EPSILON ) {

            // Both segments degenerate into points

            c1.copy( p1 );
            c2.copy( p2 );

            c1.sub( c2 );

            return c1.dot( c1 );

        }

        if ( a <= EPSILON ) {

            // First segment degenerates into a point

            s = 0;
            t = f / e; // s = 0 => t = (b*s + f) / e = f / e
            t = clamp( t, 0, 1 );


        } else {

            const c = _d1.dot( _r );

            if ( e <= EPSILON ) {

                // Second segment degenerates into a point

                t = 0;
                s = clamp( - c / a, 0, 1 ); // t = 0 => s = (b*t - c) / a = -c / a

            } else {

                // The general nondegenerate case starts here

                const b = _d1.dot( _d2 );
                const denom = a * e - b * b; // Always nonnegative

                // If segments not parallel, compute closest point on L1 to L2 and
                // clamp to segment S1. Else pick arbitrary s (here 0)

                if ( denom !== 0 ) {

                    s = clamp( ( b * f - c * e ) / denom, 0, 1 );

                } else {

                    s = 0;

                }

                // Compute point on L2 closest to S1(s) using
                // t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e

                t = ( b * s + f ) / e;

                // If t in [0,1] done. Else clamp t, recompute s for the new value
                // of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
                // and clamp s to [0, 1]

                if ( t < 0 ) {

                    t = 0.;
                    s = clamp( - c / a, 0, 1 );

                } else if ( t > 1 ) {

                    t = 1;
                    s = clamp( ( b - c ) / a, 0, 1 );

                }

            }

        }

        c1.copy( p1 ).add( _d1.multiplyScalar( s ) );
        c2.copy( p2 ).add( _d2.multiplyScalar( t ) );

        c1.sub( c2 );

        return c1.dot( c1 );

    }

    /**
     * Applies a 4x4 transformation matrix to this line segment.
     *
     * @param {Matrix4} matrix - The transformation matrix.
     * @return {Line3} A reference to this line segment.
     */
    applyMatrix4( matrix ) {

        this.start.applyMatrix4( matrix );
        this.end.applyMatrix4( matrix );

        return this;

    }

    /**
     * Returns `true` if this line segment is equal with the given one.
     *
     * @param {Line3} line - The line segment to test for equality.
     * @return {boolean} Whether this line segment is equal with the given one.
     */
    equals( line ) {

        return line.start.equals( this.start ) && line.end.equals( this.end );

    }

    /**
     * Returns a new line segment with copied values from this instance.
     *
     * @return {Line3} A clone of this instance.
     */
    clone() {

        return new this.constructor().copy( this );

    }

}

Methods

set(start: Vector3, end: Vector3): Line3
Code
set( start, end ) {

        this.start.copy( start );
        this.end.copy( end );

        return this;

    }
copy(line: Line3): Line3
Code
copy( line ) {

        this.start.copy( line.start );
        this.end.copy( line.end );

        return this;

    }
getCenter(target: Vector3): Vector3
Code
getCenter( target ) {

        return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 );

    }
delta(target: Vector3): Vector3
Code
delta( target ) {

        return target.subVectors( this.end, this.start );

    }
distanceSq(): number
Code
distanceSq() {

        return this.start.distanceToSquared( this.end );

    }
distance(): number
Code
distance() {

        return this.start.distanceTo( this.end );

    }
at(t: number, target: Vector3): Vector3
Code
at( t, target ) {

        return this.delta( target ).multiplyScalar( t ).add( this.start );

    }
closestPointToPointParameter(point: Vector3, clampToLine: boolean): number
Code
closestPointToPointParameter( point, clampToLine ) {

        _startP.subVectors( point, this.start );
        _startEnd.subVectors( this.end, this.start );

        const startEnd2 = _startEnd.dot( _startEnd );
        const startEnd_startP = _startEnd.dot( _startP );

        let t = startEnd_startP / startEnd2;

        if ( clampToLine ) {

            t = clamp( t, 0, 1 );

        }

        return t;

    }
closestPointToPoint(point: Vector3, clampToLine: boolean, target: Vector3): Vector3
Code
closestPointToPoint( point, clampToLine, target ) {

        const t = this.closestPointToPointParameter( point, clampToLine );

        return this.delta( target ).multiplyScalar( t ).add( this.start );

    }
distanceSqToLine3(line: Line3, c1: Vector3, c2: Vector3): number
Code
distanceSqToLine3( line, c1 = _c1, c2 = _c2 ) {

        // from Real-Time Collision Detection by Christer Ericson, chapter 5.1.9

        // Computes closest points C1 and C2 of S1(s)=P1+s*(Q1-P1) and
        // S2(t)=P2+t*(Q2-P2), returning s and t. Function result is squared
        // distance between between S1(s) and S2(t)

        const EPSILON = 1e-8 * 1e-8; // must be squared since we compare squared length
        let s, t;

        const p1 = this.start;
        const p2 = line.start;
        const q1 = this.end;
        const q2 = line.end;

        _d1.subVectors( q1, p1 ); // Direction vector of segment S1
        _d2.subVectors( q2, p2 ); // Direction vector of segment S2
        _r.subVectors( p1, p2 );

        const a = _d1.dot( _d1 ); // Squared length of segment S1, always nonnegative
        const e = _d2.dot( _d2 ); // Squared length of segment S2, always nonnegative
        const f = _d2.dot( _r );

        // Check if either or both segments degenerate into points

        if ( a <= EPSILON && e <= EPSILON ) {

            // Both segments degenerate into points

            c1.copy( p1 );
            c2.copy( p2 );

            c1.sub( c2 );

            return c1.dot( c1 );

        }

        if ( a <= EPSILON ) {

            // First segment degenerates into a point

            s = 0;
            t = f / e; // s = 0 => t = (b*s + f) / e = f / e
            t = clamp( t, 0, 1 );


        } else {

            const c = _d1.dot( _r );

            if ( e <= EPSILON ) {

                // Second segment degenerates into a point

                t = 0;
                s = clamp( - c / a, 0, 1 ); // t = 0 => s = (b*t - c) / a = -c / a

            } else {

                // The general nondegenerate case starts here

                const b = _d1.dot( _d2 );
                const denom = a * e - b * b; // Always nonnegative

                // If segments not parallel, compute closest point on L1 to L2 and
                // clamp to segment S1. Else pick arbitrary s (here 0)

                if ( denom !== 0 ) {

                    s = clamp( ( b * f - c * e ) / denom, 0, 1 );

                } else {

                    s = 0;

                }

                // Compute point on L2 closest to S1(s) using
                // t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e

                t = ( b * s + f ) / e;

                // If t in [0,1] done. Else clamp t, recompute s for the new value
                // of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
                // and clamp s to [0, 1]

                if ( t < 0 ) {

                    t = 0.;
                    s = clamp( - c / a, 0, 1 );

                } else if ( t > 1 ) {

                    t = 1;
                    s = clamp( ( b - c ) / a, 0, 1 );

                }

            }

        }

        c1.copy( p1 ).add( _d1.multiplyScalar( s ) );
        c2.copy( p2 ).add( _d2.multiplyScalar( t ) );

        c1.sub( c2 );

        return c1.dot( c1 );

    }
applyMatrix4(matrix: Matrix4): Line3
Code
applyMatrix4( matrix ) {

        this.start.applyMatrix4( matrix );
        this.end.applyMatrix4( matrix );

        return this;

    }
equals(line: Line3): boolean
Code
equals( line ) {

        return line.start.equals( this.start ) && line.end.equals( this.end );

    }
clone(): Line3
Code
clone() {

        return new this.constructor().copy( this );

    }