📄 WebGLRenderer.js
¶
📊 Analysis Summary¶
Metric | Count |
---|---|
🔧 Functions | 25 |
🧱 Classes | 1 |
📦 Imports | 56 |
📊 Variables & Constants | 195 |
📚 Table of Contents¶
🛠️ File Location:¶
📂 src/renderers/WebGLRenderer.js
📦 Imports¶
Name | Source |
---|---|
REVISION |
../constants.js |
BackSide |
../constants.js |
FrontSide |
../constants.js |
DoubleSide |
../constants.js |
HalfFloatType |
../constants.js |
UnsignedByteType |
../constants.js |
NoToneMapping |
../constants.js |
LinearMipmapLinearFilter |
../constants.js |
SRGBColorSpace |
../constants.js |
LinearSRGBColorSpace |
../constants.js |
RGBAIntegerFormat |
../constants.js |
RGIntegerFormat |
../constants.js |
RedIntegerFormat |
../constants.js |
UnsignedIntType |
../constants.js |
UnsignedShortType |
../constants.js |
UnsignedInt248Type |
../constants.js |
UnsignedShort4444Type |
../constants.js |
UnsignedShort5551Type |
../constants.js |
WebGLCoordinateSystem |
../constants.js |
Color |
../math/Color.js |
Frustum |
../math/Frustum.js |
Matrix4 |
../math/Matrix4.js |
Vector3 |
../math/Vector3.js |
Vector4 |
../math/Vector4.js |
WebGLAnimation |
./webgl/WebGLAnimation.js |
WebGLAttributes |
./webgl/WebGLAttributes.js |
WebGLBackground |
./webgl/WebGLBackground.js |
WebGLBindingStates |
./webgl/WebGLBindingStates.js |
WebGLBufferRenderer |
./webgl/WebGLBufferRenderer.js |
WebGLCapabilities |
./webgl/WebGLCapabilities.js |
WebGLClipping |
./webgl/WebGLClipping.js |
WebGLCubeMaps |
./webgl/WebGLCubeMaps.js |
WebGLCubeUVMaps |
./webgl/WebGLCubeUVMaps.js |
WebGLExtensions |
./webgl/WebGLExtensions.js |
WebGLGeometries |
./webgl/WebGLGeometries.js |
WebGLIndexedBufferRenderer |
./webgl/WebGLIndexedBufferRenderer.js |
WebGLInfo |
./webgl/WebGLInfo.js |
WebGLMorphtargets |
./webgl/WebGLMorphtargets.js |
WebGLObjects |
./webgl/WebGLObjects.js |
WebGLPrograms |
./webgl/WebGLPrograms.js |
WebGLProperties |
./webgl/WebGLProperties.js |
WebGLRenderLists |
./webgl/WebGLRenderLists.js |
WebGLRenderStates |
./webgl/WebGLRenderStates.js |
WebGLRenderTarget |
./WebGLRenderTarget.js |
WebGLShadowMap |
./webgl/WebGLShadowMap.js |
WebGLState |
./webgl/WebGLState.js |
WebGLTextures |
./webgl/WebGLTextures.js |
WebGLUniforms |
./webgl/WebGLUniforms.js |
WebGLUtils |
./webgl/WebGLUtils.js |
WebXRManager |
./webxr/WebXRManager.js |
WebGLMaterials |
./webgl/WebGLMaterials.js |
WebGLUniformsGroups |
./webgl/WebGLUniformsGroups.js |
createCanvasElement |
../utils.js |
probeAsync |
../utils.js |
warnOnce |
../utils.js |
ColorManagement |
../math/ColorManagement.js |
Variables & Constants¶
Name | Type | Kind | Value | Exported |
---|---|---|---|---|
_alpha |
any |
let/var | *not shown* |
✗ |
uintClearColor |
Uint32Array<ArrayBuffer> |
let/var | new Uint32Array( 4 ) |
✗ |
intClearColor |
Int32Array<ArrayBuffer> |
let/var | new Int32Array( 4 ) |
✗ |
currentRenderList |
any |
let/var | null |
✗ |
currentRenderState |
any |
let/var | null |
✗ |
renderListStack |
any[] |
let/var | [] |
✗ |
renderStateStack |
any[] |
let/var | [] |
✗ |
_this |
this |
let/var | this |
✗ |
_isContextLost |
boolean |
let/var | false |
✗ |
_currentActiveCubeFace |
number |
let/var | 0 |
✗ |
_currentActiveMipmapLevel |
number |
let/var | 0 |
✗ |
_currentRenderTarget |
any |
let/var | null |
✗ |
_currentMaterialId |
number |
let/var | - 1 |
✗ |
_currentCamera |
any |
let/var | null |
✗ |
_currentViewport |
Vector4 |
let/var | new Vector4() |
✗ |
_currentScissor |
Vector4 |
let/var | new Vector4() |
✗ |
_currentScissorTest |
any |
let/var | null |
✗ |
_currentClearColor |
Color |
let/var | new Color( 0x000000 ) |
✗ |
_currentClearAlpha |
number |
let/var | 0 |
✗ |
_width |
any |
let/var | canvas.width |
✗ |
_height |
any |
let/var | canvas.height |
✗ |
_pixelRatio |
number |
let/var | 1 |
✗ |
_opaqueSort |
any |
let/var | null |
✗ |
_transparentSort |
any |
let/var | null |
✗ |
_viewport |
Vector4 |
let/var | new Vector4( 0, 0, _width, _height ) |
✗ |
_scissor |
Vector4 |
let/var | new Vector4( 0, 0, _width, _height ) |
✗ |
_scissorTest |
boolean |
let/var | false |
✗ |
_frustum |
Frustum |
let/var | new Frustum() |
✗ |
_clippingEnabled |
boolean |
let/var | false |
✗ |
_localClippingEnabled |
boolean |
let/var | false |
✗ |
_projScreenMatrix |
Matrix4 |
let/var | new Matrix4() |
✗ |
_vector3 |
Vector3 |
let/var | new Vector3() |
✗ |
_vector4 |
Vector4 |
let/var | new Vector4() |
✗ |
_emptyScene |
{ background: any; fog: any; environm... |
let/var | { background: null, fog: null, environment: null, overrideMaterial: null, isS... |
✗ |
_renderBackground |
boolean |
let/var | false |
✗ |
_gl |
any |
let/var | context |
✗ |
contextAttributes |
{ alpha: boolean; depth: any; stencil... |
let/var | { alpha: true, depth, stencil, antialias, premultipliedAlpha, preserveDrawing... |
✗ |
contextName |
"webgl2" |
let/var | 'webgl2' |
✗ |
extensions |
any |
let/var | *not shown* |
✗ |
capabilities |
any |
let/var | *not shown* |
✗ |
state |
any |
let/var | *not shown* |
✗ |
info |
any |
let/var | *not shown* |
✗ |
properties |
any |
let/var | *not shown* |
✗ |
textures |
any |
let/var | *not shown* |
✗ |
cubemaps |
any |
let/var | *not shown* |
✗ |
cubeuvmaps |
any |
let/var | *not shown* |
✗ |
attributes |
any |
let/var | *not shown* |
✗ |
geometries |
any |
let/var | *not shown* |
✗ |
objects |
any |
let/var | *not shown* |
✗ |
programCache |
any |
let/var | *not shown* |
✗ |
materials |
any |
let/var | *not shown* |
✗ |
renderLists |
any |
let/var | *not shown* |
✗ |
renderStates |
any |
let/var | *not shown* |
✗ |
clipping |
any |
let/var | *not shown* |
✗ |
shadowMap |
any |
let/var | *not shown* |
✗ |
background |
any |
let/var | *not shown* |
✗ |
morphtargets |
any |
let/var | *not shown* |
✗ |
bufferRenderer |
any |
let/var | *not shown* |
✗ |
indexedBufferRenderer |
any |
let/var | *not shown* |
✗ |
utils |
any |
let/var | *not shown* |
✗ |
bindingStates |
any |
let/var | *not shown* |
✗ |
uniformsGroups |
any |
let/var | *not shown* |
✗ |
xr |
WebXRManager |
let/var | new WebXRManager( _this, _gl ) |
✗ |
bits |
number |
let/var | 0 |
✗ |
isIntegerFormat |
boolean |
let/var | false |
✗ |
targetFormat |
any |
let/var | _currentRenderTarget.texture.format |
✗ |
targetType |
any |
let/var | _currentRenderTarget.texture.type |
✗ |
isUnsignedType |
boolean |
let/var | targetType === UnsignedByteType \|\| targetType === UnsignedIntType \|\| targ... |
✗ |
r |
any |
let/var | clearColor.r |
✗ |
g |
any |
let/var | clearColor.g |
✗ |
b |
any |
let/var | clearColor.b |
✗ |
infoAutoReset |
any |
let/var | info.autoReset |
✗ |
shadowMapEnabled |
any |
let/var | shadowMap.enabled |
✗ |
shadowMapAutoUpdate |
any |
let/var | shadowMap.autoUpdate |
✗ |
shadowMapNeedsUpdate |
any |
let/var | shadowMap.needsUpdate |
✗ |
shadowMapType |
any |
let/var | shadowMap.type |
✗ |
material |
any |
let/var | event.target |
✗ |
programs |
any |
let/var | properties.get( material ).programs |
✗ |
frontFaceCW |
boolean |
let/var | ( object.isMesh && object.matrixWorld.determinant() < 0 ) |
✗ |
index |
any |
let/var | geometry.index |
✗ |
rangeFactor |
number |
let/var | 1 |
✗ |
drawRange |
any |
let/var | geometry.drawRange |
✗ |
position |
any |
let/var | geometry.attributes.position |
✗ |
drawStart |
number |
let/var | drawRange.start * rangeFactor |
✗ |
drawEnd |
number |
let/var | ( drawRange.start + drawRange.count ) * rangeFactor |
✗ |
drawCount |
number |
let/var | drawEnd - drawStart |
✗ |
attribute |
any |
let/var | *not shown* |
✗ |
renderer |
any |
let/var | bufferRenderer |
✗ |
lineWidth |
any |
let/var | material.linewidth |
✗ |
starts |
any |
let/var | object._multiDrawStarts |
✗ |
counts |
any |
let/var | object._multiDrawCounts |
✗ |
drawCount |
any |
let/var | object._multiDrawCount |
✗ |
bytesPerElement |
any |
let/var | index ? attributes.get( index ).bytesPerElement : 1 |
✗ |
maxInstanceCount |
any |
let/var | geometry._maxInstanceCount !== undefined ? geometry._maxInstanceCount : Infinity |
✗ |
materials |
Set<any> |
let/var | new Set() |
✗ |
material |
any |
let/var | object.material |
✗ |
material2 |
any |
let/var | material[ i ] |
✗ |
program |
any |
let/var | materialProperties.currentProgram |
✗ |
onAnimationFrameCallback |
any |
let/var | null |
✗ |
animation |
any |
let/var | new WebGLAnimation() |
✗ |
shadowsArray |
any |
let/var | currentRenderState.state.shadowsArray |
✗ |
opaqueObjects |
any |
let/var | currentRenderList.opaque |
✗ |
transmissiveObjects |
any |
let/var | currentRenderList.transmissive |
✗ |
cameras |
any |
let/var | camera.cameras |
✗ |
camera2 |
any |
let/var | cameras[ i ] |
✗ |
camera2 |
any |
let/var | cameras[ i ] |
✗ |
material |
any |
let/var | object.material |
✗ |
material |
any |
let/var | object.material |
✗ |
groups |
any |
let/var | geometry.groups |
✗ |
group |
any |
let/var | groups[ i ] |
✗ |
groupMaterial |
any |
let/var | material[ group.materialIndex ] |
✗ |
children |
any |
let/var | object.children |
✗ |
opaqueObjects |
any |
let/var | currentRenderList.opaque |
✗ |
transmissiveObjects |
any |
let/var | currentRenderList.transmissive |
✗ |
transparentObjects |
any |
let/var | currentRenderList.transparent |
✗ |
overrideMaterial |
any |
let/var | scene.isScene === true ? scene.overrideMaterial : null |
✗ |
transmissionRenderTarget |
any |
let/var | currentRenderState.state.transmissionRenderTarget[ camera.id ] |
✗ |
activeViewport |
any |
let/var | camera.viewport \|\| _currentViewport |
✗ |
currentToneMapping |
any |
let/var | _this.toneMapping |
✗ |
currentCameraViewport |
any |
let/var | camera.viewport |
✗ |
renderTargetNeedsUpdate |
boolean |
let/var | false |
✗ |
renderItem |
any |
let/var | transmissiveObjects[ i ] |
✗ |
object |
any |
let/var | renderItem.object |
✗ |
geometry |
any |
let/var | renderItem.geometry |
✗ |
material |
any |
let/var | renderItem.material |
✗ |
group |
any |
let/var | renderItem.group |
✗ |
currentSide |
any |
let/var | material.side |
✗ |
overrideMaterial |
any |
let/var | scene.isScene === true ? scene.overrideMaterial : null |
✗ |
renderItem |
any |
let/var | renderList[ i ] |
✗ |
object |
any |
let/var | renderItem.object |
✗ |
geometry |
any |
let/var | renderItem.geometry |
✗ |
group |
any |
let/var | renderItem.group |
✗ |
material |
any |
let/var | renderItem.material |
✗ |
lights |
any |
let/var | currentRenderState.state.lights |
✗ |
shadowsArray |
any |
let/var | currentRenderState.state.shadowsArray |
✗ |
lightsStateVersion |
any |
let/var | lights.state.version |
✗ |
programs |
any |
let/var | materialProperties.programs |
✗ |
uniforms |
any |
let/var | materialProperties.uniforms |
✗ |
fog |
any |
let/var | scene.fog |
✗ |
environment |
any |
let/var | material.isMeshStandardMaterial ? scene.environment : null |
✗ |
colorSpace |
any |
let/var | ( _currentRenderTarget === null ) ? _this.outputColorSpace : ( _currentRender... |
✗ |
vertexAlphas |
boolean |
let/var | material.vertexColors === true && !! geometry.attributes.color && geometry.at... |
✗ |
vertexTangents |
boolean |
let/var | !! geometry.attributes.tangent && ( !! material.normalMap \|\| material.aniso... |
✗ |
morphTargets |
boolean |
let/var | !! geometry.morphAttributes.position |
✗ |
morphNormals |
boolean |
let/var | !! geometry.morphAttributes.normal |
✗ |
morphColors |
boolean |
let/var | !! geometry.morphAttributes.color |
✗ |
toneMapping |
number |
let/var | NoToneMapping |
✗ |
morphAttribute |
any |
let/var | geometry.morphAttributes.position \|\| geometry.morphAttributes.normal \|\| g... |
✗ |
morphTargetsCount |
any |
let/var | ( morphAttribute !== undefined ) ? morphAttribute.length : 0 |
✗ |
lights |
any |
let/var | currentRenderState.state.lights |
✗ |
useCache |
boolean |
let/var | camera === _currentCamera && material.id === _currentMaterialId |
✗ |
needsProgramChange |
boolean |
let/var | false |
✗ |
program |
any |
let/var | materialProperties.currentProgram |
✗ |
refreshProgram |
boolean |
let/var | false |
✗ |
refreshMaterial |
boolean |
let/var | false |
✗ |
refreshLights |
boolean |
let/var | false |
✗ |
m_uniforms |
any |
let/var | materialProperties.uniforms |
✗ |
uCamPos |
any |
let/var | p_uniforms.map.cameraPosition |
✗ |
skeleton |
any |
let/var | object.skeleton |
✗ |
morphAttributes |
any |
let/var | geometry.morphAttributes |
✗ |
groups |
any |
let/var | material.uniformsGroups |
✗ |
group |
any |
let/var | groups[ i ] |
✗ |
useDefaultFramebuffer |
boolean |
let/var | true |
✗ |
framebuffer |
any |
let/var | null |
✗ |
isCube |
boolean |
let/var | false |
✗ |
isRenderTarget3D |
boolean |
let/var | false |
✗ |
depthTexture |
DepthTexture |
let/var | renderTarget.depthTexture |
✗ |
texture |
Texture |
let/var | renderTarget.texture |
✗ |
__webglFramebuffer |
any |
let/var | properties.get( renderTarget ).__webglFramebuffer |
✗ |
layer |
number |
let/var | activeCubeFace |
✗ |
framebuffer |
any |
let/var | properties.get( renderTarget ).__webglFramebuffer |
✗ |
texture |
Texture |
let/var | renderTarget.textures[ textureIndex ] |
✗ |
textureFormat |
number |
let/var | texture.format |
✗ |
textureType |
number |
let/var | texture.type |
✗ |
framebuffer |
any |
let/var | ( _currentRenderTarget !== null ) ? properties.get( _currentRenderTarget ).__... |
✗ |
framebuffer |
any |
let/var | properties.get( renderTarget ).__webglFramebuffer |
✗ |
texture |
Texture |
let/var | renderTarget.textures[ textureIndex ] |
✗ |
textureFormat |
number |
let/var | texture.format |
✗ |
textureType |
number |
let/var | texture.type |
✗ |
currFramebuffer |
any |
let/var | _currentRenderTarget !== null ? properties.get( _currentRenderTarget ).__webg... |
✗ |
x |
any |
let/var | position !== null ? position.x : 0 |
✗ |
y |
any |
let/var | position !== null ? position.y : 0 |
✗ |
width |
any |
let/var | *not shown* |
✗ |
height |
any |
let/var | *not shown* |
✗ |
depth |
any |
let/var | *not shown* |
✗ |
minX |
any |
let/var | *not shown* |
✗ |
minY |
any |
let/var | *not shown* |
✗ |
minZ |
any |
let/var | *not shown* |
✗ |
dstX |
any |
let/var | *not shown* |
✗ |
dstY |
any |
let/var | *not shown* |
✗ |
dstZ |
any |
let/var | *not shown* |
✗ |
image |
any |
let/var | srcTexture.isCompressedTexture ? srcTexture.mipmaps[ dstLevel ] : srcTexture.... |
✗ |
glTarget |
any |
let/var | *not shown* |
✗ |
isSrc3D |
any |
let/var | srcTexture.isDataArrayTexture \|\| srcTexture.isData3DTexture |
✗ |
isDst3D |
any |
let/var | dstTexture.isDataArrayTexture \|\| dstTexture.isData3DTexture |
✗ |
Functions¶
getTargetPixelRatio(): number
¶
Returns: number
getContext(contextName: any, contextAttributes: any): any
¶
Parameters:
contextName
any
contextAttributes
any
Returns: any
Calls:
canvas.getContext
Code
initGLContext(): void
¶
Returns: void
Calls:
extensions.init
state.buffers.depth.setReversed
Internal Comments:
/**
* Holds details about the capabilities of the current rendering context.
*
* @name WebGLRenderer#capabilities
* @type {WebGLRenderer~Capabilities}
*/ (x4)
/**
* Provides methods for retrieving and testing WebGL extensions.
*
* - `get(extensionName:string)`: Used to check whether a WebGL extension is supported
* and return the extension object if available.
* - `has(extensionName:string)`: returns `true` if the extension is supported.
*
* @name WebGLRenderer#extensions
* @type {Object}
*/ (x4)
/**
* Used to track properties of other objects like native WebGL objects.
*
* @name WebGLRenderer#properties
* @type {Object}
*/ (x4)
/**
* Manages the render lists of the renderer.
*
* @name WebGLRenderer#renderLists
* @type {Object}
*/ (x4)
/**
* Interface for managing shadows.
*
* @name WebGLRenderer#shadowMap
* @type {WebGLRenderer~ShadowMap}
*/ (x4)
/**
* Interface for managing the WebGL state.
*
* @name WebGLRenderer#state
* @type {Object}
*/ (x4)
/**
* Holds a series of statistical information about the GPU memory
* and the rendering process. Useful for debugging and monitoring.
*
* By default these data are reset at each render call but when having
* multiple render passes per frame (e.g. when using post processing) it can
* be preferred to reset with a custom pattern. First, set `autoReset` to
* `false`.
* ```js
* renderer.info.autoReset = false;
* ```
* Call `reset()` whenever you have finished to render a single frame.
* ```js
* renderer.info.reset();
* ```
*
* @name WebGLRenderer#info
* @type {WebGLRenderer~Info}
*/ (x4)
Code
function initGLContext() {
extensions = new WebGLExtensions( _gl );
extensions.init();
utils = new WebGLUtils( _gl, extensions );
capabilities = new WebGLCapabilities( _gl, extensions, parameters, utils );
state = new WebGLState( _gl, extensions );
if ( capabilities.reversedDepthBuffer && reversedDepthBuffer ) {
state.buffers.depth.setReversed( true );
}
info = new WebGLInfo( _gl );
properties = new WebGLProperties();
textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info );
cubemaps = new WebGLCubeMaps( _this );
cubeuvmaps = new WebGLCubeUVMaps( _this );
attributes = new WebGLAttributes( _gl );
bindingStates = new WebGLBindingStates( _gl, attributes );
geometries = new WebGLGeometries( _gl, attributes, info, bindingStates );
objects = new WebGLObjects( _gl, geometries, attributes, info );
morphtargets = new WebGLMorphtargets( _gl, capabilities, textures );
clipping = new WebGLClipping( properties );
programCache = new WebGLPrograms( _this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping );
materials = new WebGLMaterials( _this, properties );
renderLists = new WebGLRenderLists();
renderStates = new WebGLRenderStates( extensions );
background = new WebGLBackground( _this, cubemaps, cubeuvmaps, state, objects, _alpha, premultipliedAlpha );
shadowMap = new WebGLShadowMap( _this, objects, capabilities );
uniformsGroups = new WebGLUniformsGroups( _gl, info, capabilities, state );
bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info );
indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info );
info.programs = programCache.programs;
/**
* Holds details about the capabilities of the current rendering context.
*
* @name WebGLRenderer#capabilities
* @type {WebGLRenderer~Capabilities}
*/
_this.capabilities = capabilities;
/**
* Provides methods for retrieving and testing WebGL extensions.
*
* - `get(extensionName:string)`: Used to check whether a WebGL extension is supported
* and return the extension object if available.
* - `has(extensionName:string)`: returns `true` if the extension is supported.
*
* @name WebGLRenderer#extensions
* @type {Object}
*/
_this.extensions = extensions;
/**
* Used to track properties of other objects like native WebGL objects.
*
* @name WebGLRenderer#properties
* @type {Object}
*/
_this.properties = properties;
/**
* Manages the render lists of the renderer.
*
* @name WebGLRenderer#renderLists
* @type {Object}
*/
_this.renderLists = renderLists;
/**
* Interface for managing shadows.
*
* @name WebGLRenderer#shadowMap
* @type {WebGLRenderer~ShadowMap}
*/
_this.shadowMap = shadowMap;
/**
* Interface for managing the WebGL state.
*
* @name WebGLRenderer#state
* @type {Object}
*/
_this.state = state;
/**
* Holds a series of statistical information about the GPU memory
* and the rendering process. Useful for debugging and monitoring.
*
* By default these data are reset at each render call but when having
* multiple render passes per frame (e.g. when using post processing) it can
* be preferred to reset with a custom pattern. First, set `autoReset` to
* `false`.
* ```js
* renderer.info.autoReset = false;
* ```
* Call `reset()` whenever you have finished to render a single frame.
* ```js
* renderer.info.reset();
* ```
*
* @name WebGLRenderer#info
* @type {WebGLRenderer~Info}
*/
_this.info = info;
}
onContextLost(event: any): void
¶
Parameters:
event
any
Returns: void
Calls:
event.preventDefault
console.log
Code
onContextRestore(): void
¶
Returns: void
Calls:
console.log
initGLContext
Code
function onContextRestore( /* event */ ) {
console.log( 'THREE.WebGLRenderer: Context Restored.' );
_isContextLost = false;
const infoAutoReset = info.autoReset;
const shadowMapEnabled = shadowMap.enabled;
const shadowMapAutoUpdate = shadowMap.autoUpdate;
const shadowMapNeedsUpdate = shadowMap.needsUpdate;
const shadowMapType = shadowMap.type;
initGLContext();
info.autoReset = infoAutoReset;
shadowMap.enabled = shadowMapEnabled;
shadowMap.autoUpdate = shadowMapAutoUpdate;
shadowMap.needsUpdate = shadowMapNeedsUpdate;
shadowMap.type = shadowMapType;
}
onContextCreationError(event: any): void
¶
Parameters:
event
any
Returns: void
Calls:
console.error
Code
onMaterialDispose(event: any): void
¶
Parameters:
event
any
Returns: void
Calls:
material.removeEventListener
deallocateMaterial
Code
deallocateMaterial(material: any): void
¶
Parameters:
material
any
Returns: void
Calls:
releaseMaterialProgramReferences
properties.remove
Code
releaseMaterialProgramReferences(material: any): void
¶
Parameters:
material
any
Returns: void
Calls:
properties.get
programs.forEach
programCache.releaseProgram
programCache.releaseShaderCache
Code
function releaseMaterialProgramReferences( material ) {
const programs = properties.get( material ).programs;
if ( programs !== undefined ) {
programs.forEach( function ( program ) {
programCache.releaseProgram( program );
} );
if ( material.isShaderMaterial ) {
programCache.releaseShaderCache( material );
}
}
}
prepareMaterial(material: any, scene: any, object: any): void
¶
Parameters:
material
any
scene
any
object
any
Returns: void
Calls:
getProgram
Code
function prepareMaterial( material, scene, object ) {
if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) {
material.side = BackSide;
material.needsUpdate = true;
getProgram( material, scene, object );
material.side = FrontSide;
material.needsUpdate = true;
getProgram( material, scene, object );
material.side = DoubleSide;
} else {
getProgram( material, scene, object );
}
}
checkMaterialsReady(): void
¶
Returns: void
Calls:
materials.forEach
properties.get
program.isReady
materials.delete
resolve
setTimeout
Internal Comments:
// remove any programs that report they're ready to use from the list (x4)
// once the list of compiling materials is empty, call the callback
// if some materials are still not ready, wait a bit and check again (x3)
Code
function checkMaterialsReady() {
materials.forEach( function ( material ) {
const materialProperties = properties.get( material );
const program = materialProperties.currentProgram;
if ( program.isReady() ) {
// remove any programs that report they're ready to use from the list
materials.delete( material );
}
} );
// once the list of compiling materials is empty, call the callback
if ( materials.size === 0 ) {
resolve( scene );
return;
}
// if some materials are still not ready, wait a bit and check again
setTimeout( checkMaterialsReady, 10 );
}
onAnimationFrame(time: any): void
¶
Parameters:
time
any
Returns: void
Calls:
onAnimationFrameCallback
Code
onXRSessionStart(): void
¶
Returns: void
Calls:
animation.stop
onXRSessionEnd(): void
¶
Returns: void
Calls:
animation.start
projectObject(object: any, camera: any, groupOrder: any, sortObjects: any): void
¶
Parameters:
object
any
camera
any
groupOrder
any
sortObjects
any
Returns: void
Calls:
object.layers.test
object.update
currentRenderState.pushLight
currentRenderState.pushShadow
_frustum.intersectsSprite
_vector4.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4
objects.update
currentRenderList.push
_frustum.intersectsObject
object.computeBoundingSphere
_vector4.copy
geometry.computeBoundingSphere
_vector4 .applyMatrix4( object.matrixWorld ) .applyMatrix4
Array.isArray
projectObject
Code
function projectObject( object, camera, groupOrder, sortObjects ) {
if ( object.visible === false ) return;
const visible = object.layers.test( camera.layers );
if ( visible ) {
if ( object.isGroup ) {
groupOrder = object.renderOrder;
} else if ( object.isLOD ) {
if ( object.autoUpdate === true ) object.update( camera );
} else if ( object.isLight ) {
currentRenderState.pushLight( object );
if ( object.castShadow ) {
currentRenderState.pushShadow( object );
}
} else if ( object.isSprite ) {
if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {
if ( sortObjects ) {
_vector4.setFromMatrixPosition( object.matrixWorld )
.applyMatrix4( _projScreenMatrix );
}
const geometry = objects.update( object );
const material = object.material;
if ( material.visible ) {
currentRenderList.push( object, geometry, material, groupOrder, _vector4.z, null );
}
}
} else if ( object.isMesh || object.isLine || object.isPoints ) {
if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {
const geometry = objects.update( object );
const material = object.material;
if ( sortObjects ) {
if ( object.boundingSphere !== undefined ) {
if ( object.boundingSphere === null ) object.computeBoundingSphere();
_vector4.copy( object.boundingSphere.center );
} else {
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_vector4.copy( geometry.boundingSphere.center );
}
_vector4
.applyMatrix4( object.matrixWorld )
.applyMatrix4( _projScreenMatrix );
}
if ( Array.isArray( material ) ) {
const groups = geometry.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
if ( groupMaterial && groupMaterial.visible ) {
currentRenderList.push( object, geometry, groupMaterial, groupOrder, _vector4.z, group );
}
}
} else if ( material.visible ) {
currentRenderList.push( object, geometry, material, groupOrder, _vector4.z, null );
}
}
}
}
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
projectObject( children[ i ], camera, groupOrder, sortObjects );
}
}
renderScene(currentRenderList: any, scene: any, camera: any, viewport: any): void
¶
Parameters:
currentRenderList
any
scene
any
camera
any
viewport
any
Returns: void
Calls:
currentRenderState.setupLightsView
clipping.setGlobalState
state.viewport
_currentViewport.copy
renderObjects
state.buffers.depth.setTest
state.buffers.depth.setMask
state.buffers.color.setMask
state.setPolygonOffset
Internal Comments:
Code
function renderScene( currentRenderList, scene, camera, viewport ) {
const opaqueObjects = currentRenderList.opaque;
const transmissiveObjects = currentRenderList.transmissive;
const transparentObjects = currentRenderList.transparent;
currentRenderState.setupLightsView( camera );
if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, camera );
if ( viewport ) state.viewport( _currentViewport.copy( viewport ) );
if ( opaqueObjects.length > 0 ) renderObjects( opaqueObjects, scene, camera );
if ( transmissiveObjects.length > 0 ) renderObjects( transmissiveObjects, scene, camera );
if ( transparentObjects.length > 0 ) renderObjects( transparentObjects, scene, camera );
// Ensure depth buffer writing is enabled so it can be cleared on next render
state.buffers.depth.setTest( true );
state.buffers.depth.setMask( true );
state.buffers.color.setMask( true );
state.setPolygonOffset( false );
}
renderTransmissionPass(opaqueObjects: any, transmissiveObjects: any, scene: any, camera: any): void
¶
Parameters:
opaqueObjects
any
transmissiveObjects
any
scene
any
camera
any
Returns: void
Calls:
extensions.has
transmissionRenderTarget.setSize
_this.getRenderTarget
_this.getActiveCubeFace
_this.getActiveMipmapLevel
_this.setRenderTarget
_this.getClearColor
_this.getClearAlpha
_this.setClearColor
_this.clear
background.render
currentRenderState.setupLightsView
clipping.setGlobalState
renderObjects
textures.updateMultisampleRenderTarget
textures.updateRenderTargetMipmap
object.layers.test
renderObject
Internal Comments:
// (x2)
// Turn off the features which can affect the frag color for opaque objects pass. (x2)
// Otherwise they are applied twice in opaque objects pass and transmission objects pass. (x2)
// Remove viewport from camera to avoid nested render calls resetting viewport to it (e.g Reflector). (x2)
// Transmission render pass requires viewport to match the transmissionRenderTarget. (x2)
Code
function renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera ) {
const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;
if ( overrideMaterial !== null ) {
return;
}
if ( currentRenderState.state.transmissionRenderTarget[ camera.id ] === undefined ) {
currentRenderState.state.transmissionRenderTarget[ camera.id ] = new WebGLRenderTarget( 1, 1, {
generateMipmaps: true,
type: ( extensions.has( 'EXT_color_buffer_half_float' ) || extensions.has( 'EXT_color_buffer_float' ) ) ? HalfFloatType : UnsignedByteType,
minFilter: LinearMipmapLinearFilter,
samples: 4,
stencilBuffer: stencil,
resolveDepthBuffer: false,
resolveStencilBuffer: false,
colorSpace: ColorManagement.workingColorSpace,
} );
// debug
/*
const geometry = new PlaneGeometry();
const material = new MeshBasicMaterial( { map: _transmissionRenderTarget.texture } );
const mesh = new Mesh( geometry, material );
scene.add( mesh );
*/
}
const transmissionRenderTarget = currentRenderState.state.transmissionRenderTarget[ camera.id ];
const activeViewport = camera.viewport || _currentViewport;
transmissionRenderTarget.setSize( activeViewport.z * _this.transmissionResolutionScale, activeViewport.w * _this.transmissionResolutionScale );
//
const currentRenderTarget = _this.getRenderTarget();
const currentActiveCubeFace = _this.getActiveCubeFace();
const currentActiveMipmapLevel = _this.getActiveMipmapLevel();
_this.setRenderTarget( transmissionRenderTarget );
_this.getClearColor( _currentClearColor );
_currentClearAlpha = _this.getClearAlpha();
if ( _currentClearAlpha < 1 ) _this.setClearColor( 0xffffff, 0.5 );
_this.clear();
if ( _renderBackground ) background.render( scene );
// Turn off the features which can affect the frag color for opaque objects pass.
// Otherwise they are applied twice in opaque objects pass and transmission objects pass.
const currentToneMapping = _this.toneMapping;
_this.toneMapping = NoToneMapping;
// Remove viewport from camera to avoid nested render calls resetting viewport to it (e.g Reflector).
// Transmission render pass requires viewport to match the transmissionRenderTarget.
const currentCameraViewport = camera.viewport;
if ( camera.viewport !== undefined ) camera.viewport = undefined;
currentRenderState.setupLightsView( camera );
if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, camera );
renderObjects( opaqueObjects, scene, camera );
textures.updateMultisampleRenderTarget( transmissionRenderTarget );
textures.updateRenderTargetMipmap( transmissionRenderTarget );
if ( extensions.has( 'WEBGL_multisampled_render_to_texture' ) === false ) { // see #28131
let renderTargetNeedsUpdate = false;
for ( let i = 0, l = transmissiveObjects.length; i < l; i ++ ) {
const renderItem = transmissiveObjects[ i ];
const object = renderItem.object;
const geometry = renderItem.geometry;
const material = renderItem.material;
const group = renderItem.group;
if ( material.side === DoubleSide && object.layers.test( camera.layers ) ) {
const currentSide = material.side;
material.side = BackSide;
material.needsUpdate = true;
renderObject( object, scene, camera, geometry, material, group );
material.side = currentSide;
material.needsUpdate = true;
renderTargetNeedsUpdate = true;
}
}
if ( renderTargetNeedsUpdate === true ) {
textures.updateMultisampleRenderTarget( transmissionRenderTarget );
textures.updateRenderTargetMipmap( transmissionRenderTarget );
}
}
_this.setRenderTarget( currentRenderTarget, currentActiveCubeFace, currentActiveMipmapLevel );
_this.setClearColor( _currentClearColor, _currentClearAlpha );
if ( currentCameraViewport !== undefined ) camera.viewport = currentCameraViewport;
_this.toneMapping = currentToneMapping;
}
renderObjects(renderList: any, scene: any, camera: any): void
¶
Parameters:
renderList
any
scene
any
camera
any
Returns: void
Calls:
object.layers.test
renderObject
Code
function renderObjects( renderList, scene, camera ) {
const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;
for ( let i = 0, l = renderList.length; i < l; i ++ ) {
const renderItem = renderList[ i ];
const object = renderItem.object;
const geometry = renderItem.geometry;
const group = renderItem.group;
let material = renderItem.material;
if ( material.allowOverride === true && overrideMaterial !== null ) {
material = overrideMaterial;
}
if ( object.layers.test( camera.layers ) ) {
renderObject( object, scene, camera, geometry, material, group );
}
}
}
renderObject(object: any, scene: any, camera: any, geometry: any, material: any, group: any): void
¶
Parameters:
object
any
scene
any
camera
any
geometry
any
material
any
group
any
Returns: void
Calls:
object.onBeforeRender
object.modelViewMatrix.multiplyMatrices
object.normalMatrix.getNormalMatrix
material.onBeforeRender
_this.renderBufferDirect
object.onAfterRender
Code
function renderObject( object, scene, camera, geometry, material, group ) {
object.onBeforeRender( _this, scene, camera, geometry, material, group );
object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
object.normalMatrix.getNormalMatrix( object.modelViewMatrix );
material.onBeforeRender( _this, scene, camera, geometry, object, group );
if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) {
material.side = BackSide;
material.needsUpdate = true;
_this.renderBufferDirect( camera, scene, geometry, material, object, group );
material.side = FrontSide;
material.needsUpdate = true;
_this.renderBufferDirect( camera, scene, geometry, material, object, group );
material.side = DoubleSide;
} else {
_this.renderBufferDirect( camera, scene, geometry, material, object, group );
}
object.onAfterRender( _this, scene, camera, geometry, material, group );
}
getProgram(material: any, scene: any, object: any): any
¶
Parameters:
material
any
scene
any
object
any
Returns: any
Calls:
properties.get
programCache.getParameters
programCache.getProgramCacheKey
( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get
material.addEventListener
programs.get
updateCommonMaterialProperties
programCache.getUniforms
material.onBeforeCompile
programCache.acquireProgram
programs.set
materialNeedsLights
Internal Comments:
// always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change (x4)
// new material (x4)
// early out if program and light state is identical
// store the light setup it was created for (x4)
// wire up the material to this renderer's lighting state (x5)
Code
function getProgram( material, scene, object ) {
if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
const materialProperties = properties.get( material );
const lights = currentRenderState.state.lights;
const shadowsArray = currentRenderState.state.shadowsArray;
const lightsStateVersion = lights.state.version;
const parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, object );
const programCacheKey = programCache.getProgramCacheKey( parameters );
let programs = materialProperties.programs;
// always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change
materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
materialProperties.fog = scene.fog;
materialProperties.envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || materialProperties.environment );
materialProperties.envMapRotation = ( materialProperties.environment !== null && material.envMap === null ) ? scene.environmentRotation : material.envMapRotation;
if ( programs === undefined ) {
// new material
material.addEventListener( 'dispose', onMaterialDispose );
programs = new Map();
materialProperties.programs = programs;
}
let program = programs.get( programCacheKey );
if ( program !== undefined ) {
// early out if program and light state is identical
if ( materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion ) {
updateCommonMaterialProperties( material, parameters );
return program;
}
} else {
parameters.uniforms = programCache.getUniforms( material );
material.onBeforeCompile( parameters, _this );
program = programCache.acquireProgram( parameters, programCacheKey );
programs.set( programCacheKey, program );
materialProperties.uniforms = parameters.uniforms;
}
const uniforms = materialProperties.uniforms;
if ( ( ! material.isShaderMaterial && ! material.isRawShaderMaterial ) || material.clipping === true ) {
uniforms.clippingPlanes = clipping.uniform;
}
updateCommonMaterialProperties( material, parameters );
// store the light setup it was created for
materialProperties.needsLights = materialNeedsLights( material );
materialProperties.lightsStateVersion = lightsStateVersion;
if ( materialProperties.needsLights ) {
// wire up the material to this renderer's lighting state
uniforms.ambientLightColor.value = lights.state.ambient;
uniforms.lightProbe.value = lights.state.probe;
uniforms.directionalLights.value = lights.state.directional;
uniforms.directionalLightShadows.value = lights.state.directionalShadow;
uniforms.spotLights.value = lights.state.spot;
uniforms.spotLightShadows.value = lights.state.spotShadow;
uniforms.rectAreaLights.value = lights.state.rectArea;
uniforms.ltc_1.value = lights.state.rectAreaLTC1;
uniforms.ltc_2.value = lights.state.rectAreaLTC2;
uniforms.pointLights.value = lights.state.point;
uniforms.pointLightShadows.value = lights.state.pointShadow;
uniforms.hemisphereLights.value = lights.state.hemi;
uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
uniforms.spotShadowMap.value = lights.state.spotShadowMap;
uniforms.spotLightMatrix.value = lights.state.spotLightMatrix;
uniforms.spotLightMap.value = lights.state.spotLightMap;
uniforms.pointShadowMap.value = lights.state.pointShadowMap;
uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix;
// TODO (abelnation): add area lights shadow info to uniforms
}
materialProperties.currentProgram = program;
materialProperties.uniformsList = null;
return program;
}
getUniformList(materialProperties: any): any
¶
Parameters:
materialProperties
any
Returns: any
Calls:
materialProperties.currentProgram.getUniforms
WebGLUniforms.seqWithValue
Code
function getUniformList( materialProperties ) {
if ( materialProperties.uniformsList === null ) {
const progUniforms = materialProperties.currentProgram.getUniforms();
materialProperties.uniformsList = WebGLUniforms.seqWithValue( progUniforms.seq, materialProperties.uniforms );
}
return materialProperties.uniformsList;
}
updateCommonMaterialProperties(material: any, parameters: any): void
¶
Parameters:
material
any
parameters
any
Returns: void
Calls:
properties.get
Code
function updateCommonMaterialProperties( material, parameters ) {
const materialProperties = properties.get( material );
materialProperties.outputColorSpace = parameters.outputColorSpace;
materialProperties.batching = parameters.batching;
materialProperties.batchingColor = parameters.batchingColor;
materialProperties.instancing = parameters.instancing;
materialProperties.instancingColor = parameters.instancingColor;
materialProperties.instancingMorph = parameters.instancingMorph;
materialProperties.skinning = parameters.skinning;
materialProperties.morphTargets = parameters.morphTargets;
materialProperties.morphNormals = parameters.morphNormals;
materialProperties.morphColors = parameters.morphColors;
materialProperties.morphTargetsCount = parameters.morphTargetsCount;
materialProperties.numClippingPlanes = parameters.numClippingPlanes;
materialProperties.numIntersection = parameters.numClipIntersection;
materialProperties.vertexAlphas = parameters.vertexAlphas;
materialProperties.vertexTangents = parameters.vertexTangents;
materialProperties.toneMapping = parameters.toneMapping;
}
setProgram(camera: any, scene: any, geometry: any, material: any, object: any): any
¶
Parameters:
camera
any
scene
any
geometry
any
material
any
object
any
Returns: any
Calls:
textures.resetTextureUnits
( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get
properties.get
clipping.setState
getProgram
program.getUniforms
state.useProgram
state.buffers.depth.getReversed
camera.updateProjectionMatrix
p_uniforms.setValue
uCamPos.setValue
_vector3.setFromMatrixPosition
Math.log
p_uniforms.setOptional
skeleton.computeBoneTexture
morphtargets.update
markUniformsLightsNeedsUpdate
materials.refreshFogUniforms
materials.refreshMaterialUniforms
WebGLUniforms.upload
getUniformList
uniformsGroups.update
uniformsGroups.bind
Internal Comments:
// we might want to call this function with some ClippingGroup (x4)
// object instead of the material, once it becomes feasible (x4)
// (#8465, #8379) (x4)
// (x7)
// common camera uniforms (x2)
// consider moving isOrthographic to UniformLib and WebGLMaterials, see https://github.com/mrdoob/three.js/pull/26467#issuecomment-1645185067
// lighting uniforms depend on the camera so enforce an update (x3)
// now, in case this material supports lights - or later, when (x3)
// the next material that does gets activated: (x3)
// skinning and morph target uniforms must be set even if material didn't change
// auto-setting of texture unit for bone and morph texture must go before other textures
// otherwise textures used for skinning and morphing can take over texture units reserved for other material textures
// https://github.com/mrdoob/three.js/pull/24467#issuecomment-1209031512
// the current material requires lighting info (x3)
// note: all lighting uniforms are always set correctly (x3)
// they simply reference the renderer's state for their (x3)
// values (x3)
// use the current material's .needsUpdate flags to set (x3)
// the GL state when required (x3)
// refresh uniforms common to several materials
// common matrices (x4)
// UBOs
Code
function setProgram( camera, scene, geometry, material, object ) {
if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
textures.resetTextureUnits();
const fog = scene.fog;
const environment = material.isMeshStandardMaterial ? scene.environment : null;
const colorSpace = ( _currentRenderTarget === null ) ? _this.outputColorSpace : ( _currentRenderTarget.isXRRenderTarget === true ? _currentRenderTarget.texture.colorSpace : LinearSRGBColorSpace );
const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment );
const vertexAlphas = material.vertexColors === true && !! geometry.attributes.color && geometry.attributes.color.itemSize === 4;
const vertexTangents = !! geometry.attributes.tangent && ( !! material.normalMap || material.anisotropy > 0 );
const morphTargets = !! geometry.morphAttributes.position;
const morphNormals = !! geometry.morphAttributes.normal;
const morphColors = !! geometry.morphAttributes.color;
let toneMapping = NoToneMapping;
if ( material.toneMapped ) {
if ( _currentRenderTarget === null || _currentRenderTarget.isXRRenderTarget === true ) {
toneMapping = _this.toneMapping;
}
}
const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color;
const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0;
const materialProperties = properties.get( material );
const lights = currentRenderState.state.lights;
if ( _clippingEnabled === true ) {
if ( _localClippingEnabled === true || camera !== _currentCamera ) {
const useCache =
camera === _currentCamera &&
material.id === _currentMaterialId;
// we might want to call this function with some ClippingGroup
// object instead of the material, once it becomes feasible
// (#8465, #8379)
clipping.setState( material, camera, useCache );
}
}
//
let needsProgramChange = false;
if ( material.version === materialProperties.__version ) {
if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) {
needsProgramChange = true;
} else if ( materialProperties.outputColorSpace !== colorSpace ) {
needsProgramChange = true;
} else if ( object.isBatchedMesh && materialProperties.batching === false ) {
needsProgramChange = true;
} else if ( ! object.isBatchedMesh && materialProperties.batching === true ) {
needsProgramChange = true;
} else if ( object.isBatchedMesh && materialProperties.batchingColor === true && object.colorTexture === null ) {
needsProgramChange = true;
} else if ( object.isBatchedMesh && materialProperties.batchingColor === false && object.colorTexture !== null ) {
needsProgramChange = true;
} else if ( object.isInstancedMesh && materialProperties.instancing === false ) {
needsProgramChange = true;
} else if ( ! object.isInstancedMesh && materialProperties.instancing === true ) {
needsProgramChange = true;
} else if ( object.isSkinnedMesh && materialProperties.skinning === false ) {
needsProgramChange = true;
} else if ( ! object.isSkinnedMesh && materialProperties.skinning === true ) {
needsProgramChange = true;
} else if ( object.isInstancedMesh && materialProperties.instancingColor === true && object.instanceColor === null ) {
needsProgramChange = true;
} else if ( object.isInstancedMesh && materialProperties.instancingColor === false && object.instanceColor !== null ) {
needsProgramChange = true;
} else if ( object.isInstancedMesh && materialProperties.instancingMorph === true && object.morphTexture === null ) {
needsProgramChange = true;
} else if ( object.isInstancedMesh && materialProperties.instancingMorph === false && object.morphTexture !== null ) {
needsProgramChange = true;
} else if ( materialProperties.envMap !== envMap ) {
needsProgramChange = true;
} else if ( material.fog === true && materialProperties.fog !== fog ) {
needsProgramChange = true;
} else if ( materialProperties.numClippingPlanes !== undefined &&
( materialProperties.numClippingPlanes !== clipping.numPlanes ||
materialProperties.numIntersection !== clipping.numIntersection ) ) {
needsProgramChange = true;
} else if ( materialProperties.vertexAlphas !== vertexAlphas ) {
needsProgramChange = true;
} else if ( materialProperties.vertexTangents !== vertexTangents ) {
needsProgramChange = true;
} else if ( materialProperties.morphTargets !== morphTargets ) {
needsProgramChange = true;
} else if ( materialProperties.morphNormals !== morphNormals ) {
needsProgramChange = true;
} else if ( materialProperties.morphColors !== morphColors ) {
needsProgramChange = true;
} else if ( materialProperties.toneMapping !== toneMapping ) {
needsProgramChange = true;
} else if ( materialProperties.morphTargetsCount !== morphTargetsCount ) {
needsProgramChange = true;
}
} else {
needsProgramChange = true;
materialProperties.__version = material.version;
}
//
let program = materialProperties.currentProgram;
if ( needsProgramChange === true ) {
program = getProgram( material, scene, object );
}
let refreshProgram = false;
let refreshMaterial = false;
let refreshLights = false;
const p_uniforms = program.getUniforms(),
m_uniforms = materialProperties.uniforms;
if ( state.useProgram( program.program ) ) {
refreshProgram = true;
refreshMaterial = true;
refreshLights = true;
}
if ( material.id !== _currentMaterialId ) {
_currentMaterialId = material.id;
refreshMaterial = true;
}
if ( refreshProgram || _currentCamera !== camera ) {
// common camera uniforms
const reversedDepthBuffer = state.buffers.depth.getReversed();
if ( reversedDepthBuffer && camera.reversedDepth !== true ) {
camera._reversedDepth = true;
camera.updateProjectionMatrix();
}
p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix );
p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );
const uCamPos = p_uniforms.map.cameraPosition;
if ( uCamPos !== undefined ) {
uCamPos.setValue( _gl, _vector3.setFromMatrixPosition( camera.matrixWorld ) );
}
if ( capabilities.logarithmicDepthBuffer ) {
p_uniforms.setValue( _gl, 'logDepthBufFC',
2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );
}
// consider moving isOrthographic to UniformLib and WebGLMaterials, see https://github.com/mrdoob/three.js/pull/26467#issuecomment-1645185067
if ( material.isMeshPhongMaterial ||
material.isMeshToonMaterial ||
material.isMeshLambertMaterial ||
material.isMeshBasicMaterial ||
material.isMeshStandardMaterial ||
material.isShaderMaterial ) {
p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true );
}
if ( _currentCamera !== camera ) {
_currentCamera = camera;
// lighting uniforms depend on the camera so enforce an update
// now, in case this material supports lights - or later, when
// the next material that does gets activated:
refreshMaterial = true; // set to true on material change
refreshLights = true; // remains set until update done
}
}
// skinning and morph target uniforms must be set even if material didn't change
// auto-setting of texture unit for bone and morph texture must go before other textures
// otherwise textures used for skinning and morphing can take over texture units reserved for other material textures
if ( object.isSkinnedMesh ) {
p_uniforms.setOptional( _gl, object, 'bindMatrix' );
p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );
const skeleton = object.skeleton;
if ( skeleton ) {
if ( skeleton.boneTexture === null ) skeleton.computeBoneTexture();
p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures );
}
}
if ( object.isBatchedMesh ) {
p_uniforms.setOptional( _gl, object, 'batchingTexture' );
p_uniforms.setValue( _gl, 'batchingTexture', object._matricesTexture, textures );
p_uniforms.setOptional( _gl, object, 'batchingIdTexture' );
p_uniforms.setValue( _gl, 'batchingIdTexture', object._indirectTexture, textures );
p_uniforms.setOptional( _gl, object, 'batchingColorTexture' );
if ( object._colorsTexture !== null ) {
p_uniforms.setValue( _gl, 'batchingColorTexture', object._colorsTexture, textures );
}
}
const morphAttributes = geometry.morphAttributes;
if ( morphAttributes.position !== undefined || morphAttributes.normal !== undefined || ( morphAttributes.color !== undefined ) ) {
morphtargets.update( object, geometry, program );
}
if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) {
materialProperties.receiveShadow = object.receiveShadow;
p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow );
}
// https://github.com/mrdoob/three.js/pull/24467#issuecomment-1209031512
if ( material.isMeshGouraudMaterial && material.envMap !== null ) {
m_uniforms.envMap.value = envMap;
m_uniforms.flipEnvMap.value = ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) ? - 1 : 1;
}
if ( material.isMeshStandardMaterial && material.envMap === null && scene.environment !== null ) {
m_uniforms.envMapIntensity.value = scene.environmentIntensity;
}
if ( refreshMaterial ) {
p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure );
if ( materialProperties.needsLights ) {
// the current material requires lighting info
// note: all lighting uniforms are always set correctly
// they simply reference the renderer's state for their
// values
//
// use the current material's .needsUpdate flags to set
// the GL state when required
markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );
}
// refresh uniforms common to several materials
if ( fog && material.fog === true ) {
materials.refreshFogUniforms( m_uniforms, fog );
}
materials.refreshMaterialUniforms( m_uniforms, material, _pixelRatio, _height, currentRenderState.state.transmissionRenderTarget[ camera.id ] );
WebGLUniforms.upload( _gl, getUniformList( materialProperties ), m_uniforms, textures );
}
if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) {
WebGLUniforms.upload( _gl, getUniformList( materialProperties ), m_uniforms, textures );
material.uniformsNeedUpdate = false;
}
if ( material.isSpriteMaterial ) {
p_uniforms.setValue( _gl, 'center', object.center );
}
// common matrices
p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix );
p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix );
p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );
// UBOs
if ( material.isShaderMaterial || material.isRawShaderMaterial ) {
const groups = material.uniformsGroups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
uniformsGroups.update( group, program );
uniformsGroups.bind( group, program );
}
}
return program;
}
markUniformsLightsNeedsUpdate(uniforms: any, value: any): void
¶
Parameters:
uniforms
any
value
any
Returns: void
Code
function markUniformsLightsNeedsUpdate( uniforms, value ) {
uniforms.ambientLightColor.needsUpdate = value;
uniforms.lightProbe.needsUpdate = value;
uniforms.directionalLights.needsUpdate = value;
uniforms.directionalLightShadows.needsUpdate = value;
uniforms.pointLights.needsUpdate = value;
uniforms.pointLightShadows.needsUpdate = value;
uniforms.spotLights.needsUpdate = value;
uniforms.spotLightShadows.needsUpdate = value;
uniforms.rectAreaLights.needsUpdate = value;
uniforms.hemisphereLights.needsUpdate = value;
}
materialNeedsLights(material: any): any
¶
Parameters:
material
any
Returns: any
Code
Classes¶
WebGLRenderer
¶
Class Code
class WebGLRenderer {
/**
* Constructs a new WebGL renderer.
*
* @param {WebGLRenderer~Options} [parameters] - The configuration parameter.
*/
constructor( parameters = {} ) {
const {
canvas = createCanvasElement(),
context = null,
depth = true,
stencil = false,
alpha = false,
antialias = false,
premultipliedAlpha = true,
preserveDrawingBuffer = false,
powerPreference = 'default',
failIfMajorPerformanceCaveat = false,
reversedDepthBuffer = false,
} = parameters;
/**
* This flag can be used for type testing.
*
* @type {boolean}
* @readonly
* @default true
*/
this.isWebGLRenderer = true;
let _alpha;
if ( context !== null ) {
if ( typeof WebGLRenderingContext !== 'undefined' && context instanceof WebGLRenderingContext ) {
throw new Error( 'THREE.WebGLRenderer: WebGL 1 is not supported since r163.' );
}
_alpha = context.getContextAttributes().alpha;
} else {
_alpha = alpha;
}
const uintClearColor = new Uint32Array( 4 );
const intClearColor = new Int32Array( 4 );
let currentRenderList = null;
let currentRenderState = null;
// render() can be called from within a callback triggered by another render.
// We track this so that the nested render call gets its list and state isolated from the parent render call.
const renderListStack = [];
const renderStateStack = [];
// public properties
/**
* A canvas where the renderer draws its output.This is automatically created by the renderer
* in the constructor (if not provided already); you just need to add it to your page like so:
* ```js
* document.body.appendChild( renderer.domElement );
* ```
*
* @type {DOMElement}
*/
this.domElement = canvas;
/**
* A object with debug configuration settings.
*
* - `checkShaderErrors`: If it is `true`, defines whether material shader programs are
* checked for errors during compilation and linkage process. It may be useful to disable
* this check in production for performance gain. It is strongly recommended to keep these
* checks enabled during development. If the shader does not compile and link - it will not
* work and associated material will not render.
* - `onShaderError(gl, program, glVertexShader,glFragmentShader)`: A callback function that
* can be used for custom error reporting. The callback receives the WebGL context, an instance
* of WebGLProgram as well two instances of WebGLShader representing the vertex and fragment shader.
* Assigning a custom function disables the default error reporting.
*
* @type {Object}
*/
this.debug = {
/**
* Enables error checking and reporting when shader programs are being compiled.
* @type {boolean}
*/
checkShaderErrors: true,
/**
* Callback for custom error reporting.
* @type {?Function}
*/
onShaderError: null
};
// clearing
/**
* Whether the renderer should automatically clear its output before rendering a frame or not.
*
* @type {boolean}
* @default true
*/
this.autoClear = true;
/**
* If {@link WebGLRenderer#autoClear} set to `true`, whether the renderer should clear
* the color buffer or not.
*
* @type {boolean}
* @default true
*/
this.autoClearColor = true;
/**
* If {@link WebGLRenderer#autoClear} set to `true`, whether the renderer should clear
* the depth buffer or not.
*
* @type {boolean}
* @default true
*/
this.autoClearDepth = true;
/**
* If {@link WebGLRenderer#autoClear} set to `true`, whether the renderer should clear
* the stencil buffer or not.
*
* @type {boolean}
* @default true
*/
this.autoClearStencil = true;
// scene graph
/**
* Whether the renderer should sort objects or not.
*
* Note: Sorting is used to attempt to properly render objects that have some
* degree of transparency. By definition, sorting objects may not work in all
* cases. Depending on the needs of application, it may be necessary to turn
* off sorting and use other methods to deal with transparency rendering e.g.
* manually determining each object's rendering order.
*
* @type {boolean}
* @default true
*/
this.sortObjects = true;
// user-defined clipping
/**
* User-defined clipping planes specified in world space. These planes apply globally.
* Points in space whose dot product with the plane is negative are cut away.
*
* @type {Array<Plane>}
*/
this.clippingPlanes = [];
/**
* Whether the renderer respects object-level clipping planes or not.
*
* @type {boolean}
* @default false
*/
this.localClippingEnabled = false;
// tone mapping
/**
* The tone mapping technique of the renderer.
*
* @type {(NoToneMapping|LinearToneMapping|ReinhardToneMapping|CineonToneMapping|ACESFilmicToneMapping|CustomToneMapping|AgXToneMapping|NeutralToneMapping)}
* @default NoToneMapping
*/
this.toneMapping = NoToneMapping;
/**
* Exposure level of tone mapping.
*
* @type {number}
* @default 1
*/
this.toneMappingExposure = 1.0;
// transmission
/**
* The normalized resolution scale for the transmission render target, measured in percentage
* of viewport dimensions. Lowering this value can result in significant performance improvements
* when using {@link MeshPhysicalMaterial#transmission}.
*
* @type {number}
* @default 1
*/
this.transmissionResolutionScale = 1.0;
// internal properties
const _this = this;
let _isContextLost = false;
// internal state cache
this._outputColorSpace = SRGBColorSpace;
let _currentActiveCubeFace = 0;
let _currentActiveMipmapLevel = 0;
let _currentRenderTarget = null;
let _currentMaterialId = - 1;
let _currentCamera = null;
const _currentViewport = new Vector4();
const _currentScissor = new Vector4();
let _currentScissorTest = null;
const _currentClearColor = new Color( 0x000000 );
let _currentClearAlpha = 0;
//
let _width = canvas.width;
let _height = canvas.height;
let _pixelRatio = 1;
let _opaqueSort = null;
let _transparentSort = null;
const _viewport = new Vector4( 0, 0, _width, _height );
const _scissor = new Vector4( 0, 0, _width, _height );
let _scissorTest = false;
// frustum
const _frustum = new Frustum();
// clipping
let _clippingEnabled = false;
let _localClippingEnabled = false;
// camera matrices cache
const _projScreenMatrix = new Matrix4();
const _vector3 = new Vector3();
const _vector4 = new Vector4();
const _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true };
let _renderBackground = false;
function getTargetPixelRatio() {
return _currentRenderTarget === null ? _pixelRatio : 1;
}
// initialize
let _gl = context;
function getContext( contextName, contextAttributes ) {
return canvas.getContext( contextName, contextAttributes );
}
try {
const contextAttributes = {
alpha: true,
depth,
stencil,
antialias,
premultipliedAlpha,
preserveDrawingBuffer,
powerPreference,
failIfMajorPerformanceCaveat,
};
// OffscreenCanvas does not have setAttribute, see #22811
if ( 'setAttribute' in canvas ) canvas.setAttribute( 'data-engine', `three.js r${REVISION}` );
// event listeners must be registered before WebGL context is created, see #12753
canvas.addEventListener( 'webglcontextlost', onContextLost, false );
canvas.addEventListener( 'webglcontextrestored', onContextRestore, false );
canvas.addEventListener( 'webglcontextcreationerror', onContextCreationError, false );
if ( _gl === null ) {
const contextName = 'webgl2';
_gl = getContext( contextName, contextAttributes );
if ( _gl === null ) {
if ( getContext( contextName ) ) {
throw new Error( 'Error creating WebGL context with your selected attributes.' );
} else {
throw new Error( 'Error creating WebGL context.' );
}
}
}
} catch ( error ) {
console.error( 'THREE.WebGLRenderer: ' + error.message );
throw error;
}
let extensions, capabilities, state, info;
let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects;
let programCache, materials, renderLists, renderStates, clipping, shadowMap;
let background, morphtargets, bufferRenderer, indexedBufferRenderer;
let utils, bindingStates, uniformsGroups;
function initGLContext() {
extensions = new WebGLExtensions( _gl );
extensions.init();
utils = new WebGLUtils( _gl, extensions );
capabilities = new WebGLCapabilities( _gl, extensions, parameters, utils );
state = new WebGLState( _gl, extensions );
if ( capabilities.reversedDepthBuffer && reversedDepthBuffer ) {
state.buffers.depth.setReversed( true );
}
info = new WebGLInfo( _gl );
properties = new WebGLProperties();
textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info );
cubemaps = new WebGLCubeMaps( _this );
cubeuvmaps = new WebGLCubeUVMaps( _this );
attributes = new WebGLAttributes( _gl );
bindingStates = new WebGLBindingStates( _gl, attributes );
geometries = new WebGLGeometries( _gl, attributes, info, bindingStates );
objects = new WebGLObjects( _gl, geometries, attributes, info );
morphtargets = new WebGLMorphtargets( _gl, capabilities, textures );
clipping = new WebGLClipping( properties );
programCache = new WebGLPrograms( _this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping );
materials = new WebGLMaterials( _this, properties );
renderLists = new WebGLRenderLists();
renderStates = new WebGLRenderStates( extensions );
background = new WebGLBackground( _this, cubemaps, cubeuvmaps, state, objects, _alpha, premultipliedAlpha );
shadowMap = new WebGLShadowMap( _this, objects, capabilities );
uniformsGroups = new WebGLUniformsGroups( _gl, info, capabilities, state );
bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info );
indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info );
info.programs = programCache.programs;
/**
* Holds details about the capabilities of the current rendering context.
*
* @name WebGLRenderer#capabilities
* @type {WebGLRenderer~Capabilities}
*/
_this.capabilities = capabilities;
/**
* Provides methods for retrieving and testing WebGL extensions.
*
* - `get(extensionName:string)`: Used to check whether a WebGL extension is supported
* and return the extension object if available.
* - `has(extensionName:string)`: returns `true` if the extension is supported.
*
* @name WebGLRenderer#extensions
* @type {Object}
*/
_this.extensions = extensions;
/**
* Used to track properties of other objects like native WebGL objects.
*
* @name WebGLRenderer#properties
* @type {Object}
*/
_this.properties = properties;
/**
* Manages the render lists of the renderer.
*
* @name WebGLRenderer#renderLists
* @type {Object}
*/
_this.renderLists = renderLists;
/**
* Interface for managing shadows.
*
* @name WebGLRenderer#shadowMap
* @type {WebGLRenderer~ShadowMap}
*/
_this.shadowMap = shadowMap;
/**
* Interface for managing the WebGL state.
*
* @name WebGLRenderer#state
* @type {Object}
*/
_this.state = state;
/**
* Holds a series of statistical information about the GPU memory
* and the rendering process. Useful for debugging and monitoring.
*
* By default these data are reset at each render call but when having
* multiple render passes per frame (e.g. when using post processing) it can
* be preferred to reset with a custom pattern. First, set `autoReset` to
* `false`.
* ```js
* renderer.info.autoReset = false;
* ```
* Call `reset()` whenever you have finished to render a single frame.
* ```js
* renderer.info.reset();
* ```
*
* @name WebGLRenderer#info
* @type {WebGLRenderer~Info}
*/
_this.info = info;
}
initGLContext();
// xr
const xr = new WebXRManager( _this, _gl );
/**
* A reference to the XR manager.
*
* @type {WebXRManager}
*/
this.xr = xr;
/**
* Returns the rendering context.
*
* @return {WebGL2RenderingContext} The rendering context.
*/
this.getContext = function () {
return _gl;
};
/**
* Returns the rendering context attributes.
*
* @return {WebGLContextAttributes} The rendering context attributes.
*/
this.getContextAttributes = function () {
return _gl.getContextAttributes();
};
/**
* Simulates a loss of the WebGL context. This requires support for the `WEBGL_lose_context` extension.
*/
this.forceContextLoss = function () {
const extension = extensions.get( 'WEBGL_lose_context' );
if ( extension ) extension.loseContext();
};
/**
* Simulates a restore of the WebGL context. This requires support for the `WEBGL_lose_context` extension.
*/
this.forceContextRestore = function () {
const extension = extensions.get( 'WEBGL_lose_context' );
if ( extension ) extension.restoreContext();
};
/**
* Returns the pixel ratio.
*
* @return {number} The pixel ratio.
*/
this.getPixelRatio = function () {
return _pixelRatio;
};
/**
* Sets the given pixel ratio and resizes the canvas if necessary.
*
* @param {number} value - The pixel ratio.
*/
this.setPixelRatio = function ( value ) {
if ( value === undefined ) return;
_pixelRatio = value;
this.setSize( _width, _height, false );
};
/**
* Returns the renderer's size in logical pixels. This method does not honor the pixel ratio.
*
* @param {Vector2} target - The method writes the result in this target object.
* @return {Vector2} The renderer's size in logical pixels.
*/
this.getSize = function ( target ) {
return target.set( _width, _height );
};
/**
* Resizes the output canvas to (width, height) with device pixel ratio taken
* into account, and also sets the viewport to fit that size, starting in (0,
* 0). Setting `updateStyle` to false prevents any style changes to the output canvas.
*
* @param {number} width - The width in logical pixels.
* @param {number} height - The height in logical pixels.
* @param {boolean} [updateStyle=true] - Whether to update the `style` attribute of the canvas or not.
*/
this.setSize = function ( width, height, updateStyle = true ) {
if ( xr.isPresenting ) {
console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' );
return;
}
_width = width;
_height = height;
canvas.width = Math.floor( width * _pixelRatio );
canvas.height = Math.floor( height * _pixelRatio );
if ( updateStyle === true ) {
canvas.style.width = width + 'px';
canvas.style.height = height + 'px';
}
this.setViewport( 0, 0, width, height );
};
/**
* Returns the drawing buffer size in physical pixels. This method honors the pixel ratio.
*
* @param {Vector2} target - The method writes the result in this target object.
* @return {Vector2} The drawing buffer size.
*/
this.getDrawingBufferSize = function ( target ) {
return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor();
};
/**
* This method allows to define the drawing buffer size by specifying
* width, height and pixel ratio all at once. The size of the drawing
* buffer is computed with this formula:
* ```js
* size.x = width * pixelRatio;
* size.y = height * pixelRatio;
* ```
*
* @param {number} width - The width in logical pixels.
* @param {number} height - The height in logical pixels.
* @param {number} pixelRatio - The pixel ratio.
*/
this.setDrawingBufferSize = function ( width, height, pixelRatio ) {
_width = width;
_height = height;
_pixelRatio = pixelRatio;
canvas.width = Math.floor( width * pixelRatio );
canvas.height = Math.floor( height * pixelRatio );
this.setViewport( 0, 0, width, height );
};
/**
* Returns the current viewport definition.
*
* @param {Vector2} target - The method writes the result in this target object.
* @return {Vector2} The current viewport definition.
*/
this.getCurrentViewport = function ( target ) {
return target.copy( _currentViewport );
};
/**
* Returns the viewport definition.
*
* @param {Vector4} target - The method writes the result in this target object.
* @return {Vector4} The viewport definition.
*/
this.getViewport = function ( target ) {
return target.copy( _viewport );
};
/**
* Sets the viewport to render from `(x, y)` to `(x + width, y + height)`.
*
* @param {number | Vector4} x - The horizontal coordinate for the lower left corner of the viewport origin in logical pixel unit.
* Or alternatively a four-component vector specifying all the parameters of the viewport.
* @param {number} y - The vertical coordinate for the lower left corner of the viewport origin in logical pixel unit.
* @param {number} width - The width of the viewport in logical pixel unit.
* @param {number} height - The height of the viewport in logical pixel unit.
*/
this.setViewport = function ( x, y, width, height ) {
if ( x.isVector4 ) {
_viewport.set( x.x, x.y, x.z, x.w );
} else {
_viewport.set( x, y, width, height );
}
state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).round() );
};
/**
* Returns the scissor region.
*
* @param {Vector4} target - The method writes the result in this target object.
* @return {Vector4} The scissor region.
*/
this.getScissor = function ( target ) {
return target.copy( _scissor );
};
/**
* Sets the scissor region to render from `(x, y)` to `(x + width, y + height)`.
*
* @param {number | Vector4} x - The horizontal coordinate for the lower left corner of the scissor region origin in logical pixel unit.
* Or alternatively a four-component vector specifying all the parameters of the scissor region.
* @param {number} y - The vertical coordinate for the lower left corner of the scissor region origin in logical pixel unit.
* @param {number} width - The width of the scissor region in logical pixel unit.
* @param {number} height - The height of the scissor region in logical pixel unit.
*/
this.setScissor = function ( x, y, width, height ) {
if ( x.isVector4 ) {
_scissor.set( x.x, x.y, x.z, x.w );
} else {
_scissor.set( x, y, width, height );
}
state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).round() );
};
/**
* Returns `true` if the scissor test is enabled.
*
* @return {boolean} Whether the scissor test is enabled or not.
*/
this.getScissorTest = function () {
return _scissorTest;
};
/**
* Enable or disable the scissor test. When this is enabled, only the pixels
* within the defined scissor area will be affected by further renderer
* actions.
*
* @param {boolean} boolean - Whether the scissor test is enabled or not.
*/
this.setScissorTest = function ( boolean ) {
state.setScissorTest( _scissorTest = boolean );
};
/**
* Sets a custom opaque sort function for the render lists. Pass `null`
* to use the default `painterSortStable` function.
*
* @param {?Function} method - The opaque sort function.
*/
this.setOpaqueSort = function ( method ) {
_opaqueSort = method;
};
/**
* Sets a custom transparent sort function for the render lists. Pass `null`
* to use the default `reversePainterSortStable` function.
*
* @param {?Function} method - The opaque sort function.
*/
this.setTransparentSort = function ( method ) {
_transparentSort = method;
};
// Clearing
/**
* Returns the clear color.
*
* @param {Color} target - The method writes the result in this target object.
* @return {Color} The clear color.
*/
this.getClearColor = function ( target ) {
return target.copy( background.getClearColor() );
};
/**
* Sets the clear color and alpha.
*
* @param {Color} color - The clear color.
* @param {number} [alpha=1] - The clear alpha.
*/
this.setClearColor = function () {
background.setClearColor( ...arguments );
};
/**
* Returns the clear alpha. Ranges within `[0,1]`.
*
* @return {number} The clear alpha.
*/
this.getClearAlpha = function () {
return background.getClearAlpha();
};
/**
* Sets the clear alpha.
*
* @param {number} alpha - The clear alpha.
*/
this.setClearAlpha = function () {
background.setClearAlpha( ...arguments );
};
/**
* Tells the renderer to clear its color, depth or stencil drawing buffer(s).
* This method initializes the buffers to the current clear color values.
*
* @param {boolean} [color=true] - Whether the color buffer should be cleared or not.
* @param {boolean} [depth=true] - Whether the depth buffer should be cleared or not.
* @param {boolean} [stencil=true] - Whether the stencil buffer should be cleared or not.
*/
this.clear = function ( color = true, depth = true, stencil = true ) {
let bits = 0;
if ( color ) {
// check if we're trying to clear an integer target
let isIntegerFormat = false;
if ( _currentRenderTarget !== null ) {
const targetFormat = _currentRenderTarget.texture.format;
isIntegerFormat = targetFormat === RGBAIntegerFormat ||
targetFormat === RGIntegerFormat ||
targetFormat === RedIntegerFormat;
}
// use the appropriate clear functions to clear the target if it's a signed
// or unsigned integer target
if ( isIntegerFormat ) {
const targetType = _currentRenderTarget.texture.type;
const isUnsignedType = targetType === UnsignedByteType ||
targetType === UnsignedIntType ||
targetType === UnsignedShortType ||
targetType === UnsignedInt248Type ||
targetType === UnsignedShort4444Type ||
targetType === UnsignedShort5551Type;
const clearColor = background.getClearColor();
const a = background.getClearAlpha();
const r = clearColor.r;
const g = clearColor.g;
const b = clearColor.b;
if ( isUnsignedType ) {
uintClearColor[ 0 ] = r;
uintClearColor[ 1 ] = g;
uintClearColor[ 2 ] = b;
uintClearColor[ 3 ] = a;
_gl.clearBufferuiv( _gl.COLOR, 0, uintClearColor );
} else {
intClearColor[ 0 ] = r;
intClearColor[ 1 ] = g;
intClearColor[ 2 ] = b;
intClearColor[ 3 ] = a;
_gl.clearBufferiv( _gl.COLOR, 0, intClearColor );
}
} else {
bits |= _gl.COLOR_BUFFER_BIT;
}
}
if ( depth ) {
bits |= _gl.DEPTH_BUFFER_BIT;
}
if ( stencil ) {
bits |= _gl.STENCIL_BUFFER_BIT;
this.state.buffers.stencil.setMask( 0xffffffff );
}
_gl.clear( bits );
};
/**
* Clears the color buffer. Equivalent to calling `renderer.clear( true, false, false )`.
*/
this.clearColor = function () {
this.clear( true, false, false );
};
/**
* Clears the depth buffer. Equivalent to calling `renderer.clear( false, true, false )`.
*/
this.clearDepth = function () {
this.clear( false, true, false );
};
/**
* Clears the stencil buffer. Equivalent to calling `renderer.clear( false, false, true )`.
*/
this.clearStencil = function () {
this.clear( false, false, true );
};
/**
* Frees the GPU-related resources allocated by this instance. Call this
* method whenever this instance is no longer used in your app.
*/
this.dispose = function () {
canvas.removeEventListener( 'webglcontextlost', onContextLost, false );
canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false );
canvas.removeEventListener( 'webglcontextcreationerror', onContextCreationError, false );
background.dispose();
renderLists.dispose();
renderStates.dispose();
properties.dispose();
cubemaps.dispose();
cubeuvmaps.dispose();
objects.dispose();
bindingStates.dispose();
uniformsGroups.dispose();
programCache.dispose();
xr.dispose();
xr.removeEventListener( 'sessionstart', onXRSessionStart );
xr.removeEventListener( 'sessionend', onXRSessionEnd );
animation.stop();
};
// Events
function onContextLost( event ) {
event.preventDefault();
console.log( 'THREE.WebGLRenderer: Context Lost.' );
_isContextLost = true;
}
function onContextRestore( /* event */ ) {
console.log( 'THREE.WebGLRenderer: Context Restored.' );
_isContextLost = false;
const infoAutoReset = info.autoReset;
const shadowMapEnabled = shadowMap.enabled;
const shadowMapAutoUpdate = shadowMap.autoUpdate;
const shadowMapNeedsUpdate = shadowMap.needsUpdate;
const shadowMapType = shadowMap.type;
initGLContext();
info.autoReset = infoAutoReset;
shadowMap.enabled = shadowMapEnabled;
shadowMap.autoUpdate = shadowMapAutoUpdate;
shadowMap.needsUpdate = shadowMapNeedsUpdate;
shadowMap.type = shadowMapType;
}
function onContextCreationError( event ) {
console.error( 'THREE.WebGLRenderer: A WebGL context could not be created. Reason: ', event.statusMessage );
}
function onMaterialDispose( event ) {
const material = event.target;
material.removeEventListener( 'dispose', onMaterialDispose );
deallocateMaterial( material );
}
// Buffer deallocation
function deallocateMaterial( material ) {
releaseMaterialProgramReferences( material );
properties.remove( material );
}
function releaseMaterialProgramReferences( material ) {
const programs = properties.get( material ).programs;
if ( programs !== undefined ) {
programs.forEach( function ( program ) {
programCache.releaseProgram( program );
} );
if ( material.isShaderMaterial ) {
programCache.releaseShaderCache( material );
}
}
}
// Buffer rendering
this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) {
if ( scene === null ) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null)
const frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 );
const program = setProgram( camera, scene, geometry, material, object );
state.setMaterial( material, frontFaceCW );
//
let index = geometry.index;
let rangeFactor = 1;
if ( material.wireframe === true ) {
index = geometries.getWireframeAttribute( geometry );
if ( index === undefined ) return;
rangeFactor = 2;
}
//
const drawRange = geometry.drawRange;
const position = geometry.attributes.position;
let drawStart = drawRange.start * rangeFactor;
let drawEnd = ( drawRange.start + drawRange.count ) * rangeFactor;
if ( group !== null ) {
drawStart = Math.max( drawStart, group.start * rangeFactor );
drawEnd = Math.min( drawEnd, ( group.start + group.count ) * rangeFactor );
}
if ( index !== null ) {
drawStart = Math.max( drawStart, 0 );
drawEnd = Math.min( drawEnd, index.count );
} else if ( position !== undefined && position !== null ) {
drawStart = Math.max( drawStart, 0 );
drawEnd = Math.min( drawEnd, position.count );
}
const drawCount = drawEnd - drawStart;
if ( drawCount < 0 || drawCount === Infinity ) return;
//
bindingStates.setup( object, material, program, geometry, index );
let attribute;
let renderer = bufferRenderer;
if ( index !== null ) {
attribute = attributes.get( index );
renderer = indexedBufferRenderer;
renderer.setIndex( attribute );
}
//
if ( object.isMesh ) {
if ( material.wireframe === true ) {
state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() );
renderer.setMode( _gl.LINES );
} else {
renderer.setMode( _gl.TRIANGLES );
}
} else if ( object.isLine ) {
let lineWidth = material.linewidth;
if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material
state.setLineWidth( lineWidth * getTargetPixelRatio() );
if ( object.isLineSegments ) {
renderer.setMode( _gl.LINES );
} else if ( object.isLineLoop ) {
renderer.setMode( _gl.LINE_LOOP );
} else {
renderer.setMode( _gl.LINE_STRIP );
}
} else if ( object.isPoints ) {
renderer.setMode( _gl.POINTS );
} else if ( object.isSprite ) {
renderer.setMode( _gl.TRIANGLES );
}
if ( object.isBatchedMesh ) {
if ( object._multiDrawInstances !== null ) {
// @deprecated, r174
warnOnce( 'THREE.WebGLRenderer: renderMultiDrawInstances has been deprecated and will be removed in r184. Append to renderMultiDraw arguments and use indirection.' );
renderer.renderMultiDrawInstances( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount, object._multiDrawInstances );
} else {
if ( ! extensions.get( 'WEBGL_multi_draw' ) ) {
const starts = object._multiDrawStarts;
const counts = object._multiDrawCounts;
const drawCount = object._multiDrawCount;
const bytesPerElement = index ? attributes.get( index ).bytesPerElement : 1;
const uniforms = properties.get( material ).currentProgram.getUniforms();
for ( let i = 0; i < drawCount; i ++ ) {
uniforms.setValue( _gl, '_gl_DrawID', i );
renderer.render( starts[ i ] / bytesPerElement, counts[ i ] );
}
} else {
renderer.renderMultiDraw( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount );
}
}
} else if ( object.isInstancedMesh ) {
renderer.renderInstances( drawStart, drawCount, object.count );
} else if ( geometry.isInstancedBufferGeometry ) {
const maxInstanceCount = geometry._maxInstanceCount !== undefined ? geometry._maxInstanceCount : Infinity;
const instanceCount = Math.min( geometry.instanceCount, maxInstanceCount );
renderer.renderInstances( drawStart, drawCount, instanceCount );
} else {
renderer.render( drawStart, drawCount );
}
};
// Compile
function prepareMaterial( material, scene, object ) {
if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) {
material.side = BackSide;
material.needsUpdate = true;
getProgram( material, scene, object );
material.side = FrontSide;
material.needsUpdate = true;
getProgram( material, scene, object );
material.side = DoubleSide;
} else {
getProgram( material, scene, object );
}
}
/**
* Compiles all materials in the scene with the camera. This is useful to precompile shaders
* before the first rendering. If you want to add a 3D object to an existing scene, use the third
* optional parameter for applying the target scene.
*
* Note that the (target) scene's lighting and environment must be configured before calling this method.
*
* @param {Object3D} scene - The scene or another type of 3D object to precompile.
* @param {Camera} camera - The camera.
* @param {?Scene} [targetScene=null] - The target scene.
* @return {Set<Material>} The precompiled materials.
*/
this.compile = function ( scene, camera, targetScene = null ) {
if ( targetScene === null ) targetScene = scene;
currentRenderState = renderStates.get( targetScene );
currentRenderState.init( camera );
renderStateStack.push( currentRenderState );
// gather lights from both the target scene and the new object that will be added to the scene.
targetScene.traverseVisible( function ( object ) {
if ( object.isLight && object.layers.test( camera.layers ) ) {
currentRenderState.pushLight( object );
if ( object.castShadow ) {
currentRenderState.pushShadow( object );
}
}
} );
if ( scene !== targetScene ) {
scene.traverseVisible( function ( object ) {
if ( object.isLight && object.layers.test( camera.layers ) ) {
currentRenderState.pushLight( object );
if ( object.castShadow ) {
currentRenderState.pushShadow( object );
}
}
} );
}
currentRenderState.setupLights();
// Only initialize materials in the new scene, not the targetScene.
const materials = new Set();
scene.traverse( function ( object ) {
if ( ! ( object.isMesh || object.isPoints || object.isLine || object.isSprite ) ) {
return;
}
const material = object.material;
if ( material ) {
if ( Array.isArray( material ) ) {
for ( let i = 0; i < material.length; i ++ ) {
const material2 = material[ i ];
prepareMaterial( material2, targetScene, object );
materials.add( material2 );
}
} else {
prepareMaterial( material, targetScene, object );
materials.add( material );
}
}
} );
currentRenderState = renderStateStack.pop();
return materials;
};
// compileAsync
/**
* Asynchronous version of {@link WebGLRenderer#compile}.
*
* This method makes use of the `KHR_parallel_shader_compile` WebGL extension. Hence,
* it is recommended to use this version of `compile()` whenever possible.
*
* @async
* @param {Object3D} scene - The scene or another type of 3D object to precompile.
* @param {Camera} camera - The camera.
* @param {?Scene} [targetScene=null] - The target scene.
* @return {Promise} A Promise that resolves when the given scene can be rendered without unnecessary stalling due to shader compilation.
*/
this.compileAsync = function ( scene, camera, targetScene = null ) {
const materials = this.compile( scene, camera, targetScene );
// Wait for all the materials in the new object to indicate that they're
// ready to be used before resolving the promise.
return new Promise( ( resolve ) => {
function checkMaterialsReady() {
materials.forEach( function ( material ) {
const materialProperties = properties.get( material );
const program = materialProperties.currentProgram;
if ( program.isReady() ) {
// remove any programs that report they're ready to use from the list
materials.delete( material );
}
} );
// once the list of compiling materials is empty, call the callback
if ( materials.size === 0 ) {
resolve( scene );
return;
}
// if some materials are still not ready, wait a bit and check again
setTimeout( checkMaterialsReady, 10 );
}
if ( extensions.get( 'KHR_parallel_shader_compile' ) !== null ) {
// If we can check the compilation status of the materials without
// blocking then do so right away.
checkMaterialsReady();
} else {
// Otherwise start by waiting a bit to give the materials we just
// initialized a chance to finish.
setTimeout( checkMaterialsReady, 10 );
}
} );
};
// Animation Loop
let onAnimationFrameCallback = null;
function onAnimationFrame( time ) {
if ( onAnimationFrameCallback ) onAnimationFrameCallback( time );
}
function onXRSessionStart() {
animation.stop();
}
function onXRSessionEnd() {
animation.start();
}
const animation = new WebGLAnimation();
animation.setAnimationLoop( onAnimationFrame );
if ( typeof self !== 'undefined' ) animation.setContext( self );
this.setAnimationLoop = function ( callback ) {
onAnimationFrameCallback = callback;
xr.setAnimationLoop( callback );
( callback === null ) ? animation.stop() : animation.start();
};
xr.addEventListener( 'sessionstart', onXRSessionStart );
xr.addEventListener( 'sessionend', onXRSessionEnd );
// Rendering
/**
* Renders the given scene (or other type of 3D object) using the given camera.
*
* The render is done to a previously specified render target set by calling {@link WebGLRenderer#setRenderTarget}
* or to the canvas as usual.
*
* By default render buffers are cleared before rendering but you can prevent
* this by setting the property `autoClear` to `false`. If you want to prevent
* only certain buffers being cleared you can `autoClearColor`, `autoClearDepth`
* or `autoClearStencil` to `false`. To force a clear, use {@link WebGLRenderer#clear}.
*
* @param {Object3D} scene - The scene to render.
* @param {Camera} camera - The camera.
*/
this.render = function ( scene, camera ) {
if ( camera !== undefined && camera.isCamera !== true ) {
console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' );
return;
}
if ( _isContextLost === true ) return;
// update scene graph
if ( scene.matrixWorldAutoUpdate === true ) scene.updateMatrixWorld();
// update camera matrices and frustum
if ( camera.parent === null && camera.matrixWorldAutoUpdate === true ) camera.updateMatrixWorld();
if ( xr.enabled === true && xr.isPresenting === true ) {
if ( xr.cameraAutoUpdate === true ) xr.updateCamera( camera );
camera = xr.getCamera(); // use XR camera for rendering
}
//
if ( scene.isScene === true ) scene.onBeforeRender( _this, scene, camera, _currentRenderTarget );
currentRenderState = renderStates.get( scene, renderStateStack.length );
currentRenderState.init( camera );
renderStateStack.push( currentRenderState );
_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
_frustum.setFromProjectionMatrix( _projScreenMatrix, WebGLCoordinateSystem, camera.reversedDepth );
_localClippingEnabled = this.localClippingEnabled;
_clippingEnabled = clipping.init( this.clippingPlanes, _localClippingEnabled );
currentRenderList = renderLists.get( scene, renderListStack.length );
currentRenderList.init();
renderListStack.push( currentRenderList );
if ( xr.enabled === true && xr.isPresenting === true ) {
const depthSensingMesh = _this.xr.getDepthSensingMesh();
if ( depthSensingMesh !== null ) {
projectObject( depthSensingMesh, camera, - Infinity, _this.sortObjects );
}
}
projectObject( scene, camera, 0, _this.sortObjects );
currentRenderList.finish();
if ( _this.sortObjects === true ) {
currentRenderList.sort( _opaqueSort, _transparentSort );
}
_renderBackground = xr.enabled === false || xr.isPresenting === false || xr.hasDepthSensing() === false;
if ( _renderBackground ) {
background.addToRenderList( currentRenderList, scene );
}
//
this.info.render.frame ++;
if ( _clippingEnabled === true ) clipping.beginShadows();
const shadowsArray = currentRenderState.state.shadowsArray;
shadowMap.render( shadowsArray, scene, camera );
if ( _clippingEnabled === true ) clipping.endShadows();
//
if ( this.info.autoReset === true ) this.info.reset();
// render scene
const opaqueObjects = currentRenderList.opaque;
const transmissiveObjects = currentRenderList.transmissive;
currentRenderState.setupLights();
if ( camera.isArrayCamera ) {
const cameras = camera.cameras;
if ( transmissiveObjects.length > 0 ) {
for ( let i = 0, l = cameras.length; i < l; i ++ ) {
const camera2 = cameras[ i ];
renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera2 );
}
}
if ( _renderBackground ) background.render( scene );
for ( let i = 0, l = cameras.length; i < l; i ++ ) {
const camera2 = cameras[ i ];
renderScene( currentRenderList, scene, camera2, camera2.viewport );
}
} else {
if ( transmissiveObjects.length > 0 ) renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera );
if ( _renderBackground ) background.render( scene );
renderScene( currentRenderList, scene, camera );
}
//
if ( _currentRenderTarget !== null && _currentActiveMipmapLevel === 0 ) {
// resolve multisample renderbuffers to a single-sample texture if necessary
textures.updateMultisampleRenderTarget( _currentRenderTarget );
// Generate mipmap if we're using any kind of mipmap filtering
textures.updateRenderTargetMipmap( _currentRenderTarget );
}
//
if ( scene.isScene === true ) scene.onAfterRender( _this, scene, camera );
// _gl.finish();
bindingStates.resetDefaultState();
_currentMaterialId = - 1;
_currentCamera = null;
renderStateStack.pop();
if ( renderStateStack.length > 0 ) {
currentRenderState = renderStateStack[ renderStateStack.length - 1 ];
if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, currentRenderState.state.camera );
} else {
currentRenderState = null;
}
renderListStack.pop();
if ( renderListStack.length > 0 ) {
currentRenderList = renderListStack[ renderListStack.length - 1 ];
} else {
currentRenderList = null;
}
};
function projectObject( object, camera, groupOrder, sortObjects ) {
if ( object.visible === false ) return;
const visible = object.layers.test( camera.layers );
if ( visible ) {
if ( object.isGroup ) {
groupOrder = object.renderOrder;
} else if ( object.isLOD ) {
if ( object.autoUpdate === true ) object.update( camera );
} else if ( object.isLight ) {
currentRenderState.pushLight( object );
if ( object.castShadow ) {
currentRenderState.pushShadow( object );
}
} else if ( object.isSprite ) {
if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {
if ( sortObjects ) {
_vector4.setFromMatrixPosition( object.matrixWorld )
.applyMatrix4( _projScreenMatrix );
}
const geometry = objects.update( object );
const material = object.material;
if ( material.visible ) {
currentRenderList.push( object, geometry, material, groupOrder, _vector4.z, null );
}
}
} else if ( object.isMesh || object.isLine || object.isPoints ) {
if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {
const geometry = objects.update( object );
const material = object.material;
if ( sortObjects ) {
if ( object.boundingSphere !== undefined ) {
if ( object.boundingSphere === null ) object.computeBoundingSphere();
_vector4.copy( object.boundingSphere.center );
} else {
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_vector4.copy( geometry.boundingSphere.center );
}
_vector4
.applyMatrix4( object.matrixWorld )
.applyMatrix4( _projScreenMatrix );
}
if ( Array.isArray( material ) ) {
const groups = geometry.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
if ( groupMaterial && groupMaterial.visible ) {
currentRenderList.push( object, geometry, groupMaterial, groupOrder, _vector4.z, group );
}
}
} else if ( material.visible ) {
currentRenderList.push( object, geometry, material, groupOrder, _vector4.z, null );
}
}
}
}
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
projectObject( children[ i ], camera, groupOrder, sortObjects );
}
}
function renderScene( currentRenderList, scene, camera, viewport ) {
const opaqueObjects = currentRenderList.opaque;
const transmissiveObjects = currentRenderList.transmissive;
const transparentObjects = currentRenderList.transparent;
currentRenderState.setupLightsView( camera );
if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, camera );
if ( viewport ) state.viewport( _currentViewport.copy( viewport ) );
if ( opaqueObjects.length > 0 ) renderObjects( opaqueObjects, scene, camera );
if ( transmissiveObjects.length > 0 ) renderObjects( transmissiveObjects, scene, camera );
if ( transparentObjects.length > 0 ) renderObjects( transparentObjects, scene, camera );
// Ensure depth buffer writing is enabled so it can be cleared on next render
state.buffers.depth.setTest( true );
state.buffers.depth.setMask( true );
state.buffers.color.setMask( true );
state.setPolygonOffset( false );
}
function renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera ) {
const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;
if ( overrideMaterial !== null ) {
return;
}
if ( currentRenderState.state.transmissionRenderTarget[ camera.id ] === undefined ) {
currentRenderState.state.transmissionRenderTarget[ camera.id ] = new WebGLRenderTarget( 1, 1, {
generateMipmaps: true,
type: ( extensions.has( 'EXT_color_buffer_half_float' ) || extensions.has( 'EXT_color_buffer_float' ) ) ? HalfFloatType : UnsignedByteType,
minFilter: LinearMipmapLinearFilter,
samples: 4,
stencilBuffer: stencil,
resolveDepthBuffer: false,
resolveStencilBuffer: false,
colorSpace: ColorManagement.workingColorSpace,
} );
// debug
/*
const geometry = new PlaneGeometry();
const material = new MeshBasicMaterial( { map: _transmissionRenderTarget.texture } );
const mesh = new Mesh( geometry, material );
scene.add( mesh );
*/
}
const transmissionRenderTarget = currentRenderState.state.transmissionRenderTarget[ camera.id ];
const activeViewport = camera.viewport || _currentViewport;
transmissionRenderTarget.setSize( activeViewport.z * _this.transmissionResolutionScale, activeViewport.w * _this.transmissionResolutionScale );
//
const currentRenderTarget = _this.getRenderTarget();
const currentActiveCubeFace = _this.getActiveCubeFace();
const currentActiveMipmapLevel = _this.getActiveMipmapLevel();
_this.setRenderTarget( transmissionRenderTarget );
_this.getClearColor( _currentClearColor );
_currentClearAlpha = _this.getClearAlpha();
if ( _currentClearAlpha < 1 ) _this.setClearColor( 0xffffff, 0.5 );
_this.clear();
if ( _renderBackground ) background.render( scene );
// Turn off the features which can affect the frag color for opaque objects pass.
// Otherwise they are applied twice in opaque objects pass and transmission objects pass.
const currentToneMapping = _this.toneMapping;
_this.toneMapping = NoToneMapping;
// Remove viewport from camera to avoid nested render calls resetting viewport to it (e.g Reflector).
// Transmission render pass requires viewport to match the transmissionRenderTarget.
const currentCameraViewport = camera.viewport;
if ( camera.viewport !== undefined ) camera.viewport = undefined;
currentRenderState.setupLightsView( camera );
if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, camera );
renderObjects( opaqueObjects, scene, camera );
textures.updateMultisampleRenderTarget( transmissionRenderTarget );
textures.updateRenderTargetMipmap( transmissionRenderTarget );
if ( extensions.has( 'WEBGL_multisampled_render_to_texture' ) === false ) { // see #28131
let renderTargetNeedsUpdate = false;
for ( let i = 0, l = transmissiveObjects.length; i < l; i ++ ) {
const renderItem = transmissiveObjects[ i ];
const object = renderItem.object;
const geometry = renderItem.geometry;
const material = renderItem.material;
const group = renderItem.group;
if ( material.side === DoubleSide && object.layers.test( camera.layers ) ) {
const currentSide = material.side;
material.side = BackSide;
material.needsUpdate = true;
renderObject( object, scene, camera, geometry, material, group );
material.side = currentSide;
material.needsUpdate = true;
renderTargetNeedsUpdate = true;
}
}
if ( renderTargetNeedsUpdate === true ) {
textures.updateMultisampleRenderTarget( transmissionRenderTarget );
textures.updateRenderTargetMipmap( transmissionRenderTarget );
}
}
_this.setRenderTarget( currentRenderTarget, currentActiveCubeFace, currentActiveMipmapLevel );
_this.setClearColor( _currentClearColor, _currentClearAlpha );
if ( currentCameraViewport !== undefined ) camera.viewport = currentCameraViewport;
_this.toneMapping = currentToneMapping;
}
function renderObjects( renderList, scene, camera ) {
const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;
for ( let i = 0, l = renderList.length; i < l; i ++ ) {
const renderItem = renderList[ i ];
const object = renderItem.object;
const geometry = renderItem.geometry;
const group = renderItem.group;
let material = renderItem.material;
if ( material.allowOverride === true && overrideMaterial !== null ) {
material = overrideMaterial;
}
if ( object.layers.test( camera.layers ) ) {
renderObject( object, scene, camera, geometry, material, group );
}
}
}
function renderObject( object, scene, camera, geometry, material, group ) {
object.onBeforeRender( _this, scene, camera, geometry, material, group );
object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
object.normalMatrix.getNormalMatrix( object.modelViewMatrix );
material.onBeforeRender( _this, scene, camera, geometry, object, group );
if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) {
material.side = BackSide;
material.needsUpdate = true;
_this.renderBufferDirect( camera, scene, geometry, material, object, group );
material.side = FrontSide;
material.needsUpdate = true;
_this.renderBufferDirect( camera, scene, geometry, material, object, group );
material.side = DoubleSide;
} else {
_this.renderBufferDirect( camera, scene, geometry, material, object, group );
}
object.onAfterRender( _this, scene, camera, geometry, material, group );
}
function getProgram( material, scene, object ) {
if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
const materialProperties = properties.get( material );
const lights = currentRenderState.state.lights;
const shadowsArray = currentRenderState.state.shadowsArray;
const lightsStateVersion = lights.state.version;
const parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, object );
const programCacheKey = programCache.getProgramCacheKey( parameters );
let programs = materialProperties.programs;
// always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change
materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
materialProperties.fog = scene.fog;
materialProperties.envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || materialProperties.environment );
materialProperties.envMapRotation = ( materialProperties.environment !== null && material.envMap === null ) ? scene.environmentRotation : material.envMapRotation;
if ( programs === undefined ) {
// new material
material.addEventListener( 'dispose', onMaterialDispose );
programs = new Map();
materialProperties.programs = programs;
}
let program = programs.get( programCacheKey );
if ( program !== undefined ) {
// early out if program and light state is identical
if ( materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion ) {
updateCommonMaterialProperties( material, parameters );
return program;
}
} else {
parameters.uniforms = programCache.getUniforms( material );
material.onBeforeCompile( parameters, _this );
program = programCache.acquireProgram( parameters, programCacheKey );
programs.set( programCacheKey, program );
materialProperties.uniforms = parameters.uniforms;
}
const uniforms = materialProperties.uniforms;
if ( ( ! material.isShaderMaterial && ! material.isRawShaderMaterial ) || material.clipping === true ) {
uniforms.clippingPlanes = clipping.uniform;
}
updateCommonMaterialProperties( material, parameters );
// store the light setup it was created for
materialProperties.needsLights = materialNeedsLights( material );
materialProperties.lightsStateVersion = lightsStateVersion;
if ( materialProperties.needsLights ) {
// wire up the material to this renderer's lighting state
uniforms.ambientLightColor.value = lights.state.ambient;
uniforms.lightProbe.value = lights.state.probe;
uniforms.directionalLights.value = lights.state.directional;
uniforms.directionalLightShadows.value = lights.state.directionalShadow;
uniforms.spotLights.value = lights.state.spot;
uniforms.spotLightShadows.value = lights.state.spotShadow;
uniforms.rectAreaLights.value = lights.state.rectArea;
uniforms.ltc_1.value = lights.state.rectAreaLTC1;
uniforms.ltc_2.value = lights.state.rectAreaLTC2;
uniforms.pointLights.value = lights.state.point;
uniforms.pointLightShadows.value = lights.state.pointShadow;
uniforms.hemisphereLights.value = lights.state.hemi;
uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
uniforms.spotShadowMap.value = lights.state.spotShadowMap;
uniforms.spotLightMatrix.value = lights.state.spotLightMatrix;
uniforms.spotLightMap.value = lights.state.spotLightMap;
uniforms.pointShadowMap.value = lights.state.pointShadowMap;
uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix;
// TODO (abelnation): add area lights shadow info to uniforms
}
materialProperties.currentProgram = program;
materialProperties.uniformsList = null;
return program;
}
function getUniformList( materialProperties ) {
if ( materialProperties.uniformsList === null ) {
const progUniforms = materialProperties.currentProgram.getUniforms();
materialProperties.uniformsList = WebGLUniforms.seqWithValue( progUniforms.seq, materialProperties.uniforms );
}
return materialProperties.uniformsList;
}
function updateCommonMaterialProperties( material, parameters ) {
const materialProperties = properties.get( material );
materialProperties.outputColorSpace = parameters.outputColorSpace;
materialProperties.batching = parameters.batching;
materialProperties.batchingColor = parameters.batchingColor;
materialProperties.instancing = parameters.instancing;
materialProperties.instancingColor = parameters.instancingColor;
materialProperties.instancingMorph = parameters.instancingMorph;
materialProperties.skinning = parameters.skinning;
materialProperties.morphTargets = parameters.morphTargets;
materialProperties.morphNormals = parameters.morphNormals;
materialProperties.morphColors = parameters.morphColors;
materialProperties.morphTargetsCount = parameters.morphTargetsCount;
materialProperties.numClippingPlanes = parameters.numClippingPlanes;
materialProperties.numIntersection = parameters.numClipIntersection;
materialProperties.vertexAlphas = parameters.vertexAlphas;
materialProperties.vertexTangents = parameters.vertexTangents;
materialProperties.toneMapping = parameters.toneMapping;
}
function setProgram( camera, scene, geometry, material, object ) {
if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
textures.resetTextureUnits();
const fog = scene.fog;
const environment = material.isMeshStandardMaterial ? scene.environment : null;
const colorSpace = ( _currentRenderTarget === null ) ? _this.outputColorSpace : ( _currentRenderTarget.isXRRenderTarget === true ? _currentRenderTarget.texture.colorSpace : LinearSRGBColorSpace );
const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment );
const vertexAlphas = material.vertexColors === true && !! geometry.attributes.color && geometry.attributes.color.itemSize === 4;
const vertexTangents = !! geometry.attributes.tangent && ( !! material.normalMap || material.anisotropy > 0 );
const morphTargets = !! geometry.morphAttributes.position;
const morphNormals = !! geometry.morphAttributes.normal;
const morphColors = !! geometry.morphAttributes.color;
let toneMapping = NoToneMapping;
if ( material.toneMapped ) {
if ( _currentRenderTarget === null || _currentRenderTarget.isXRRenderTarget === true ) {
toneMapping = _this.toneMapping;
}
}
const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color;
const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0;
const materialProperties = properties.get( material );
const lights = currentRenderState.state.lights;
if ( _clippingEnabled === true ) {
if ( _localClippingEnabled === true || camera !== _currentCamera ) {
const useCache =
camera === _currentCamera &&
material.id === _currentMaterialId;
// we might want to call this function with some ClippingGroup
// object instead of the material, once it becomes feasible
// (#8465, #8379)
clipping.setState( material, camera, useCache );
}
}
//
let needsProgramChange = false;
if ( material.version === materialProperties.__version ) {
if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) {
needsProgramChange = true;
} else if ( materialProperties.outputColorSpace !== colorSpace ) {
needsProgramChange = true;
} else if ( object.isBatchedMesh && materialProperties.batching === false ) {
needsProgramChange = true;
} else if ( ! object.isBatchedMesh && materialProperties.batching === true ) {
needsProgramChange = true;
} else if ( object.isBatchedMesh && materialProperties.batchingColor === true && object.colorTexture === null ) {
needsProgramChange = true;
} else if ( object.isBatchedMesh && materialProperties.batchingColor === false && object.colorTexture !== null ) {
needsProgramChange = true;
} else if ( object.isInstancedMesh && materialProperties.instancing === false ) {
needsProgramChange = true;
} else if ( ! object.isInstancedMesh && materialProperties.instancing === true ) {
needsProgramChange = true;
} else if ( object.isSkinnedMesh && materialProperties.skinning === false ) {
needsProgramChange = true;
} else if ( ! object.isSkinnedMesh && materialProperties.skinning === true ) {
needsProgramChange = true;
} else if ( object.isInstancedMesh && materialProperties.instancingColor === true && object.instanceColor === null ) {
needsProgramChange = true;
} else if ( object.isInstancedMesh && materialProperties.instancingColor === false && object.instanceColor !== null ) {
needsProgramChange = true;
} else if ( object.isInstancedMesh && materialProperties.instancingMorph === true && object.morphTexture === null ) {
needsProgramChange = true;
} else if ( object.isInstancedMesh && materialProperties.instancingMorph === false && object.morphTexture !== null ) {
needsProgramChange = true;
} else if ( materialProperties.envMap !== envMap ) {
needsProgramChange = true;
} else if ( material.fog === true && materialProperties.fog !== fog ) {
needsProgramChange = true;
} else if ( materialProperties.numClippingPlanes !== undefined &&
( materialProperties.numClippingPlanes !== clipping.numPlanes ||
materialProperties.numIntersection !== clipping.numIntersection ) ) {
needsProgramChange = true;
} else if ( materialProperties.vertexAlphas !== vertexAlphas ) {
needsProgramChange = true;
} else if ( materialProperties.vertexTangents !== vertexTangents ) {
needsProgramChange = true;
} else if ( materialProperties.morphTargets !== morphTargets ) {
needsProgramChange = true;
} else if ( materialProperties.morphNormals !== morphNormals ) {
needsProgramChange = true;
} else if ( materialProperties.morphColors !== morphColors ) {
needsProgramChange = true;
} else if ( materialProperties.toneMapping !== toneMapping ) {
needsProgramChange = true;
} else if ( materialProperties.morphTargetsCount !== morphTargetsCount ) {
needsProgramChange = true;
}
} else {
needsProgramChange = true;
materialProperties.__version = material.version;
}
//
let program = materialProperties.currentProgram;
if ( needsProgramChange === true ) {
program = getProgram( material, scene, object );
}
let refreshProgram = false;
let refreshMaterial = false;
let refreshLights = false;
const p_uniforms = program.getUniforms(),
m_uniforms = materialProperties.uniforms;
if ( state.useProgram( program.program ) ) {
refreshProgram = true;
refreshMaterial = true;
refreshLights = true;
}
if ( material.id !== _currentMaterialId ) {
_currentMaterialId = material.id;
refreshMaterial = true;
}
if ( refreshProgram || _currentCamera !== camera ) {
// common camera uniforms
const reversedDepthBuffer = state.buffers.depth.getReversed();
if ( reversedDepthBuffer && camera.reversedDepth !== true ) {
camera._reversedDepth = true;
camera.updateProjectionMatrix();
}
p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix );
p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );
const uCamPos = p_uniforms.map.cameraPosition;
if ( uCamPos !== undefined ) {
uCamPos.setValue( _gl, _vector3.setFromMatrixPosition( camera.matrixWorld ) );
}
if ( capabilities.logarithmicDepthBuffer ) {
p_uniforms.setValue( _gl, 'logDepthBufFC',
2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );
}
// consider moving isOrthographic to UniformLib and WebGLMaterials, see https://github.com/mrdoob/three.js/pull/26467#issuecomment-1645185067
if ( material.isMeshPhongMaterial ||
material.isMeshToonMaterial ||
material.isMeshLambertMaterial ||
material.isMeshBasicMaterial ||
material.isMeshStandardMaterial ||
material.isShaderMaterial ) {
p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true );
}
if ( _currentCamera !== camera ) {
_currentCamera = camera;
// lighting uniforms depend on the camera so enforce an update
// now, in case this material supports lights - or later, when
// the next material that does gets activated:
refreshMaterial = true; // set to true on material change
refreshLights = true; // remains set until update done
}
}
// skinning and morph target uniforms must be set even if material didn't change
// auto-setting of texture unit for bone and morph texture must go before other textures
// otherwise textures used for skinning and morphing can take over texture units reserved for other material textures
if ( object.isSkinnedMesh ) {
p_uniforms.setOptional( _gl, object, 'bindMatrix' );
p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );
const skeleton = object.skeleton;
if ( skeleton ) {
if ( skeleton.boneTexture === null ) skeleton.computeBoneTexture();
p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures );
}
}
if ( object.isBatchedMesh ) {
p_uniforms.setOptional( _gl, object, 'batchingTexture' );
p_uniforms.setValue( _gl, 'batchingTexture', object._matricesTexture, textures );
p_uniforms.setOptional( _gl, object, 'batchingIdTexture' );
p_uniforms.setValue( _gl, 'batchingIdTexture', object._indirectTexture, textures );
p_uniforms.setOptional( _gl, object, 'batchingColorTexture' );
if ( object._colorsTexture !== null ) {
p_uniforms.setValue( _gl, 'batchingColorTexture', object._colorsTexture, textures );
}
}
const morphAttributes = geometry.morphAttributes;
if ( morphAttributes.position !== undefined || morphAttributes.normal !== undefined || ( morphAttributes.color !== undefined ) ) {
morphtargets.update( object, geometry, program );
}
if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) {
materialProperties.receiveShadow = object.receiveShadow;
p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow );
}
// https://github.com/mrdoob/three.js/pull/24467#issuecomment-1209031512
if ( material.isMeshGouraudMaterial && material.envMap !== null ) {
m_uniforms.envMap.value = envMap;
m_uniforms.flipEnvMap.value = ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) ? - 1 : 1;
}
if ( material.isMeshStandardMaterial && material.envMap === null && scene.environment !== null ) {
m_uniforms.envMapIntensity.value = scene.environmentIntensity;
}
if ( refreshMaterial ) {
p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure );
if ( materialProperties.needsLights ) {
// the current material requires lighting info
// note: all lighting uniforms are always set correctly
// they simply reference the renderer's state for their
// values
//
// use the current material's .needsUpdate flags to set
// the GL state when required
markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );
}
// refresh uniforms common to several materials
if ( fog && material.fog === true ) {
materials.refreshFogUniforms( m_uniforms, fog );
}
materials.refreshMaterialUniforms( m_uniforms, material, _pixelRatio, _height, currentRenderState.state.transmissionRenderTarget[ camera.id ] );
WebGLUniforms.upload( _gl, getUniformList( materialProperties ), m_uniforms, textures );
}
if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) {
WebGLUniforms.upload( _gl, getUniformList( materialProperties ), m_uniforms, textures );
material.uniformsNeedUpdate = false;
}
if ( material.isSpriteMaterial ) {
p_uniforms.setValue( _gl, 'center', object.center );
}
// common matrices
p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix );
p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix );
p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );
// UBOs
if ( material.isShaderMaterial || material.isRawShaderMaterial ) {
const groups = material.uniformsGroups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
uniformsGroups.update( group, program );
uniformsGroups.bind( group, program );
}
}
return program;
}
// If uniforms are marked as clean, they don't need to be loaded to the GPU.
function markUniformsLightsNeedsUpdate( uniforms, value ) {
uniforms.ambientLightColor.needsUpdate = value;
uniforms.lightProbe.needsUpdate = value;
uniforms.directionalLights.needsUpdate = value;
uniforms.directionalLightShadows.needsUpdate = value;
uniforms.pointLights.needsUpdate = value;
uniforms.pointLightShadows.needsUpdate = value;
uniforms.spotLights.needsUpdate = value;
uniforms.spotLightShadows.needsUpdate = value;
uniforms.rectAreaLights.needsUpdate = value;
uniforms.hemisphereLights.needsUpdate = value;
}
function materialNeedsLights( material ) {
return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial ||
material.isMeshStandardMaterial || material.isShadowMaterial ||
( material.isShaderMaterial && material.lights === true );
}
/**
* Returns the active cube face.
*
* @return {number} The active cube face.
*/
this.getActiveCubeFace = function () {
return _currentActiveCubeFace;
};
/**
* Returns the active mipmap level.
*
* @return {number} The active mipmap level.
*/
this.getActiveMipmapLevel = function () {
return _currentActiveMipmapLevel;
};
/**
* Returns the active render target.
*
* @return {?WebGLRenderTarget} The active render target. Returns `null` if no render target
* is currently set.
*/
this.getRenderTarget = function () {
return _currentRenderTarget;
};
this.setRenderTargetTextures = function ( renderTarget, colorTexture, depthTexture ) {
const renderTargetProperties = properties.get( renderTarget );
renderTargetProperties.__autoAllocateDepthBuffer = renderTarget.resolveDepthBuffer === false;
if ( renderTargetProperties.__autoAllocateDepthBuffer === false ) {
// The multisample_render_to_texture extension doesn't work properly if there
// are midframe flushes and an external depth buffer. Disable use of the extension.
renderTargetProperties.__useRenderToTexture = false;
}
properties.get( renderTarget.texture ).__webglTexture = colorTexture;
properties.get( renderTarget.depthTexture ).__webglTexture = renderTargetProperties.__autoAllocateDepthBuffer ? undefined : depthTexture;
renderTargetProperties.__hasExternalTextures = true;
};
this.setRenderTargetFramebuffer = function ( renderTarget, defaultFramebuffer ) {
const renderTargetProperties = properties.get( renderTarget );
renderTargetProperties.__webglFramebuffer = defaultFramebuffer;
renderTargetProperties.__useDefaultFramebuffer = defaultFramebuffer === undefined;
};
const _scratchFrameBuffer = _gl.createFramebuffer();
/**
* Sets the active rendertarget.
*
* @param {?WebGLRenderTarget} renderTarget - The render target to set. When `null` is given,
* the canvas is set as the active render target instead.
* @param {number} [activeCubeFace=0] - The active cube face when using a cube render target.
* Indicates the z layer to render in to when using 3D or array render targets.
* @param {number} [activeMipmapLevel=0] - The active mipmap level.
*/
this.setRenderTarget = function ( renderTarget, activeCubeFace = 0, activeMipmapLevel = 0 ) {
_currentRenderTarget = renderTarget;
_currentActiveCubeFace = activeCubeFace;
_currentActiveMipmapLevel = activeMipmapLevel;
let useDefaultFramebuffer = true;
let framebuffer = null;
let isCube = false;
let isRenderTarget3D = false;
if ( renderTarget ) {
const renderTargetProperties = properties.get( renderTarget );
if ( renderTargetProperties.__useDefaultFramebuffer !== undefined ) {
// We need to make sure to rebind the framebuffer.
state.bindFramebuffer( _gl.FRAMEBUFFER, null );
useDefaultFramebuffer = false;
} else if ( renderTargetProperties.__webglFramebuffer === undefined ) {
textures.setupRenderTarget( renderTarget );
} else if ( renderTargetProperties.__hasExternalTextures ) {
// Color and depth texture must be rebound in order for the swapchain to update.
textures.rebindTextures( renderTarget, properties.get( renderTarget.texture ).__webglTexture, properties.get( renderTarget.depthTexture ).__webglTexture );
} else if ( renderTarget.depthBuffer ) {
// check if the depth texture is already bound to the frame buffer and that it's been initialized
const depthTexture = renderTarget.depthTexture;
if ( renderTargetProperties.__boundDepthTexture !== depthTexture ) {
// check if the depth texture is compatible
if (
depthTexture !== null &&
properties.has( depthTexture ) &&
( renderTarget.width !== depthTexture.image.width || renderTarget.height !== depthTexture.image.height )
) {
throw new Error( 'WebGLRenderTarget: Attached DepthTexture is initialized to the incorrect size.' );
}
// Swap the depth buffer to the currently attached one
textures.setupDepthRenderbuffer( renderTarget );
}
}
const texture = renderTarget.texture;
if ( texture.isData3DTexture || texture.isDataArrayTexture || texture.isCompressedArrayTexture ) {
isRenderTarget3D = true;
}
const __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer;
if ( renderTarget.isWebGLCubeRenderTarget ) {
if ( Array.isArray( __webglFramebuffer[ activeCubeFace ] ) ) {
framebuffer = __webglFramebuffer[ activeCubeFace ][ activeMipmapLevel ];
} else {
framebuffer = __webglFramebuffer[ activeCubeFace ];
}
isCube = true;
} else if ( ( renderTarget.samples > 0 ) && textures.useMultisampledRTT( renderTarget ) === false ) {
framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer;
} else {
if ( Array.isArray( __webglFramebuffer ) ) {
framebuffer = __webglFramebuffer[ activeMipmapLevel ];
} else {
framebuffer = __webglFramebuffer;
}
}
_currentViewport.copy( renderTarget.viewport );
_currentScissor.copy( renderTarget.scissor );
_currentScissorTest = renderTarget.scissorTest;
} else {
_currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor();
_currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor();
_currentScissorTest = _scissorTest;
}
// Use a scratch frame buffer if rendering to a mip level to avoid depth buffers
// being bound that are different sizes.
if ( activeMipmapLevel !== 0 ) {
framebuffer = _scratchFrameBuffer;
}
const framebufferBound = state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
if ( framebufferBound && useDefaultFramebuffer ) {
state.drawBuffers( renderTarget, framebuffer );
}
state.viewport( _currentViewport );
state.scissor( _currentScissor );
state.setScissorTest( _currentScissorTest );
if ( isCube ) {
const textureProperties = properties.get( renderTarget.texture );
_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel );
} else if ( isRenderTarget3D ) {
const layer = activeCubeFace;
for ( let i = 0; i < renderTarget.textures.length; i ++ ) {
const textureProperties = properties.get( renderTarget.textures[ i ] );
_gl.framebufferTextureLayer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, textureProperties.__webglTexture, activeMipmapLevel, layer );
}
} else if ( renderTarget !== null && activeMipmapLevel !== 0 ) {
// Only bind the frame buffer if we are using a scratch frame buffer to render to a mipmap.
// If we rebind the texture when using a multi sample buffer then an error about inconsistent samples will be thrown.
const textureProperties = properties.get( renderTarget.texture );
_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, textureProperties.__webglTexture, activeMipmapLevel );
}
_currentMaterialId = - 1; // reset current material to ensure correct uniform bindings
};
/**
* Reads the pixel data from the given render target into the given buffer.
*
* @param {WebGLRenderTarget} renderTarget - The render target to read from.
* @param {number} x - The `x` coordinate of the copy region's origin.
* @param {number} y - The `y` coordinate of the copy region's origin.
* @param {number} width - The width of the copy region.
* @param {number} height - The height of the copy region.
* @param {TypedArray} buffer - The result buffer.
* @param {number} [activeCubeFaceIndex] - The active cube face index.
* @param {number} [textureIndex=0] - The texture index of an MRT render target.
*/
this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex, textureIndex = 0 ) {
if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' );
return;
}
let framebuffer = properties.get( renderTarget ).__webglFramebuffer;
if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) {
framebuffer = framebuffer[ activeCubeFaceIndex ];
}
if ( framebuffer ) {
state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
try {
const texture = renderTarget.textures[ textureIndex ];
const textureFormat = texture.format;
const textureType = texture.type;
if ( ! capabilities.textureFormatReadable( textureFormat ) ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' );
return;
}
if ( ! capabilities.textureTypeReadable( textureType ) ) {
console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' );
return;
}
// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) {
// when using MRT, select the correct color buffer for the subsequent read command
if ( renderTarget.textures.length > 1 ) _gl.readBuffer( _gl.COLOR_ATTACHMENT0 + textureIndex );
_gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer );
}
} finally {
// restore framebuffer of current render target if necessary
const framebuffer = ( _currentRenderTarget !== null ) ? properties.get( _currentRenderTarget ).__webglFramebuffer : null;
state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
}
}
};
/**
* Asynchronous, non-blocking version of {@link WebGLRenderer#readRenderTargetPixels}.
*
* It is recommended to use this version of `readRenderTargetPixels()` whenever possible.
*
* @async
* @param {WebGLRenderTarget} renderTarget - The render target to read from.
* @param {number} x - The `x` coordinate of the copy region's origin.
* @param {number} y - The `y` coordinate of the copy region's origin.
* @param {number} width - The width of the copy region.
* @param {number} height - The height of the copy region.
* @param {TypedArray} buffer - The result buffer.
* @param {number} [activeCubeFaceIndex] - The active cube face index.
* @param {number} [textureIndex=0] - The texture index of an MRT render target.
* @return {Promise<TypedArray>} A Promise that resolves when the read has been finished. The resolve provides the read data as a typed array.
*/
this.readRenderTargetPixelsAsync = async function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex, textureIndex = 0 ) {
if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) {
throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' );
}
let framebuffer = properties.get( renderTarget ).__webglFramebuffer;
if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) {
framebuffer = framebuffer[ activeCubeFaceIndex ];
}
if ( framebuffer ) {
// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) {
// set the active frame buffer to the one we want to read
state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
const texture = renderTarget.textures[ textureIndex ];
const textureFormat = texture.format;
const textureType = texture.type;
if ( ! capabilities.textureFormatReadable( textureFormat ) ) {
throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixelsAsync: renderTarget is not in RGBA or implementation defined format.' );
}
if ( ! capabilities.textureTypeReadable( textureType ) ) {
throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixelsAsync: renderTarget is not in UnsignedByteType or implementation defined type.' );
}
const glBuffer = _gl.createBuffer();
_gl.bindBuffer( _gl.PIXEL_PACK_BUFFER, glBuffer );
_gl.bufferData( _gl.PIXEL_PACK_BUFFER, buffer.byteLength, _gl.STREAM_READ );
// when using MRT, select the correct color buffer for the subsequent read command
if ( renderTarget.textures.length > 1 ) _gl.readBuffer( _gl.COLOR_ATTACHMENT0 + textureIndex );
_gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), 0 );
// reset the frame buffer to the currently set buffer before waiting
const currFramebuffer = _currentRenderTarget !== null ? properties.get( _currentRenderTarget ).__webglFramebuffer : null;
state.bindFramebuffer( _gl.FRAMEBUFFER, currFramebuffer );
// check if the commands have finished every 8 ms
const sync = _gl.fenceSync( _gl.SYNC_GPU_COMMANDS_COMPLETE, 0 );
_gl.flush();
await probeAsync( _gl, sync, 4 );
// read the data and delete the buffer
_gl.bindBuffer( _gl.PIXEL_PACK_BUFFER, glBuffer );
_gl.getBufferSubData( _gl.PIXEL_PACK_BUFFER, 0, buffer );
_gl.deleteBuffer( glBuffer );
_gl.deleteSync( sync );
return buffer;
} else {
throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixelsAsync: requested read bounds are out of range.' );
}
}
};
/**
* Copies pixels from the current bound framebuffer into the given texture.
*
* @param {FramebufferTexture} texture - The texture.
* @param {?Vector2} [position=null] - The start position of the copy operation.
* @param {number} [level=0] - The mip level. The default represents the base mip.
*/
this.copyFramebufferToTexture = function ( texture, position = null, level = 0 ) {
const levelScale = Math.pow( 2, - level );
const width = Math.floor( texture.image.width * levelScale );
const height = Math.floor( texture.image.height * levelScale );
const x = position !== null ? position.x : 0;
const y = position !== null ? position.y : 0;
textures.setTexture2D( texture, 0 );
_gl.copyTexSubImage2D( _gl.TEXTURE_2D, level, 0, 0, x, y, width, height );
state.unbindTexture();
};
const _srcFramebuffer = _gl.createFramebuffer();
const _dstFramebuffer = _gl.createFramebuffer();
/**
* Copies data of the given source texture into a destination texture.
*
* When using render target textures as `srcTexture` and `dstTexture`, you must make sure both render targets are initialized
* {@link WebGLRenderer#initRenderTarget}.
*
* @param {Texture} srcTexture - The source texture.
* @param {Texture} dstTexture - The destination texture.
* @param {?(Box2|Box3)} [srcRegion=null] - A bounding box which describes the source region. Can be two or three-dimensional.
* @param {?(Vector2|Vector3)} [dstPosition=null] - A vector that represents the origin of the destination region. Can be two or three-dimensional.
* @param {number} [srcLevel=0] - The source mipmap level to copy.
* @param {?number} [dstLevel=null] - The destination mipmap level.
*/
this.copyTextureToTexture = function ( srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = null ) {
// support the previous signature with just a single dst mipmap level
if ( dstLevel === null ) {
if ( srcLevel !== 0 ) {
// @deprecated, r171
warnOnce( 'WebGLRenderer: copyTextureToTexture function signature has changed to support src and dst mipmap levels.' );
dstLevel = srcLevel;
srcLevel = 0;
} else {
dstLevel = 0;
}
}
// gather the necessary dimensions to copy
let width, height, depth, minX, minY, minZ;
let dstX, dstY, dstZ;
const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[ dstLevel ] : srcTexture.image;
if ( srcRegion !== null ) {
width = srcRegion.max.x - srcRegion.min.x;
height = srcRegion.max.y - srcRegion.min.y;
depth = srcRegion.isBox3 ? srcRegion.max.z - srcRegion.min.z : 1;
minX = srcRegion.min.x;
minY = srcRegion.min.y;
minZ = srcRegion.isBox3 ? srcRegion.min.z : 0;
} else {
const levelScale = Math.pow( 2, - srcLevel );
width = Math.floor( image.width * levelScale );
height = Math.floor( image.height * levelScale );
if ( srcTexture.isDataArrayTexture ) {
depth = image.depth;
} else if ( srcTexture.isData3DTexture ) {
depth = Math.floor( image.depth * levelScale );
} else {
depth = 1;
}
minX = 0;
minY = 0;
minZ = 0;
}
if ( dstPosition !== null ) {
dstX = dstPosition.x;
dstY = dstPosition.y;
dstZ = dstPosition.z;
} else {
dstX = 0;
dstY = 0;
dstZ = 0;
}
// Set up the destination target
const glFormat = utils.convert( dstTexture.format );
const glType = utils.convert( dstTexture.type );
let glTarget;
if ( dstTexture.isData3DTexture ) {
textures.setTexture3D( dstTexture, 0 );
glTarget = _gl.TEXTURE_3D;
} else if ( dstTexture.isDataArrayTexture || dstTexture.isCompressedArrayTexture ) {
textures.setTexture2DArray( dstTexture, 0 );
glTarget = _gl.TEXTURE_2D_ARRAY;
} else {
textures.setTexture2D( dstTexture, 0 );
glTarget = _gl.TEXTURE_2D;
}
_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY );
_gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha );
_gl.pixelStorei( _gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment );
// used for copying data from cpu
const currentUnpackRowLen = _gl.getParameter( _gl.UNPACK_ROW_LENGTH );
const currentUnpackImageHeight = _gl.getParameter( _gl.UNPACK_IMAGE_HEIGHT );
const currentUnpackSkipPixels = _gl.getParameter( _gl.UNPACK_SKIP_PIXELS );
const currentUnpackSkipRows = _gl.getParameter( _gl.UNPACK_SKIP_ROWS );
const currentUnpackSkipImages = _gl.getParameter( _gl.UNPACK_SKIP_IMAGES );
_gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, image.width );
_gl.pixelStorei( _gl.UNPACK_IMAGE_HEIGHT, image.height );
_gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, minX );
_gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, minY );
_gl.pixelStorei( _gl.UNPACK_SKIP_IMAGES, minZ );
// set up the src texture
const isSrc3D = srcTexture.isDataArrayTexture || srcTexture.isData3DTexture;
const isDst3D = dstTexture.isDataArrayTexture || dstTexture.isData3DTexture;
if ( srcTexture.isDepthTexture ) {
const srcTextureProperties = properties.get( srcTexture );
const dstTextureProperties = properties.get( dstTexture );
const srcRenderTargetProperties = properties.get( srcTextureProperties.__renderTarget );
const dstRenderTargetProperties = properties.get( dstTextureProperties.__renderTarget );
state.bindFramebuffer( _gl.READ_FRAMEBUFFER, srcRenderTargetProperties.__webglFramebuffer );
state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, dstRenderTargetProperties.__webglFramebuffer );
for ( let i = 0; i < depth; i ++ ) {
// if the source or destination are a 3d target then a layer needs to be bound
if ( isSrc3D ) {
_gl.framebufferTextureLayer( _gl.READ_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, properties.get( srcTexture ).__webglTexture, srcLevel, minZ + i );
_gl.framebufferTextureLayer( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, properties.get( dstTexture ).__webglTexture, dstLevel, dstZ + i );
}
_gl.blitFramebuffer( minX, minY, width, height, dstX, dstY, width, height, _gl.DEPTH_BUFFER_BIT, _gl.NEAREST );
}
state.bindFramebuffer( _gl.READ_FRAMEBUFFER, null );
state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, null );
} else if ( srcLevel !== 0 || srcTexture.isRenderTargetTexture || properties.has( srcTexture ) ) {
// get the appropriate frame buffers
const srcTextureProperties = properties.get( srcTexture );
const dstTextureProperties = properties.get( dstTexture );
// bind the frame buffer targets
state.bindFramebuffer( _gl.READ_FRAMEBUFFER, _srcFramebuffer );
state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, _dstFramebuffer );
for ( let i = 0; i < depth; i ++ ) {
// assign the correct layers and mip maps to the frame buffers
if ( isSrc3D ) {
_gl.framebufferTextureLayer( _gl.READ_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, srcTextureProperties.__webglTexture, srcLevel, minZ + i );
} else {
_gl.framebufferTexture2D( _gl.READ_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, srcTextureProperties.__webglTexture, srcLevel );
}
if ( isDst3D ) {
_gl.framebufferTextureLayer( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, dstTextureProperties.__webglTexture, dstLevel, dstZ + i );
} else {
_gl.framebufferTexture2D( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, dstTextureProperties.__webglTexture, dstLevel );
}
// copy the data using the fastest function that can achieve the copy
if ( srcLevel !== 0 ) {
_gl.blitFramebuffer( minX, minY, width, height, dstX, dstY, width, height, _gl.COLOR_BUFFER_BIT, _gl.NEAREST );
} else if ( isDst3D ) {
_gl.copyTexSubImage3D( glTarget, dstLevel, dstX, dstY, dstZ + i, minX, minY, width, height );
} else {
_gl.copyTexSubImage2D( glTarget, dstLevel, dstX, dstY, minX, minY, width, height );
}
}
// unbind read, draw buffers
state.bindFramebuffer( _gl.READ_FRAMEBUFFER, null );
state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, null );
} else {
if ( isDst3D ) {
// copy data into the 3d texture
if ( srcTexture.isDataTexture || srcTexture.isData3DTexture ) {
_gl.texSubImage3D( glTarget, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, glType, image.data );
} else if ( dstTexture.isCompressedArrayTexture ) {
_gl.compressedTexSubImage3D( glTarget, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, image.data );
} else {
_gl.texSubImage3D( glTarget, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, glType, image );
}
} else {
// copy data into the 2d texture
if ( srcTexture.isDataTexture ) {
_gl.texSubImage2D( _gl.TEXTURE_2D, dstLevel, dstX, dstY, width, height, glFormat, glType, image.data );
} else if ( srcTexture.isCompressedTexture ) {
_gl.compressedTexSubImage2D( _gl.TEXTURE_2D, dstLevel, dstX, dstY, image.width, image.height, glFormat, image.data );
} else {
_gl.texSubImage2D( _gl.TEXTURE_2D, dstLevel, dstX, dstY, width, height, glFormat, glType, image );
}
}
}
// reset values
_gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, currentUnpackRowLen );
_gl.pixelStorei( _gl.UNPACK_IMAGE_HEIGHT, currentUnpackImageHeight );
_gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, currentUnpackSkipPixels );
_gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, currentUnpackSkipRows );
_gl.pixelStorei( _gl.UNPACK_SKIP_IMAGES, currentUnpackSkipImages );
// Generate mipmaps only when copying level 0
if ( dstLevel === 0 && dstTexture.generateMipmaps ) {
_gl.generateMipmap( glTarget );
}
state.unbindTexture();
};
/**
* Initializes the given WebGLRenderTarget memory. Useful for initializing a render target so data
* can be copied into it using {@link WebGLRenderer#copyTextureToTexture} before it has been
* rendered to.
*
* @param {WebGLRenderTarget} target - The render target.
*/
this.initRenderTarget = function ( target ) {
if ( properties.get( target ).__webglFramebuffer === undefined ) {
textures.setupRenderTarget( target );
}
};
/**
* Initializes the given texture. Useful for preloading a texture rather than waiting until first
* render (which can cause noticeable lags due to decode and GPU upload overhead).
*
* @param {Texture} texture - The texture.
*/
this.initTexture = function ( texture ) {
if ( texture.isCubeTexture ) {
textures.setTextureCube( texture, 0 );
} else if ( texture.isData3DTexture ) {
textures.setTexture3D( texture, 0 );
} else if ( texture.isDataArrayTexture || texture.isCompressedArrayTexture ) {
textures.setTexture2DArray( texture, 0 );
} else {
textures.setTexture2D( texture, 0 );
}
state.unbindTexture();
};
/**
* Can be used to reset the internal WebGL state. This method is mostly
* relevant for applications which share a single WebGL context across
* multiple WebGL libraries.
*/
this.resetState = function () {
_currentActiveCubeFace = 0;
_currentActiveMipmapLevel = 0;
_currentRenderTarget = null;
state.reset();
bindingStates.reset();
};
if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {
__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) );
}
}
/**
* Defines the coordinate system of the renderer.
*
* In `WebGLRenderer`, the value is always `WebGLCoordinateSystem`.
*
* @type {WebGLCoordinateSystem|WebGPUCoordinateSystem}
* @default WebGLCoordinateSystem
* @readonly
*/
get coordinateSystem() {
return WebGLCoordinateSystem;
}
/**
* Defines the output color space of the renderer.
*
* @type {SRGBColorSpace|LinearSRGBColorSpace}
* @default SRGBColorSpace
*/
get outputColorSpace() {
return this._outputColorSpace;
}
set outputColorSpace( colorSpace ) {
this._outputColorSpace = colorSpace;
const gl = this.getContext();
gl.drawingBufferColorSpace = ColorManagement._getDrawingBufferColorSpace( colorSpace );
gl.unpackColorSpace = ColorManagement._getUnpackColorSpace();
}
}