Skip to content

⬅️ Back to Table of Contents

📄 ReflectorNode.js

📊 Analysis Summary

Metric Count
🔧 Functions 11
🧱 Classes 2
📦 Imports 16
📊 Variables & Constants 20

📚 Table of Contents

🛠️ File Location:

📂 src/nodes/utils/ReflectorNode.js

📦 Imports

Name Source
Node ../core/Node.js
TextureNode ../accessors/TextureNode.js
nodeObject ../tsl/TSLBase.js
NodeUpdateType ../core/constants.js
screenUV ../display/ScreenNode.js
HalfFloatType ../../constants.js
LinearMipMapLinearFilter ../../constants.js
WebGPUCoordinateSystem ../../constants.js
Plane ../../math/Plane.js
Object3D ../../core/Object3D.js
Vector2 ../../math/Vector2.js
Vector3 ../../math/Vector3.js
Vector4 ../../math/Vector4.js
Matrix4 ../../math/Matrix4.js
RenderTarget ../../core/RenderTarget.js
DepthTexture ../../textures/DepthTexture.js

Variables & Constants

Name Type Kind Value Exported
_reflectorPlane Plane let/var new Plane()
_normal Vector3 let/var new Vector3()
_reflectorWorldPosition Vector3 let/var new Vector3()
_cameraWorldPosition Vector3 let/var new Vector3()
_rotationMatrix Matrix4 let/var new Matrix4()
_lookAtPosition Vector3 let/var new Vector3( 0, 0, - 1 )
clipPlane Vector4 let/var new Vector4()
_view Vector3 let/var new Vector3()
_target Vector3 let/var new Vector3()
_q Vector4 let/var new Vector4()
_size Vector2 let/var new Vector2()
_defaultRT RenderTarget let/var new RenderTarget()
_inReflector boolean let/var false
newNode any let/var new this.constructor( this.reflectorNode )
resolution number let/var this.resolution
isFacingAway boolean let/var _view.dot( _normal ) > 0
needsClear boolean let/var false
projectionMatrix any let/var virtualCamera.projectionMatrix
clipBias 0 let/var 0
currentAutoClear any let/var renderer.autoClear

Functions

ReflectorNode.getDepthNode(): Node

JSDoc:

/**
     * Returns a node representing the mirror's depth. That can be used
     * to implement more advanced reflection effects like distance attenuation.
     *
     * @return {Node} The depth node.
     */

Returns: Node

Calls:

  • nodeObject (from ../tsl/TSLBase.js)
Code
getDepthNode() {

        if ( this._depthNode === null ) {

            if ( this._reflectorBaseNode.depth !== true ) {

                throw new Error( 'THREE.ReflectorNode: Depth node can only be requested when the reflector is created with { depth: true }. ' );

            }

            this._depthNode = nodeObject( new ReflectorNode( {
                defaultTexture: _defaultRT.depthTexture,
                reflector: this._reflectorBaseNode
            } ) );

        }

        return this._depthNode;

    }

ReflectorNode.setup(builder: any): void

Parameters:

  • builder any

Returns: void

Calls:

  • this._reflectorBaseNode.build
  • super.setup

Internal Comments:

// ignore if used in post-processing

Code
setup( builder ) {

        // ignore if used in post-processing
        if ( ! builder.object.isQuadMesh ) this._reflectorBaseNode.build( builder );

        return super.setup( builder );

    }

ReflectorNode.clone(): any

Returns: any

Code
clone() {

        const newNode = new this.constructor( this.reflectorNode );
        newNode.uvNode = this.uvNode;
        newNode.levelNode = this.levelNode;
        newNode.biasNode = this.biasNode;
        newNode.sampler = this.sampler;
        newNode.depthNode = this.depthNode;
        newNode.compareNode = this.compareNode;
        newNode.gradNode = this.gradNode;
        newNode._reflectorBaseNode = this._reflectorBaseNode;

        return newNode;

    }

ReflectorNode.dispose(): void

JSDoc:

/**
     * Frees internal resources. Should be called when the node is no longer in use.
     */

Returns: void

Calls:

  • super.dispose
  • this._reflectorBaseNode.dispose
Code
dispose() {

        super.dispose();

        this._reflectorBaseNode.dispose();

    }

ReflectorBaseNode._updateResolution(renderTarget: RenderTarget, renderer: Renderer): void

JSDoc:

/**
     * Updates the resolution of the internal render target.
     *
     * @private
     * @param {RenderTarget} renderTarget - The render target to resize.
     * @param {Renderer} renderer - The renderer that is used to determine the new size.
     */

Parameters:

  • renderTarget RenderTarget
  • renderer Renderer

Returns: void

Calls:

  • renderer.getDrawingBufferSize
  • renderTarget.setSize
  • Math.round
Code
_updateResolution( renderTarget, renderer ) {

        const resolution = this.resolution;

        renderer.getDrawingBufferSize( _size );

        renderTarget.setSize( Math.round( _size.width * resolution ), Math.round( _size.height * resolution ) );

    }

ReflectorBaseNode.setup(builder: any): Node

Parameters:

  • builder any

Returns: Node

Calls:

  • this._updateResolution
  • super.setup
Code
setup( builder ) {

        this._updateResolution( _defaultRT, builder.renderer );

        return super.setup( builder );

    }

ReflectorBaseNode.dispose(): void

JSDoc:

/**
     * Frees internal resources. Should be called when the node is no longer in use.
     */

Returns: void

Calls:

  • super.dispose
  • this.renderTargets.values
  • renderTarget.dispose
Code
dispose() {

        super.dispose();

        for ( const renderTarget of this.renderTargets.values() ) {

            renderTarget.dispose();

        }

    }

ReflectorBaseNode.getVirtualCamera(camera: Camera): Camera

JSDoc:

/**
     * Returns a virtual camera for the given camera. The virtual camera is used to
     * render the scene from the reflector's view so correct reflections can be produced.
     *
     * @param {Camera} camera - The scene's camera.
     * @return {Camera} The corresponding virtual camera.
     */

Parameters:

  • camera Camera

Returns: Camera

Calls:

  • this.virtualCameras.get
  • camera.clone
  • this.virtualCameras.set
Code
getVirtualCamera( camera ) {

        let virtualCamera = this.virtualCameras.get( camera );

        if ( virtualCamera === undefined ) {

            virtualCamera = camera.clone();

            this.virtualCameras.set( camera, virtualCamera );

        }

        return virtualCamera;

    }

ReflectorBaseNode.getRenderTarget(camera: Camera): RenderTarget

JSDoc:

/**
     * Returns a render target for the given camera. The reflections are rendered
     * into this render target.
     *
     * @param {Camera} camera - The scene's camera.
     * @return {RenderTarget} The render target.
     */

Parameters:

  • camera Camera

Returns: RenderTarget

Calls:

  • this.renderTargets.get
  • this.renderTargets.set
Code
getRenderTarget( camera ) {

        let renderTarget = this.renderTargets.get( camera );

        if ( renderTarget === undefined ) {

            renderTarget = new RenderTarget( 0, 0, { type: HalfFloatType, samples: this.samples } );

            if ( this.generateMipmaps === true ) {

                renderTarget.texture.minFilter = LinearMipMapLinearFilter;
                renderTarget.texture.generateMipmaps = true;

            }

            if ( this.depth === true ) {

                renderTarget.depthTexture = new DepthTexture();

            }

            this.renderTargets.set( camera, renderTarget );

        }

        return renderTarget;

    }

ReflectorBaseNode.updateBefore(frame: any): boolean

Parameters:

  • frame any

Returns: boolean

Calls:

  • this.getVirtualCamera
  • this.getRenderTarget
  • renderer.getDrawingBufferSize
  • this._updateResolution
  • _reflectorWorldPosition.setFromMatrixPosition
  • _cameraWorldPosition.setFromMatrixPosition
  • _rotationMatrix.extractRotation
  • _normal.set
  • _normal.applyMatrix4
  • _view.subVectors
  • _view.dot
  • _view.reflect( _normal ).negate
  • _view.add
  • _lookAtPosition.set
  • _lookAtPosition.applyMatrix4
  • _lookAtPosition.add
  • _target.subVectors
  • _target.reflect( _normal ).negate
  • _target.add
  • virtualCamera.position.copy
  • virtualCamera.up.set
  • virtualCamera.up.applyMatrix4
  • virtualCamera.up.reflect
  • virtualCamera.lookAt
  • virtualCamera.updateMatrixWorld
  • virtualCamera.projectionMatrix.copy
  • _reflectorPlane.setFromNormalAndCoplanarPoint
  • _reflectorPlane.applyMatrix4
  • clipPlane.set
  • Math.sign
  • clipPlane.multiplyScalar
  • clipPlane.dot
  • this.textureNode.getDepthNode
  • renderer.getRenderTarget
  • renderer.getMRT
  • renderer.setMRT
  • renderer.setRenderTarget
  • renderer.clear
  • renderer.render

Internal Comments:

// (x13)
// Avoid rendering when reflector is facing away unless forcing an update (x2)
// Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html (x4)
// Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf (x4)
// Calculate the scaled plane vector (x4)
// Replacing the third row of the projection matrix (x5)

Code
updateBefore( frame ) {

        if ( this.bounces === false && _inReflector ) return false;

        _inReflector = true;

        const { scene, camera, renderer, material } = frame;
        const { target } = this;

        const virtualCamera = this.getVirtualCamera( camera );
        const renderTarget = this.getRenderTarget( virtualCamera );

        renderer.getDrawingBufferSize( _size );

        this._updateResolution( renderTarget, renderer );

        //

        _reflectorWorldPosition.setFromMatrixPosition( target.matrixWorld );
        _cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );

        _rotationMatrix.extractRotation( target.matrixWorld );

        _normal.set( 0, 0, 1 );
        _normal.applyMatrix4( _rotationMatrix );

        _view.subVectors( _reflectorWorldPosition, _cameraWorldPosition );

        // Avoid rendering when reflector is facing away unless forcing an update
        const isFacingAway = _view.dot( _normal ) > 0;

        let needsClear = false;

        if ( isFacingAway === true && this.forceUpdate === false ) {

            if ( this.hasOutput === false ) {

                _inReflector = false;

                return;

            }

            needsClear = true;

        }

        _view.reflect( _normal ).negate();
        _view.add( _reflectorWorldPosition );

        _rotationMatrix.extractRotation( camera.matrixWorld );

        _lookAtPosition.set( 0, 0, - 1 );
        _lookAtPosition.applyMatrix4( _rotationMatrix );
        _lookAtPosition.add( _cameraWorldPosition );

        _target.subVectors( _reflectorWorldPosition, _lookAtPosition );
        _target.reflect( _normal ).negate();
        _target.add( _reflectorWorldPosition );

        //

        virtualCamera.coordinateSystem = camera.coordinateSystem;
        virtualCamera.position.copy( _view );
        virtualCamera.up.set( 0, 1, 0 );
        virtualCamera.up.applyMatrix4( _rotationMatrix );
        virtualCamera.up.reflect( _normal );
        virtualCamera.lookAt( _target );

        virtualCamera.near = camera.near;
        virtualCamera.far = camera.far;

        virtualCamera.updateMatrixWorld();
        virtualCamera.projectionMatrix.copy( camera.projectionMatrix );

        // Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html
        // Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf
        _reflectorPlane.setFromNormalAndCoplanarPoint( _normal, _reflectorWorldPosition );
        _reflectorPlane.applyMatrix4( virtualCamera.matrixWorldInverse );

        clipPlane.set( _reflectorPlane.normal.x, _reflectorPlane.normal.y, _reflectorPlane.normal.z, _reflectorPlane.constant );

        const projectionMatrix = virtualCamera.projectionMatrix;

        _q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
        _q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
        _q.z = - 1.0;
        _q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];

        // Calculate the scaled plane vector
        clipPlane.multiplyScalar( 1.0 / clipPlane.dot( _q ) );

        const clipBias = 0;

        // Replacing the third row of the projection matrix
        projectionMatrix.elements[ 2 ] = clipPlane.x;
        projectionMatrix.elements[ 6 ] = clipPlane.y;
        projectionMatrix.elements[ 10 ] = ( renderer.coordinateSystem === WebGPUCoordinateSystem ) ? ( clipPlane.z - clipBias ) : ( clipPlane.z + 1.0 - clipBias );
        projectionMatrix.elements[ 14 ] = clipPlane.w;

        //

        this.textureNode.value = renderTarget.texture;

        if ( this.depth === true ) {

            this.textureNode.getDepthNode().value = renderTarget.depthTexture;

        }

        material.visible = false;

        const currentRenderTarget = renderer.getRenderTarget();
        const currentMRT = renderer.getMRT();
        const currentAutoClear = renderer.autoClear;

        renderer.setMRT( null );
        renderer.setRenderTarget( renderTarget );
        renderer.autoClear = true;

        if ( needsClear ) {

            renderer.clear();

            this.hasOutput = false;

        } else {

            renderer.render( scene, virtualCamera );

            this.hasOutput = true;

        }

        renderer.setMRT( currentMRT );
        renderer.setRenderTarget( currentRenderTarget );
        renderer.autoClear = currentAutoClear;

        material.visible = true;

        _inReflector = false;

        this.forceUpdate = false;

    }

reflector(parameters: { target?: Object3D; resolution?: number; generateMipmaps?: boolean; bounces?: boolean; depth?: boolean; samples?: number; defaultTexture?: TextureNode; reflector?: ReflectorBaseNode; }): ReflectorNode

Parameters:

  • parameters { target?: Object3D; resolution?: number; generateMipmaps?: boolean; bounces?: boolean; depth?: boolean; samples?: number; defaultTexture?: TextureNode; reflector?: ReflectorBaseNode; }

Returns: ReflectorNode

Calls:

  • nodeObject (from ../tsl/TSLBase.js)
Code
( parameters ) => nodeObject( new ReflectorNode( parameters ) )

Classes

ReflectorNode

Class Code
class ReflectorNode extends TextureNode {

    static get type() {

        return 'ReflectorNode';

    }

    /**
     * Constructs a new reflector node.
     *
     * @param {Object} [parameters={}] - An object holding configuration parameters.
     * @param {Object3D} [parameters.target=new Object3D()] - The 3D object the reflector is linked to.
     * @param {number} [parameters.resolution=1] - The resolution scale.
     * @param {boolean} [parameters.generateMipmaps=false] - Whether mipmaps should be generated or not.
     * @param {boolean} [parameters.bounces=true] - Whether reflectors can render other reflector nodes or not.
     * @param {boolean} [parameters.depth=false] - Whether depth data should be generated or not.
     * @param {number} [parameters.samples] - Anti-Aliasing samples of the internal render-target.
     * @param {TextureNode} [parameters.defaultTexture] - The default texture node.
     * @param {ReflectorBaseNode} [parameters.reflector] - The reflector base node.
     */
    constructor( parameters = {} ) {

        super( parameters.defaultTexture || _defaultRT.texture, _defaultUV );

        /**
         * A reference to the internal reflector base node which holds the actual implementation.
         *
         * @private
         * @type {ReflectorBaseNode}
         * @default ReflectorBaseNode
         */
        this._reflectorBaseNode = parameters.reflector || new ReflectorBaseNode( this, parameters );

        /**
         * A reference to the internal depth node.
         *
         * @private
         * @type {?Node}
         * @default null
         */
        this._depthNode = null;

        this.setUpdateMatrix( false );

    }

    /**
     * A reference to the internal reflector node.
     *
     * @type {ReflectorBaseNode}
     */
    get reflector() {

        return this._reflectorBaseNode;

    }

    /**
     * A reference to 3D object the reflector is linked to.
     *
     * @type {Object3D}
     */
    get target() {

        return this._reflectorBaseNode.target;

    }

    /**
     * Returns a node representing the mirror's depth. That can be used
     * to implement more advanced reflection effects like distance attenuation.
     *
     * @return {Node} The depth node.
     */
    getDepthNode() {

        if ( this._depthNode === null ) {

            if ( this._reflectorBaseNode.depth !== true ) {

                throw new Error( 'THREE.ReflectorNode: Depth node can only be requested when the reflector is created with { depth: true }. ' );

            }

            this._depthNode = nodeObject( new ReflectorNode( {
                defaultTexture: _defaultRT.depthTexture,
                reflector: this._reflectorBaseNode
            } ) );

        }

        return this._depthNode;

    }

    setup( builder ) {

        // ignore if used in post-processing
        if ( ! builder.object.isQuadMesh ) this._reflectorBaseNode.build( builder );

        return super.setup( builder );

    }

    clone() {

        const newNode = new this.constructor( this.reflectorNode );
        newNode.uvNode = this.uvNode;
        newNode.levelNode = this.levelNode;
        newNode.biasNode = this.biasNode;
        newNode.sampler = this.sampler;
        newNode.depthNode = this.depthNode;
        newNode.compareNode = this.compareNode;
        newNode.gradNode = this.gradNode;
        newNode._reflectorBaseNode = this._reflectorBaseNode;

        return newNode;

    }

    /**
     * Frees internal resources. Should be called when the node is no longer in use.
     */
    dispose() {

        super.dispose();

        this._reflectorBaseNode.dispose();

    }

}

Methods

getDepthNode(): Node
Code
getDepthNode() {

        if ( this._depthNode === null ) {

            if ( this._reflectorBaseNode.depth !== true ) {

                throw new Error( 'THREE.ReflectorNode: Depth node can only be requested when the reflector is created with { depth: true }. ' );

            }

            this._depthNode = nodeObject( new ReflectorNode( {
                defaultTexture: _defaultRT.depthTexture,
                reflector: this._reflectorBaseNode
            } ) );

        }

        return this._depthNode;

    }
setup(builder: any): void
Code
setup( builder ) {

        // ignore if used in post-processing
        if ( ! builder.object.isQuadMesh ) this._reflectorBaseNode.build( builder );

        return super.setup( builder );

    }
clone(): any
Code
clone() {

        const newNode = new this.constructor( this.reflectorNode );
        newNode.uvNode = this.uvNode;
        newNode.levelNode = this.levelNode;
        newNode.biasNode = this.biasNode;
        newNode.sampler = this.sampler;
        newNode.depthNode = this.depthNode;
        newNode.compareNode = this.compareNode;
        newNode.gradNode = this.gradNode;
        newNode._reflectorBaseNode = this._reflectorBaseNode;

        return newNode;

    }
dispose(): void
Code
dispose() {

        super.dispose();

        this._reflectorBaseNode.dispose();

    }

ReflectorBaseNode

Class Code
class ReflectorBaseNode extends Node {

    static get type() {

        return 'ReflectorBaseNode';

    }

    /**
     * Constructs a new reflector base node.
     *
     * @param {TextureNode} textureNode - Represents the rendered reflections as a texture node.
     * @param {Object} [parameters={}] - An object holding configuration parameters.
     * @param {Object3D} [parameters.target=new Object3D()] - The 3D object the reflector is linked to.
     * @param {number} [parameters.resolution=1] - The resolution scale.
     * @param {boolean} [parameters.generateMipmaps=false] - Whether mipmaps should be generated or not.
     * @param {boolean} [parameters.bounces=true] - Whether reflectors can render other reflector nodes or not.
     * @param {boolean} [parameters.depth=false] - Whether depth data should be generated or not.
     * @param {number} [parameters.samples] - Anti-Aliasing samples of the internal render-target.
     */
    constructor( textureNode, parameters = {} ) {

        super();

        const {
            target = new Object3D(),
            resolution = 1,
            generateMipmaps = false,
            bounces = true,
            depth = false,
            samples = 0
        } = parameters;

        /**
         * Represents the rendered reflections as a texture node.
         *
         * @type {TextureNode}
         */
        this.textureNode = textureNode;

        /**
         * The 3D object the reflector is linked to.
         *
         * @type {Object3D}
         * @default {new Object3D()}
         */
        this.target = target;

        /**
         * The resolution scale.
         *
         * @type {number}
         * @default {1}
         */
        this.resolution = resolution;

        /**
         * Whether mipmaps should be generated or not.
         *
         * @type {boolean}
         * @default {false}
         */
        this.generateMipmaps = generateMipmaps;

        /**
         * Whether reflectors can render other reflector nodes or not.
         *
         * @type {boolean}
         * @default {true}
         */
        this.bounces = bounces;

        /**
         * Whether depth data should be generated or not.
         *
         * @type {boolean}
         * @default {false}
         */
        this.depth = depth;

        /**
         * The number of anti-aliasing samples for the render-target
         *
         * @type {number}
         * @default {0}
         */
        this.samples = samples;

        /**
         * The `updateBeforeType` is set to `NodeUpdateType.RENDER` when {@link ReflectorBaseNode#bounces}
         * is `true`. Otherwise it's `NodeUpdateType.FRAME`.
         *
         * @type {string}
         * @default 'render'
         */
        this.updateBeforeType = bounces ? NodeUpdateType.RENDER : NodeUpdateType.FRAME;

        /**
         * Weak map for managing virtual cameras.
         *
         * @type {WeakMap<Camera, Camera>}
         */
        this.virtualCameras = new WeakMap();

        /**
         * Weak map for managing render targets.
         *
         * @type {Map<Camera, RenderTarget>}
         */
        this.renderTargets = new Map();

        /**
         * Force render even if reflector is facing away from camera.
         *
         * @type {boolean}
         * @default {false}
         */
        this.forceUpdate = false;

        /**
         * Whether the reflector has been rendered or not.
         *
         * When the reflector is facing away from the camera,
         * this flag is set to `false` and the texture will be empty(black).
         *
         * @type {boolean}
         * @default {false}
         */
        this.hasOutput = false;

    }

    /**
     * Updates the resolution of the internal render target.
     *
     * @private
     * @param {RenderTarget} renderTarget - The render target to resize.
     * @param {Renderer} renderer - The renderer that is used to determine the new size.
     */
    _updateResolution( renderTarget, renderer ) {

        const resolution = this.resolution;

        renderer.getDrawingBufferSize( _size );

        renderTarget.setSize( Math.round( _size.width * resolution ), Math.round( _size.height * resolution ) );

    }

    setup( builder ) {

        this._updateResolution( _defaultRT, builder.renderer );

        return super.setup( builder );

    }

    /**
     * Frees internal resources. Should be called when the node is no longer in use.
     */
    dispose() {

        super.dispose();

        for ( const renderTarget of this.renderTargets.values() ) {

            renderTarget.dispose();

        }

    }

    /**
     * Returns a virtual camera for the given camera. The virtual camera is used to
     * render the scene from the reflector's view so correct reflections can be produced.
     *
     * @param {Camera} camera - The scene's camera.
     * @return {Camera} The corresponding virtual camera.
     */
    getVirtualCamera( camera ) {

        let virtualCamera = this.virtualCameras.get( camera );

        if ( virtualCamera === undefined ) {

            virtualCamera = camera.clone();

            this.virtualCameras.set( camera, virtualCamera );

        }

        return virtualCamera;

    }

    /**
     * Returns a render target for the given camera. The reflections are rendered
     * into this render target.
     *
     * @param {Camera} camera - The scene's camera.
     * @return {RenderTarget} The render target.
     */
    getRenderTarget( camera ) {

        let renderTarget = this.renderTargets.get( camera );

        if ( renderTarget === undefined ) {

            renderTarget = new RenderTarget( 0, 0, { type: HalfFloatType, samples: this.samples } );

            if ( this.generateMipmaps === true ) {

                renderTarget.texture.minFilter = LinearMipMapLinearFilter;
                renderTarget.texture.generateMipmaps = true;

            }

            if ( this.depth === true ) {

                renderTarget.depthTexture = new DepthTexture();

            }

            this.renderTargets.set( camera, renderTarget );

        }

        return renderTarget;

    }

    updateBefore( frame ) {

        if ( this.bounces === false && _inReflector ) return false;

        _inReflector = true;

        const { scene, camera, renderer, material } = frame;
        const { target } = this;

        const virtualCamera = this.getVirtualCamera( camera );
        const renderTarget = this.getRenderTarget( virtualCamera );

        renderer.getDrawingBufferSize( _size );

        this._updateResolution( renderTarget, renderer );

        //

        _reflectorWorldPosition.setFromMatrixPosition( target.matrixWorld );
        _cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );

        _rotationMatrix.extractRotation( target.matrixWorld );

        _normal.set( 0, 0, 1 );
        _normal.applyMatrix4( _rotationMatrix );

        _view.subVectors( _reflectorWorldPosition, _cameraWorldPosition );

        // Avoid rendering when reflector is facing away unless forcing an update
        const isFacingAway = _view.dot( _normal ) > 0;

        let needsClear = false;

        if ( isFacingAway === true && this.forceUpdate === false ) {

            if ( this.hasOutput === false ) {

                _inReflector = false;

                return;

            }

            needsClear = true;

        }

        _view.reflect( _normal ).negate();
        _view.add( _reflectorWorldPosition );

        _rotationMatrix.extractRotation( camera.matrixWorld );

        _lookAtPosition.set( 0, 0, - 1 );
        _lookAtPosition.applyMatrix4( _rotationMatrix );
        _lookAtPosition.add( _cameraWorldPosition );

        _target.subVectors( _reflectorWorldPosition, _lookAtPosition );
        _target.reflect( _normal ).negate();
        _target.add( _reflectorWorldPosition );

        //

        virtualCamera.coordinateSystem = camera.coordinateSystem;
        virtualCamera.position.copy( _view );
        virtualCamera.up.set( 0, 1, 0 );
        virtualCamera.up.applyMatrix4( _rotationMatrix );
        virtualCamera.up.reflect( _normal );
        virtualCamera.lookAt( _target );

        virtualCamera.near = camera.near;
        virtualCamera.far = camera.far;

        virtualCamera.updateMatrixWorld();
        virtualCamera.projectionMatrix.copy( camera.projectionMatrix );

        // Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html
        // Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf
        _reflectorPlane.setFromNormalAndCoplanarPoint( _normal, _reflectorWorldPosition );
        _reflectorPlane.applyMatrix4( virtualCamera.matrixWorldInverse );

        clipPlane.set( _reflectorPlane.normal.x, _reflectorPlane.normal.y, _reflectorPlane.normal.z, _reflectorPlane.constant );

        const projectionMatrix = virtualCamera.projectionMatrix;

        _q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
        _q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
        _q.z = - 1.0;
        _q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];

        // Calculate the scaled plane vector
        clipPlane.multiplyScalar( 1.0 / clipPlane.dot( _q ) );

        const clipBias = 0;

        // Replacing the third row of the projection matrix
        projectionMatrix.elements[ 2 ] = clipPlane.x;
        projectionMatrix.elements[ 6 ] = clipPlane.y;
        projectionMatrix.elements[ 10 ] = ( renderer.coordinateSystem === WebGPUCoordinateSystem ) ? ( clipPlane.z - clipBias ) : ( clipPlane.z + 1.0 - clipBias );
        projectionMatrix.elements[ 14 ] = clipPlane.w;

        //

        this.textureNode.value = renderTarget.texture;

        if ( this.depth === true ) {

            this.textureNode.getDepthNode().value = renderTarget.depthTexture;

        }

        material.visible = false;

        const currentRenderTarget = renderer.getRenderTarget();
        const currentMRT = renderer.getMRT();
        const currentAutoClear = renderer.autoClear;

        renderer.setMRT( null );
        renderer.setRenderTarget( renderTarget );
        renderer.autoClear = true;

        if ( needsClear ) {

            renderer.clear();

            this.hasOutput = false;

        } else {

            renderer.render( scene, virtualCamera );

            this.hasOutput = true;

        }

        renderer.setMRT( currentMRT );
        renderer.setRenderTarget( currentRenderTarget );
        renderer.autoClear = currentAutoClear;

        material.visible = true;

        _inReflector = false;

        this.forceUpdate = false;

    }

}

Methods

_updateResolution(renderTarget: RenderTarget, renderer: Renderer): void
Code
_updateResolution( renderTarget, renderer ) {

        const resolution = this.resolution;

        renderer.getDrawingBufferSize( _size );

        renderTarget.setSize( Math.round( _size.width * resolution ), Math.round( _size.height * resolution ) );

    }
setup(builder: any): Node
Code
setup( builder ) {

        this._updateResolution( _defaultRT, builder.renderer );

        return super.setup( builder );

    }
dispose(): void
Code
dispose() {

        super.dispose();

        for ( const renderTarget of this.renderTargets.values() ) {

            renderTarget.dispose();

        }

    }
getVirtualCamera(camera: Camera): Camera
Code
getVirtualCamera( camera ) {

        let virtualCamera = this.virtualCameras.get( camera );

        if ( virtualCamera === undefined ) {

            virtualCamera = camera.clone();

            this.virtualCameras.set( camera, virtualCamera );

        }

        return virtualCamera;

    }
getRenderTarget(camera: Camera): RenderTarget
Code
getRenderTarget( camera ) {

        let renderTarget = this.renderTargets.get( camera );

        if ( renderTarget === undefined ) {

            renderTarget = new RenderTarget( 0, 0, { type: HalfFloatType, samples: this.samples } );

            if ( this.generateMipmaps === true ) {

                renderTarget.texture.minFilter = LinearMipMapLinearFilter;
                renderTarget.texture.generateMipmaps = true;

            }

            if ( this.depth === true ) {

                renderTarget.depthTexture = new DepthTexture();

            }

            this.renderTargets.set( camera, renderTarget );

        }

        return renderTarget;

    }
updateBefore(frame: any): boolean
Code
updateBefore( frame ) {

        if ( this.bounces === false && _inReflector ) return false;

        _inReflector = true;

        const { scene, camera, renderer, material } = frame;
        const { target } = this;

        const virtualCamera = this.getVirtualCamera( camera );
        const renderTarget = this.getRenderTarget( virtualCamera );

        renderer.getDrawingBufferSize( _size );

        this._updateResolution( renderTarget, renderer );

        //

        _reflectorWorldPosition.setFromMatrixPosition( target.matrixWorld );
        _cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );

        _rotationMatrix.extractRotation( target.matrixWorld );

        _normal.set( 0, 0, 1 );
        _normal.applyMatrix4( _rotationMatrix );

        _view.subVectors( _reflectorWorldPosition, _cameraWorldPosition );

        // Avoid rendering when reflector is facing away unless forcing an update
        const isFacingAway = _view.dot( _normal ) > 0;

        let needsClear = false;

        if ( isFacingAway === true && this.forceUpdate === false ) {

            if ( this.hasOutput === false ) {

                _inReflector = false;

                return;

            }

            needsClear = true;

        }

        _view.reflect( _normal ).negate();
        _view.add( _reflectorWorldPosition );

        _rotationMatrix.extractRotation( camera.matrixWorld );

        _lookAtPosition.set( 0, 0, - 1 );
        _lookAtPosition.applyMatrix4( _rotationMatrix );
        _lookAtPosition.add( _cameraWorldPosition );

        _target.subVectors( _reflectorWorldPosition, _lookAtPosition );
        _target.reflect( _normal ).negate();
        _target.add( _reflectorWorldPosition );

        //

        virtualCamera.coordinateSystem = camera.coordinateSystem;
        virtualCamera.position.copy( _view );
        virtualCamera.up.set( 0, 1, 0 );
        virtualCamera.up.applyMatrix4( _rotationMatrix );
        virtualCamera.up.reflect( _normal );
        virtualCamera.lookAt( _target );

        virtualCamera.near = camera.near;
        virtualCamera.far = camera.far;

        virtualCamera.updateMatrixWorld();
        virtualCamera.projectionMatrix.copy( camera.projectionMatrix );

        // Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html
        // Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf
        _reflectorPlane.setFromNormalAndCoplanarPoint( _normal, _reflectorWorldPosition );
        _reflectorPlane.applyMatrix4( virtualCamera.matrixWorldInverse );

        clipPlane.set( _reflectorPlane.normal.x, _reflectorPlane.normal.y, _reflectorPlane.normal.z, _reflectorPlane.constant );

        const projectionMatrix = virtualCamera.projectionMatrix;

        _q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
        _q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
        _q.z = - 1.0;
        _q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];

        // Calculate the scaled plane vector
        clipPlane.multiplyScalar( 1.0 / clipPlane.dot( _q ) );

        const clipBias = 0;

        // Replacing the third row of the projection matrix
        projectionMatrix.elements[ 2 ] = clipPlane.x;
        projectionMatrix.elements[ 6 ] = clipPlane.y;
        projectionMatrix.elements[ 10 ] = ( renderer.coordinateSystem === WebGPUCoordinateSystem ) ? ( clipPlane.z - clipBias ) : ( clipPlane.z + 1.0 - clipBias );
        projectionMatrix.elements[ 14 ] = clipPlane.w;

        //

        this.textureNode.value = renderTarget.texture;

        if ( this.depth === true ) {

            this.textureNode.getDepthNode().value = renderTarget.depthTexture;

        }

        material.visible = false;

        const currentRenderTarget = renderer.getRenderTarget();
        const currentMRT = renderer.getMRT();
        const currentAutoClear = renderer.autoClear;

        renderer.setMRT( null );
        renderer.setRenderTarget( renderTarget );
        renderer.autoClear = true;

        if ( needsClear ) {

            renderer.clear();

            this.hasOutput = false;

        } else {

            renderer.render( scene, virtualCamera );

            this.hasOutput = true;

        }

        renderer.setMRT( currentMRT );
        renderer.setRenderTarget( currentRenderTarget );
        renderer.autoClear = currentAutoClear;

        material.visible = true;

        _inReflector = false;

        this.forceUpdate = false;

    }